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Abstract. This paper presents a analysis of the problem of optimal design of the beams with two I-type 
cross section shapes. These types of beams are simply supported and subject to pure bending. The strength 
and stability conditions were formulated and analytically solved in the form of mathematical equations. Both 
global and selected types of local stability forms were taken into account. The optimization problem was 
defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of 
the beam is the second. The geometric parameters of cross section were selected as the design variables. The 
set of constraints includes global and local stability conditions, the strength condition, and technological and 
constructional requirements in the form of geometric relations. The optimization problem was formulated and 
solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal 
compromise solutions was generated. The numerical procedures include discrete and continuous sets of the 
design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and 
diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal 
designing of thin-walled beams, increasing information required in the decision-making procedure.
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1. Introduction

The lack of strength of thin-walled cold-formed beams has been well discussed for many years and is 

now widely described in the literature. The general approach to the stability of compressed beams or 

buckling arising during their bending has also been established for a long time. However, these 

problems still remain a subject of contemporary studies, particularly with regard to local buckling of 

these members. Extensive discussion of strength and stability problems of thin-walled beams may be 

found in different monographs, which include references to many other pertinent articles (for example: 

Bažant and Cedolin 1991, Trahair 1993, Magnucki and Ostwald 2005). 

Features of the thin-walled structures are characterized by a set of advantages and disadvantages. The 

thin-walled beams are distinguished by good strength properties, relatively low weight and the ability to 

carry high loads. The beneficial relation between the weight and carrying loads is the main advantage 

of these structures. The beams are manufactured with the use of cold rolling technology and, therefore, 
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they may rather easily meet the requirements imposed by users in many branches of mechanical 

industry and civil engineering. The greatest benefit of these structures is their efficiency, as a large 

increment of strength may be caused by appropriate choice of cross section shape, with minimal or no 

weight increase. The benefits that optimally designed this-walled beams offer are generally classified as 

weight-saving ones, with respect to the load-bearing function and constructional demands. The thin-

walled beams are a great area for innovation research and in practice this has proved to be very 

significant. 

Obviously thin-walled beam structures have also some disadvantages. The most important is the 

susceptibility of these structures to global and local buckling. Calculations of critical loads require 

applying complex methods of finding satisfactory solution for the stability state of the thin-walled 

beams. These calculations may be done analytically or numerically (Bažant and Cedolin 1991, Mohri 

2003, Trahair 1993).

It is clear that the advantages of thin-walled beams can be better exploited and their faults can be 

minimized if the basic geometric parameters are calculated with the help of structural optimization. 

Most of the work in the area of optimum design is subjected to so-called single criterion scalar 

optimization. In scalar optimization the most commonly used optimality criterion is the weight of a 

structure (Liu 2004, Tian 2004). Such a criterion may be connected with economic features because 

material, manufacturing and application costs to a certain degree depend on weight. 

The cost of the structure is a universal criterion, however, the difficulties in determining actual and 

forecasted costs make the problem more complex and difficult resulting in considerable simplification 

to be required. It is worthwhile to note that accurate determination of the cost depends on the user 

(decision maker) imposing his point of view to the designers.

In engineering applications of thin-walled structures, several noncomparable criteria must usually be 

considered in the optimal design of structures. Such a problem leads to multicriteria optimization, 

where the structure is described with use of several, often conflicting criteria. It is natural that such 

optimal design is nearer to the technical reality and it much better describes real behavior conditions of 

structures.

Thin-walled cold-formed beams with open cross section profiles are widely used in many branches of 

mechanical industry and civil engineering. Recently, an increasing interest for improving these profiles 

regarding shapes and manufacturing processes can be noticed. This is confirmed by a number of papers 

published in worldwide journals and at international conferences. In these publications, particularly 

conference publications, special attention is paid to the general studies of thin-walled cold-formed 

beams. Although the problems of strength and stability of the thin-walled structures are widely 

presented, discussions of the specific problems of optimal shaping of cold-formed open cross section 

beams are not extensive. The monograph by Magnucki and Ostwald (2005) contains a list of 154 

references connected with these structures. Most of these works were published 2000-2005 (about 

70%). Only 40 (26%) were thematically connected with the problem of optimal design of cold-formed 

beams with open cross sections. 

The beams, as elements of many different mechanical and civil engineering structures, may be 

subject to longitudinal forces, transverse loads and different combinations of these loads. The modern 

thin-walled beams of open cross sections are usually made of higher-strength steel. Therefore their 

walls may be thinner and whole beam may be relatively light. As a result, characteristics of such 

constructions are limited mainly by general and local stability conditions. From the practical point of 

view, the geometric constraints which limit the basic dimensions of cross section are very important as 

well. 
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A review of studies on general and local stability of cold-formed beams is presented by Davies 

(2000), Dubina (2004) and Hancock (2003). Some works on optimal design of cold-formed beams are 

presented by Magnucka-Blandzi (2001, 2004), Magnucki (2000, 2002, 2005) and Stasiewicz (2004). 

The recapitulation of these works is presented by Magnucki and Ostwald in the form of a monograph 

(Magnucki and Ostwald 2005). In this work the problem of multicriteria optimization of thin-walled 

cold-formed beams is formulated and presented.

The bicriteria optimization can better connect the cost and practical features of a structure. In 

engineering practice, the weight of a structure as the first criterion in bicriteria optimization design may 

be connected with the economic requirements. This criterion may be expressed for example by minimal 

area of the beam cross section. The second factor determining practical value of a structure may be 

represented by one of the strength conditions. The role of the most natural factor improving functional 

quality of a structure may be fulfilled by the condition of ensuring its appropriate rigidity, expressed, for 

example by minimization of deflection of the beam middle-point. The second criterion may be 

expressed in different form, which depends on priorities of a design.

In general multicriteria optimization of thin-walled cold-formed beams is a relatively new research 

approach supporting the process of designing thin-walled structures. For this reason, the presented 

multicriteria optimization models with two conflicting criteria (the bicriteria problem) should be 

considered as innovative.

Problem of multicriteria optimization of thin-walled columns and beams were presented by Manevich 

and Raksha (2001) and Raksha (2003). Procedures of multicriteria optimization to the optimal design of 

thin-walled cold-formed beams were adapted by Kasperska, Ostwald and Rodak (2004, 2005) and 

Kasperska, Magnucki and Ostwald (2005). Presented paper is continuation of this research.

The two types of antisymetrical I-sections of cold-formed thin-walled beams are formulated and 

numerically solved in the presented paper on the bicriteria optimization problem. The first cross section 

with double flanges is similar to an I-type section beam, and the second with single bent flanges is 

generalized of the first cross section. For both sections the weight of the beam, expressed by cross 

section area, is taken as the first optimization criterion and deflection of the beam is taken as the second.

2. Mathematical model of thin-walled beams with open cross sections

The optimization problem is formulated for a beam loaded with two equal moments M [kN·m] 

applied to the beam ends (pure bending, see Fig. 1).

For purposes of the optimization calculations, the beam cross sections presented in Fig. 2 are taken 

into consideration. The first model is double flange I-section, the second one is lipped I-section. Except 

for parameters H and t, the dimensions of all cross sections parameters are referred to the centerline.

Fig. 1 Model of the thin-walled beam
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For the double flange I-section (Fig. 3) the centroid of the cross section and the shear centre (point O) 

are located in the centre of the coordinate system yz ( yz – the principal axes). The total area A and the 

geometric stiffness for Saint-Venant torsion Jt of the cross section are in the form:

(1)

Moments of inertia of the cross section area with respect to the y and z axes (Jy and Jz, respectively) 

and the sectorial (warping) moment of inertia Jω are as follows:

(2)

A 2t a 2b+( ),  Jt
2

3
--- t

3
a 2b+( )==

Jy
1

3
--- tb

3
          Jz 2t a

2
b a t–( )2 b

1

3
--- a t–( )++

⎩ ⎭
⎨ ⎬
⎧ ⎫

,==

J
ω

2t a t–( )ω 1

2 1

6
---b

ω 1

2
ω 1ω 2 ω 2

2
2 ω 3

2
ω 3ω 4 ω 4

2
+ +( ) ω 5

2
ω 5ω 6 ω 6

2
+ + + + + ++

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Fig. 2 Antisymmetrical cross sections of the cold-formed beams (Models no 1 and 2)

Fig. 3 Scheme of the double flange I-section (Model 1)
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The sectorial (warping) functions in selected points of the profile (see Fig. 3) are of the following 

forms:

where 

For the lipped I-section (Fig. 4) the total area A and the geometric stiffness for Saint-Venant torsion Jt

of the cross section are in the form

(3)

Position of the centroid (the point O) is in the centre of the web. Moments of inertia of the cross 

section area with respect to the y and z axes are as follows: 

(4)

The product of inertia is as follows: 

(5)

The shear center of this section is located in the middle of the web of an I-section. Therefore the 

sectorial functions in the selected points of the profile (see Fig. 4) are of the following forms:
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Fig. 4 Scheme of the lipped I-section (Model 2)
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where 

The sectorial moment of inertia of the cross section has the form:

(6)

Geometric properties of particular cross sections are also discussed by Magnucki and Ostwald (2005).

The strength and stability conditions of the thin-walled beams are based on classical Vlasov theory. 

Detailed descriptions of this theory have been presented by many authors. Strength condition for the 

beam in a pure bending state is of the following form:

where M – bending moment kN·m, σallow – allowable stress MPa (yield stress divided by safety factor),    

from which

(7)

Critical elastic moment of lateral buckling Mcr is of the following form (Magnucki and Ostwald 2005):

(8)

where: Jy , Jt, Jω – moment of inertia, moment of inertia for torsion, sectorial moment of inertia, respectively,

where: E, ν – Young’s modulus, Poisson ratio,

where: nb – factor of safety.

The condition of general stability as lateral buckling condition is in the form: 

(9)

Thin-walled cold-formed beams are very susceptible for local buckling of individual elements of the 

cross section (web, flanges and lip). The forms of local buckling are presented in Figs. 5 and 6. 

The first form of local buckling is based on the assumption that the flange is a beam supported 

on an elastic foundation and that the flange is relocated only in parallel upward direction, locally 

receding from the web. This assumption was confirmed by Magnucki and Ostwald’s experiment 

(2005).
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The first condition of local buckling for flange may be written in the form (Fig. 5, form 1):

(10)

where: nbl – factor of safety for local buckling,

   yp – centroid of the flange cross section.

For the Model 1 the critical stress of the beam flange under pure bending is in the form (Magnucki 

and Ostwald 2005):

For the Model 2 (Fig. 6, form 1) the critical stress is in the form (Magnucki and Ostwald 2005):

where 

The second condition of local buckling (Figs. 5 and 6, form 2) for web may be written in the form: 

(11)

For the Model 1 and 2 the critical stress is in the form (Magnucki and Ostwald 2005): 
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Fig. 5 The two forms of local buckling for 
the double flange I-section (Model 1)

Fig. 6 The three forms of local buckling for the lipped I-
section (Model 2)
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For the Model 2 the third condition of local buckling for lip may be written in the form (Fig. 6, form 3):

(13)

The critical stress of the beam lip under pure bending is in the form (Magnucki and Ostwald 2005):

In above equations nbl = 1.5 ·nb is the factor of safety with respect to local buckling. This factor was    

assumed to exceed the safety factor by 50% for the case of general buckling. Values of both factors are 

different in order to avoid interactions between both buckling forms. In the authors’ opinion, the safety 

factor equal to 50% will be sufficient in the context of presented optimal design problem, when 

different forms of buckling and their possible interactions are treated as constraints. If such interaction 

arises, a critical load will be significantly lower compared to the determined value.

3. Mathematical model of the optimization problem

3.1 Optimization procedure

Multicriteria optimization problems in engineering practice are solved generally with the application 

of minimum in the Pareto sense. In the presented paper, the Pareto frontier was generated with the help 

of the normalized normal constraint (NC) method (Messac 2003). In comparison with classical 

procedure based on weighting coefficients approach (the weighted sum method WS), this allows us to 

obtain all Pareto-optimal points, which are uniformly located on the Pareto frontier. The normalized 

normal constraint method NC, which solves bicriteria optimization problems, is in the form:

(14)
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 – definition of the auxiliary vector on the utopia line,

 – normalized vector of optimality criteria,

 – generic point on the utopia line,

where

(15a)

 – vector of optimality criteria,

 – increment generating point on the utopia line.

3.2 Design variables and optimization criteria

The optimization problems have been solved with the use of continuous and discrete sets of decision 

variables. The applied approach was based on the combination of the normal constraint method with 

the classical systematic search method. Because the number of design variables was not significant, use 

of such procedure enhances the applicability of numerical calculations and interpretation of results. In 

the case of continuous set of design variables the analysis of the solutions enables defining active 

constraints and selecting appropriate actions aimed at improving effectiveness of the cross section. The 

solutions obtained with the help of discrete set of decision variables may be applied in engineering 

practice.

In the presented paper the parameters a, b and t were taken as the decision variables (see Figs. 2 and 3). 

In presented work it is assumed that the first optimization criterion is the weight of the beam, simply 

expressed by the area of the beam cross section.
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Fig. 7 Non-normalized design space and the Pareto 
frontier for bicriteria problem (Mesac 2003)

Fig. 8 Normalized design space and graphical repre-
sentation of NC procedure (Mesac 2003)



62 M. Ostwald, K. Magnucki and M. Rodak
Q1(x) = A [mm2] → min (16)

For the Model 1 the first criterion is expressed in the form

and for the Model 2

.

The second criterion is deflection of the centre of beam, expressed as follows

(17)

In optimization procedure the both criteria are normalized according to Eq. 15(a). The results of 

numerical calculation are presented in original forms.

3.3 Constraints

For each of considered cross sections the sets of geometric constraints have been determined, including the 

following conditions. 

1. The values of all decision variables > 0.

2. For thin-wall feature of beam, the constraint H/t ≥ 10 must be fulfilled for the elements of cross 

       section.

3. A set of constructional and technological conditions must be determined for each of the cross sections.  
      These conditions are related to standard requirements (Eurocode 3, AISC and AISI, for example) 

      and to manufacturer feasibility.

The set of constraints and conditions is defined as follows:

- geometric constraints and thin-walled conditions (conditions number 1 ÷ 6)

a – t > 0 (1), b – t > 0 (2), t > 0 (3),

H = 2a + t ≤ Hmax (4), b + t ≤ Hmax (5), b + 3t ≤ H (5, for Model 2)

t ≤ tmax (6), 

- the strength condition M ≤ M1 (7),

- the condition of general stability M ≤ M1 (8),

- the conditions of local and distortional stability

- M ≤ M3 (9), M ≤ M4 (10) M ≤ M5 (11), only for Model 2,

- the condition of maximum deflection of the beam vmax ≤ L/250 (12), arbitrary limit,

- the condition connected with application of NC optimization procedure (15).

For the Model 2 the equality constraint Jyz = 0 was also taken into account. This approach simplified 

mathematical model, based on the assumption, that Y, Z axes are the principal moment of inertia axes 

(see Fig. 3). When c ≤ a, from Eq. (5) the following equality is obtained 
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Based on this equation, it can be notified that c is defined with the help of decision variables a, b and 

t. Additionally, the condition presented below must be taken into account

.

Finally, the fifth constraint for the Model 2 has the following form

The above constraints and conditions numbering is used in Table 7, in which the active constraints are 

shown.

4. Numerical calculations

The numerical calculations were performed based on the following input data:

- beam depth Hmax = 200 mm,

- beam length L = 1, 2, 3, 4, 5 m,

- sheet thickness t = 1–16 mm (with 1 mm interval),

- properties of the material E = 2.05 · 105 MPa, ν = 0.3, σallow = 307.5 MPa,

- loads M = 10 kN · m, 

- safety coefficients nb = 1.8, nbL = 1.5 · nb = 2.7.

Results of numerical calculations are presented in the form of diagrams, figures and tables.

The results for the beam under pure bending with cross section defined by Model 1 and Model 2 are 

presented. In Table 1 and 2 the sets of Pareto-optimal solutions for increment values w = <0, 1> are 

presented (11 compromise solutions in the Pareto sense). The solution for the increment w = 0 

corresponds to scalar optimization with the cross section area considered as the criterion, while the 

increment w = 1.0 leads to scalar optimization with the deflection as the criterion. The cases for w = 

<0.1, 0.9> correspond to optimal bicriteria solutions with different degrees of compromise. For each 

increment w = <0, 1> two optimal solutions are presented. The upper rows show the solutions based on 

the discrete set of design variables – these are so called standard solutions, which are in agreement with 

the national standards. The lower rows show the exact solutions, based on the continuous set of design 

variables. 

The sets of Pareto-optimal solutions (Pareto frontiers) obtained with discrete set of design variables, 

for beams with length L = 2 and 5 m, are presented in Figs. 9 and 10. In these figures the minimum and 

maximum values of particular criterion are marked, with indication of the ideal solution. In Figs. 9 and 

10, the points representing the scalar optimization solution with w = 0 (optimization of the first 

criterion) and with w = 1.0 (optimization of the second criterion) and bicriteria optimization with

w = 0.5 are marked. An additional calculation shows that the increment w used in the NC procedure 

may be considered as the weighting coefficient used in classical multicriteria procedure based on the 

weighting function method. Results of the calculation indicates, that w = 0.5 means the equal 

importance the both optimization criteria.
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Table 1 Pareto-optimal solutions set for Model 1, M = 10 kN·m, L = 2 m

w
Decision variables mm H

mm
Q1

mm2
Q2

mma b t

0
66.0 91.0 2.0 134.0 992.0 7.119

88.41 87.68 1.72 178.54 906.11 4.547

0.1
73.0 90.0 2.0 148.0 1012.0 5.793

97.10 83.87 1.79 195.99 946.78 3.705

0.2
84.0 87.0 2.0 170.0 1032.0 4.410

99.11 106.97 1.77 200.00 1109.61 2.901

0.3
99.0 87.0 2.0 200.0 1092.0 3.087

99.03 136.14 1.94 200.00 1441.19 2.149

0.4
99.0 147.0 2.0 200.0 1572.0 1.949

98.92 183.64 2.17 200.00 2020.27 1.474

0.5
98.0 177.0 3.0 199.0 2712.0 1.134

98.41 196.82 3.18 200.00 3130.87 0.963

0.6
97.0 180.0 5.0 199.0 4570.0 0.702

97.51 195.01 4.99 200.00 4865.10 0.645

0.7
96.0 193.0 7.0 199.0 6748.0 0.492

96.34 192.67 7.33 200.00 7057.30 0.469

0.8
95.0 188.0 10.0 200.0 9420.0 0.374

95.00 190.00 10.00 200.00 9501.28 0.370

0.9
93.0 185.0 13.0 199.0 12038.0 0.317

93.55 187.09 12.91 200.00 12075.08 0.312

1.0
92.0 184.0 16.0 200.0 14720.0 0.276

92.00 184.00 16.00 200.00 14720.00 0.276

Fig. 9 Discrete Pareto-optimal solutions set for the Model 1 Fig. 10 Discrete Pareto-optimal solutions set for the Model 2
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The optimal parameters of a cross section for the beam under pure bending M = 10 kN·m are shown 

in Table 3 and 5. In these tables the parameters obtained from the optimization procedure with discrete 

set of decision variables are presented. The optimal shapes of the beam with cross section defined by 

Model 1 and 2 are presented in Tables 4 and 6.

Tables 3 and 5 present optimal discrete parameters of the cross section. In Table 5 some changes in 

the trend are noticeable with increase of beam length L. These changes are connected with skip of the 

sheet thickness t. 

 
Table 2 Pareto-optimal solutions set for Model 2, M = 10 kN·m, L = 2 m

w
Decision variables mm c

mm
H

mm
Q1

mm2
Q2

mma b t

0
81.0 67.0 3.0 22.1 165.0 1221.51 4.464

98.64 66.13 2.72 20.99 200.00 1189.21 3.193

0.1
89.0 66.0 3.0 21.5 181.0 1256.92 3.658

98.58 79.19 2.83 25.25 200.00 1374.23 2.669

0.2
98.0 68.0 3.0 21.9 199.0 1331.25 2.878

98.93 143.29 2.14 49.60 200.00 1554.53 2.145

0.3
98.0 98.0 3.0 31.9 199.0 1661.36 2.155

98.80 168.54 2.39 64.59 200.00 1989.59 1.681

0.4
98.0 148.0 3.0 53.3 199.0 2240.01 1.529

98.41 169.26 3.19 66.65 200.00 2670.88 1.275

0.5
98.0 163.0 4.0 63.7 200.0 3249.77 1.065

97.81 169.70 4.37 69.48 200.00 3688.96 0.948

0.6
97.0 158.0 6.0 64.0 200.0 4775.45 0.757

96.99 169.23 6.01 72.92 200.00 5094.36 0.714

0.7
96.0 163.0 8.0 72.1 200.0 6601.34 0.575

95.96 167.21 8.08 76.56 200.00 6837.11 0.559

0.8
95.0 168.0 10.0 85.8 200.0 8655.61 0.467

94.75 163.30 10.50 79.96 200.00 8816.70 0.459

0.9
93.0 148.0 14.0 73.1 200.0 10867.51 0.401

93.36 157.43 13.27 82.87 200.00 10947.97 0.396

1.0
92.0 152.0 16.0 92.0 200.0 13184.00 0.358

92.00 152.00 16.00 92.00 200.00 13183.95 0.358

Table 3 Optimal parameters of a cross section [mm] for a beam under pure bending M = 10 kN·m (Model 1)

Scalar optimization
w = 0

Bicriteria optimization
w = 0.5

Scalar
optimization

w = 1.0L 1 2 3 4 5 1 2 3 4 5

H 128.0 134.0 158.0 180.0 200.0 199.0 199.0 200.0 199.0 199.0 200.0

a 63.0 66.0 78.0 89.0 99.0 98.0 98.0 98.0 97.0 97.0 92.00

b 59.0 91.0 113.0 131.0 147.0 134.0 177.0 166.0 160.0 187.0 184.00

t 2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0 5.0 5.0 16.00
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In Table 7 the numbers of active constraints are presented. The active constraints were specified 

with the help of continuous set of decision variables (the lower rows in Table 1 and 2 for different w). 

For both models, in the case of scalar optimization with the first criterion expressed by the area of 

cross section (w = 0), the condition connected with global buckling (8) and local buckling (9, 10) 

were active. The constraint limiting the depth of the cross section to Hmax = 200 mm (constraint 4) 

were active for the beam with length L = 3–5 m for Model 1 and for L = 1–5 m for Model 2.

In the case of scalar optimization with the second criterion expressed by the deflection of beam 

(w = 1.0) only the geometric constraints (4, 5, 6) were active.

Table 4 Optimal shapes of beam under M = 10 kN · m (Model 1)

Table 5 Optimal parameters of a cross section [mm] for a beam under pure bending  M = 10 kN · m (Model no 2)

Scalar optimization w = 0 Bicriteria optimization w = 0.5 Scalar optimiza-
tion w = 1.0L 1 2 3 4 5 1 2 3 4 5

H 119.0 165.0 199.0 138.0 146.0 199.0 200.0 199.0 199.0 199.0 200.0

a 58.0 81.0 98.0 67.0 71.0 98.0 98.0 97.0 97.0 97.0 92.00

b 47.0 67.0 83.0 93.0 105.0 139.0 163.0 169.0 149.0 166.0 152.00

c 16.38 22.08 26.71 34.76 39.83 48.78 63.72 70.73 56.88 68.23 92.00

t 3.0 3.0 3.0 4.0 4.0 3.0 4.0 5.0 5.0 5.0 16.00
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In the case of bicriteria optimization (w = 0.5) the geometric constraints (4, 5) were active. For the 

Model 1, with L = 1 m, the local buckling condition for the flange (9) was active (in this case H = 199 

mm < Hmax = 200 mm.

Analysis of the results of numerical calculations shows that the geometric condition imposing the 

limit of the cross section depth H is the most important constraint.

The values of the first criterion for beams L = 1–5 m are presented in Table 8, while the values of the 

second criterion are presented in Table 9. The parameters w = 0 and w = 1.0 refer to scalar optimization 

with first and second optimization criterion respectively, the parameter w = 0.5 refers to bicriteria 

optimization. The values of both criteria are also presented in Figs. 9–11.

Table 6. Optimal shapes of beam under M = 10 kN · m (Model 2)

Table 7 Numbers of active constraints

Model w L = 1 m L = 2 m L = 3 m L = 4 m L = 5 m

1

0 7, 8, 10 8, 9, 10 4, 8, 9 4, 8, 9 4, 8, 9

0.5 4, 9 4, 5

1.0 4, 5, 6

2

0 4, 8, 9

0.5 4

1.0 4, 5, 6
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Table 8 First criterion – beam cross section area [mm2] (Model 1 and 2)

w Model no L = 1 m 2 m 3 m 4 m 5 m

0
1 724.0 992.0 1216.0 1404.0 1572.0

2 869.26 1221.51 1495.25 1930.07 2146.65

0.5
1 2196.0 2712.0 3440.0 4170.0 4710.0

2 2131.69 3249.77 4212.32 3773.75 4142.25

1.0
1 14720.00

2 13184.00

Table 9 Second criterion – beam deflection [mm] (Model 1 and 2)

w Model no L = 1 m 2 m 3 m 4 m 5 m

0
1 2.880 7.119 9.229 10.846 12.183

2 3.121 4.464 5.542 15.746 19.555

0.5
1 0.365 1.134 2.055 3.128 4.232

2 0.403 1.065 1.917 3.789 5.405

1.0
1 0.069 0.276 0.620 1.102 1.722

2 0.089 0.358 0.805 1.430 2.235

Fig. 12 The second criterion for beams with different 

length (scalar solutions)

Fig. 11 The first criterion for beams with different length 

(scalar and bicriteria solutions)
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5. Conclusions

Bicriteria optimization gives the designer new possibilities during decision-making process. A 

designer has at their disposal the set of so-called compromise solutions, with a different ratio between 

the two criteria. The result of scalar optimization is a single element of this set. In such a situation the 

designer may better assess and understand the thin-walled structure behavior. Bicriteria optimization is 

an approach requiring a designer to formulate not only appropriate optimization criteria, but first of all a 

suitable set of constraints. For the scalar optimization with w = 0 (the weight of the beam, represented 

by area of the cross section as an objective function), the most important are the general and local 

conditions of stability. In all cases the strength condition was not active. With increase of the w

increment, that controls the rate of both criteria, the significance of geometric constraints increases. In 

the case of scalar optimization, with w = 1.0 (the beam deflection as an objective function), only the 

geometric constraints are decisive – this statement is obvious.

Proper formulation of the geometric constraints is one of the most important requirements for the 

results of bicriteria optimization. The set of constraints should be formulated with consideration of the 

requirements of a manufacturer (manufacturing technology), a designer (formulation of mathematical 

model) and users (cost and application of the structure).

Further research on the optimal design of cold-formed thin-walled beams will focus on beams with 

different cross sections loaded by uniform loads as concentrated forces as well. 
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