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Abstract. This paper deals with the dynamic behaviour of cold-formed steel hollow frames with different
connection stiffnesses. An analytical model of a semi-rigid frame was developed to study the influence of
connection stiffnesses on the fundamental frequency and dynamic response of the frames. The flexibilities of
the connections are modeled by rotational springs. Neglect of semi-rigidity leads to an artificial stiffening of
frames resulting in shorter fundamental period, which in turn results in a significant error in the evaluation of
dynamic loads. In the seismic design of structures, of all the principal modes, the fundamental mode of
translational vibration is the most critical. Hence, experiments were conducted to study the influence of the
connection stiffnesses on the fundamental mode of translational vibration of the steel hollow frames. From the
experimental study it was found that the fundamental frequency of the frames lie in the semi-rigid region.
From the theoretical investigation it was found that the flexibly connected frames subjected to lateral loads
exhibit larger deflection as compared to rigidly connected frames.
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1. Introduction

The accuracy and reliability of an analysis depend heavily on the approximation of the model to the

real structure. One of the major factors which contribute for an accurate model is the simulation of the

connection behaviour under dynamic loads. The basic assumptions of conventional structural analysis

in steel framework is that the joints are either perfectly rigid or ideally hinged. However, in actual

structures, connections do not behave either in a perfectly rigid or perfectly hinged manner. In reality,
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connections are semi-rigid and possess a certain degree of rotational restraint. Connection flexibility

affects the fundamental frequency, force distribution and deformation in frames, and must be accounted

in a dynamic structural analysis.

In spite of the extensive work on static analysis of semi-rigid steel frames, very few researchers have

worked on the dynamic analysis of semi-rigid steel hollow frames. Chui and Chan (1996) have studied

the transient response of moment-resistant steel frames with flexible joints. It was found that the

displacement response of a structure with non-linear flexible connections will magnify under low

harmonic vibrating loads, and will dampen under high harmonic vibrating loads. Lui and Lopes (1996)

have analytically studied the dynamic response of semi-rigid frames using a computer model. The

presence of connection flexibility tends to reduce frame stiffness, and hence increases the natural period

of vibration of the frames. Dhillon and O’Malley (1999) analysed the semi-rigid jointed frames

subjected to static loadings. Computer based analysis and design of semi-rigid steel frames subjected to

static loadings were presented. Alfawakhiri and Bruneau (2000) have studied the interaction between

superstructure and support flexibilities of simply supported bridges to ground motion. The bridges were

modelled as beams with uniformly distributed mass and elasticity. It was illustrated through case

studies that the total response could be evaluated with sufficient accuracy by taking into account only

the contribution of the first mode, and neglecting the contribution of higher modes. Sekulovic et al.

(2002) have studied the effects of flexibility in the nodal connections on the dynamic behaviour of

plane steel frames. A flexible connection was idealized by a rotational spring. The dynamic stiffness matrix

for the beam with flexible connection at its end was formulated. Examples were provided to illustrate the

efficiency and accuracy of the method. It was concluded that the connection flexibility significantly

alters both the vibration and the response of the frames. An increase in the connection flexibility reduces

the frame stiffness, and thus the eigenfrequencies, particularly the lower values, which may have primary

influence on the dynamic response of the structure. Ozturk and Secer (2005) have studied the dynamic

response of semi-rigid steel frames. Connection flexibility was modelled by linear elastic rotational

springs. It was concluded that the location of the linear elastic connection springs affects the behaviour

and lateral rigidity of frames. Cabrero and Bayo (2005) proposed a method to optimise not only the size

of the structural profiles, but also the joint design to make it fit to the optimal theoretical values. Pre-

design methods for semi-rigid extended end–plate joints were also provided to check the feasibility and

suitability of a connection design. Design examples were provided to demonstrate the application of the

proposed semi-rigid design methods, and the results were compared to pinned and rigid connections.

Joanna et al. (2005) studied the effect of connection flexibilities on the dynamic response of beams and

frames. Connection flexibilities affect the force distribution and deformations in the beams and frames.

Ungureanu and Dubina (2005) studied the seismic performance of cold-formed steel portal frames. It

was concluded that the cold-formed steel structures could be designed to resist seismic actions using elastic

design by taking the behaviour factor of 1.5 to 2. to evaluate the seismic design load. 

The primary objective of the present study is to investigate the influence of connection flexibility on

the fundamental frequency and dynamic response of semi–rigid jointed steel hollow frames. Semi–rigid

connections are idealised by rotational springs. The element stiffness matrix is formulated including the

flexibility of the connections and the structure stiffness matrix is obtained based on the conventional

stiffness matrix analysis. Consistent mass matrix based on the deflected shape allowing for semi–rigidity

of the connections is also derived. In the seismic design of structures, of all the principal modes, the

fundamental mode of translational vibrations is the most critical one. Hence, only the translational

degree of freedom is retained and all the other degrees of freedom of the frames are condensed out in

the system stiffness matrix and the fundamental frequency in the translational mode has been found out.
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The theoretical results were compared with the experimental observations by testing six steel hollow

frames. Modal analysis is then carried out to determine the lateral deflection and bending moment for

the frame with the semi–rigid connections. Fundamental frequency versus spring stiffness behaviour,

lateral deflection versus spring stiffness behaviour, column base moment versus spring stiffness behaviour,

beam bending moment versus spring stiffness behaviour and the normalised behaviours of the frames

with semi-rigid connection were presented.

2. Fundamental frequency for a frame with semi-rigid connection

2.1. Formulation of the static stiffness and consistent mass matrices with semi-rigid

connection

The stiffness matrix for a semi-rigid frame element is derived by taking into account the rotational

springs. For the beam element shown in Fig. 1 the relative rotations of springs θra and θrb are related to

spring stiffnesses Ka and Kb as

θra = Ma/Ka and θrb = Mb/Kb

The modified stiffness matrix is obtained by replacing the joint rotations θa and θb by (θa − θra) and (θb −
θrb) respectively as follows.

(1)

(2)

(3)
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Fig. 1 Beam element of the frame with rotational springs
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Eqs. (2) and (3) can be reduced to 

(4)

where E   Young’s Modulus

where I    moment of inertia of the member

where L   length of the member

From Eq. (4) the static member stiffness matrix [K] for a semi-rigid plane frame element is obtained.

Dhillon and O’Malley (1999) formulated the stiffness matrix as given below.

(5)

Where Kii = 

Kjj = 

Kij = 

R = 

A - Area of cross section of the member

In the present study, the consistent mass matrix based on the deflected shape allowing for semi-

rigidity in the connections is derived and is given in appendix. The mass coefficients corresponding to

the nodal co-ordinates of the beam element of the frame is found out by a procedure similar to the

determination of element stiffness coefficients. The deflections resulting from unit displacements at the

nodal coordinates of the semi rigid beam element of the frame are given by the same displacement

functions that are obtained from static considerations.
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2.2. Generalized stiffness matrix

The semi-rigid element stiffness matrix is in local or member co-ordinate system. It is necessary to

transfer them to global or structure oriented co-ordinates before a complete structure stiffness matrix

can be formed. The transformation is accomplished by the relation.

where [K]s is the stiffness matrix for the member ‘e’ in structure co-ordinate system.

where [K]e is the stiffness matrix for the member in the member co-ordinate system.

where [T]e is the transformation matrix for the member of the form. 

(6)

where ‘α ’ is the angle between the structure and member co-ordinate systems.

2.3. Structure stiffness and static condensation

In order to find out the frequency in the translational mode of the frame, the rotational degrees of

freedom and axial degrees of freedom are to be condensed out of the system stiffness relationship. The

translational degree of freedom is separated from the other degrees of freedom and given as follows.

(7)

K[ ]s T[ ]e
T

K[ ]e T[ ]e=

T[ ]e

cos α    sin α     0     0     0     0

sin α–    cos α     0     0     0     0

0    0     1     0     0  

0    0     0    cos α    sin α     0

0    0     0    sin α–    cos α     0

0    0     0     0     0     1

=

F t( )
0

Kt t Kto

Kot Koo
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=

Fig. 2 Plane frame element in member (x, y, z) and structure (X, Y, Z) co-ordinates



518 P. S Joanna, G. M. Samuel Knight and A. Rajaraman

where Ut
 

is a vector containing the translational degrees of freedom and Uo is a vector containing the

other degrees of freedom.

From Eq. (7) F(t) = Kc Ut, where 

The condensed mass matrix can also be found out in the same way as mentioned above. The

frequency in the translational mode of vibration is found from the condensed stiffness and condensed

mass matrix.

3. Experimental investigation

Experiments were conducted on six hollow steel frames of height 1 m and width 1.5 m with a side

weld with transverse weld and with an end return weld, in order to study the effect of weld length on the

fundamental frequency of the frame. The cross sections of the frames tested are given in Table 1.

Kc Ktt= KtoKoo

1–
 Kot–

Table 1 Cross sections of the frames tested

Frame No.
Hollow beam size
mm × mm × mm

Hollow column size
mm × mm × mm

1 80 × 40 × 2 100 × 50 × 2

2  80 × 40 × 2.6  100 × 50 × 2.6

3  40 × 40 × 2  50 × 50 × 2

Fig. 3 Welded connections

Fig. 4 Test specimen details of the frame
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The schematic views of the above welds are given in Fig. 3 and Fig. 4 shows the test specimen

details.

The experiments were conducted in loading frame of capacity 40 T. The frames were given a small

lateral displacement and the free lateral mode of vibration was picked up by the vibration sensor which

was connected to the Cathode Ray Oscilloscope (CRO) as shown in Fig. 5(a). After the free vibration

test, the frames were tested to failure to predict the failure mode of the frames. The frames were tested

to failure by applying central concentrated static load on the beam as shown in Fig. 5(b) and no weld

failure was noticed in any of the frames as shown in Fig. 5(c). Fig. 6 shows the frequency curves

obtained from CRO for all the frames.

Translational frequencies of the frames are found by static condensation method for various

connection stiffness of the frames and are shown in Figs. 7(a), 8(a) and 9(a). The frame is analysed from

fixed end condition to simply supported condition allowing equal flexibility for all the connections.

Figs. 7(b), 8(b) and 9(b) show the normalised fundamental frequency for the joint stiffness. The

fundamental frequency is normalised by the fundamental frequency of the fully flexible joint. 

It is seen that the fundamental frequency of the Frame 1 and Frame 2 is constant if the spring stiffness

is less than 100 Nm/radian (i.e., fully flexible joints). Further increase of spring stiffness from 100 Nm/

radian increases the fundamental frequency significantly and remains constant when the stiffness is

Fig. 5 Experimental set-up
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more than 107 Nm/radian (i.e., infinitely rigid joint). The spring stiffness is plotted in a log scale. It can

be observed that the normalised fundamental frequency varies between 1 and 1.37 for the frames. The

magnitude of the stiffness of the spring ‘K’ does not determine if a joint will behave in a rigid or

flexible manner. Rather it is the ratio of the spring stiffness ‘K ’ to the flexural stiffness of the beam

member ‘EIb / L’ that determines the type of behaviour that will be exhibited. This ratio is called joint

stiffness. When the joint stiffness is less than 0.1, the frames behave as if it is hinged and if the joint

stiffness is greater than 1000, the frames behave as if it is fixed. For joint stiffness values in between the

Fig 6. Frequency curves obtained through CRO
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above limits, the frames behave as a semi-rigid one. When the experimental values are fitted in to the

theoretical frequency curve, they lie in the semi-rigid region.

It is seen that the fundamental frequency of the Frame 3 is constant if the spring stiffness is less than

100 Nm/radian (i.e., fully flexible joints). Further increase of spring stiffness from 100 Nm/radian increases

the fundamental frequency significantly and remains constant when the stiffness is more than 106 Nm/

radian (i.e., infinitely rigid joint). It can be observed that the normalised fundamental frequency varies

between 1 and 1.32 for the Frame 3. When the joint stiffness is less than 0.1, the Frame 3 behaves as if

it is hinged and if the joint stiffness is greater than 1000, the frame behaves as if it is fixed. For joint

stiffness values in between the above limits, the frame behaves as a semi-rigid one. When the

experimental values are fitted in to the theoretical frequency curve, they lie in the semi-rigid region.

Thus the neglect of flexibility of the joint leads to artificial stiffening of the system resulting in higher

fundamental frequency. Accurate determination of the fundamental frequency is essential in the

Fig. 7(a) Fundamental frequency vs. spring stiffness
(Frame 1)

Fig. 7(b) Normalised fundamental frequency vs. joint
stiffness (Frame 1)

Fig. 8(a) Fundamental frequency vs. spring stiffness
(Frame 2)

Fig. 8(b) Normalised fundamental frequency vs. joint
stiffness (Frame 2)
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evaluation of seismic loading, especially when design spectra exhibit short variation of response

acceleration coefficient with fundamental frequency.

4. Dynamic response of the frame with semi-rigid connection

4.1. Lateral deflection of the frame

The frames with various connection stiffness are further studied on its dynamic response. A sudden

concentrated lateral load of 4 kN is assumed to be applied to the Frame 1 and Frame 2 for a time period

of (t/T = 0.5), where T is the fundamental time period of the frame. The variation of the lateral deflection of

Fig. 9(a) Fundamental frequency vs. spring stiffness
(Frame 3)

Fig. 9(b) Normalised fundamental frequency vs. joint
stiffness (Frame 3)

Fig. 10(a) Deflection vs. spring stiffness (Frame 1) Fig. 10(b) Normalised deflection vs. joint stiffness
(Frame 1)
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the frames for the translational mode, depending on the magnitude of the spring stiffness is shown in

Figs. 10(a) and 11(a). Figs. 10(b), 11(b) show the normalised deflection for the joint stiffness.

The sway deflection of both the frames increase with the connection flexibility. The lateral deflection

is normalised by the lateral deflection of the fully rigid joint. The normalised lateral deflection varies

between 1 and 1.95 for both the frames. Thus the deflection of the fully flexible frames increases by

50% than that of the rigid frames. From the normalised deflection curve it is seen, when the joint

stiffness is less than 0.1, the frame behaves as if it is hinged and if the joint stiffness is greater than

1000, the frame behaves as if it is fixed. For joint stiffness values in between the above limits, the frame

behaves as a semi-rigid one.

Fig. 12(a) shows the lateral deflection of the Frame 3 when a sudden concentrated lateral load of 2 kN

is assumed to be applied for a time period of (t/T = 0.5) and Fig. 12(b) shows the normalised deflection

for the joint stiffness. 

Fig. 11(a) Deflection vs. spring stiffness (Frame 2) Fig. 11(b) Normalised deflection vs. joint stiffness
(Frame 2)

Fig. 12(a) Deflection vs. spring stiffness (Frame 3) Fig. 12(b) Normalised deflection vs. joint stiffness
(Frame 3)
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The normalised lateral deflection varies between 1 and 1.84. Thus the deflection of the flexible frame

increases by 50% than that of the rigid frame. Thus the serviceability sway criteria govern the design

rather than the strength criteria since the stiffness of the semi-rigid jointed frame is smaller and it

undergoes large lateral deflection.

4.2. Beam and column moments

The variation of the bending moment at the bottom of the column depending on the magnitude of the

spring stiffness is shown in Figs. 13(a), 14(a), 15(a) and Figs. 13(b), 14(b), 15(b) show the bending

moment at the end of the beam for the various connection stiffness.

Fig. 13(a) Column base moment vs. spring stiffness
(Frame 1)

Fig. 13(b) Beam bending moment vs. spring stiffness
(Frame 1)

Fig. 14(a): Column base moment vs. spring stiffness
(Frame 2)

Fig. 14(b) Beam bending moment vs. spring stiffness
(Frame 2)
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The semi-rigidity in the connections causes a significant reduction in the beam bending moment.

Thus the semi-rigidity in connections has advantageous effects on beam end bending moment. We see

from this example that the semi-rigidity increases the column bending moments significantly. We also

infer that if a real flexibly connected steel structure is idealized as having rigid joints, we may

unconservatively estimate the column base moment.

5. Conclusions

The role of flexibility of joints in frames is studied both theoretically and experimentally and frames

with rigid joint assumptions are re-analysed dynamically allowing for semi-rigid connections and the

following conclusions are drawn.

• The connection stiffness affects the fundamental frequency of the frame significantly.

• The experimental study quantifies the errors made, when the assumptions of rigid connections are

adopted in the dynamic analysis of frames. 

• The fundamental frequency of the frames lies in the semi-rigid range for frames with side weld and

transverse weld and also with end return weld.

• Neglect of semi-rigidity leads to an artificial stiffening of the frames, resulting in a shorter

fundamental period, which leads to significant error in the evaluation of dynamic loads.

• When the joint stiffness is less than 0.1, the frames behave as if it is hinged and if the joint stiffness

is greater than 1000, the frames behave as if it is fixed. For joint stiffness values in between the

above limits, the connections may be beneficially modeled as semi-rigid.

• The presented curves for normalized fundamental periods facilitate quick assessment of the error

involved and allow practicing engineers to identify the instances where such an error becomes

significant.

• The flexibly connected frames subjected to lateral loads exhibit larger deflection than rigidly

connected frames. Thus the serviceability sway criteria govern the design rather than the strength

criteria since the semi-rigid jointed frames undergo large lateral deflection.

Fig. 15(a) Column base moment vs. spring stiffness
(Frame 3)

Fig. 15(b) Beam bending moment vs. spring stiffness
(Frame 3)
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• The semi-rigidity in the frames is not only advantageous in the beam design of the frames but also

govern the column design in the frames.
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Appendix: Mass matrix for the frame element with semi-rigid connection

Fig. 16 shows the displacement curves corresponding to a unit displacement at each one of the nodal

coordinates for a semi rigid beam segment of the frame having a uniform mass m(x) = m and a uniform

stiffness EI(x) = EI, indicating the corresponding stiffness coefficients. 

Fig. 16(a) shows the displacement curve for unit vertical displacement at the end ‘A’. The bending

moment is given by

EIu2
" (x) = K22x − K32 (8)

EIu2
' (x) = (K22/2)x2 – K32x + C21 (9)

EIu2(x) = (K22/6)x3 – (K32/2)x2 + C21x + C22 (10)

The constants of integration C21 and C22 are evaluated using the boundary conditions of the beam

segment of the frame with semi rigid connection when unit vertical displacement is given at ‘A’.

Fig. 16(b) shows the displacement curve for unit rotation at the end ‘A’. The bending moment is

given by

EIu3
" (x) = K23x − K33 (11)

EIu3
' (x) = (K23/2)x2 – K33 x + C31 (12)

EIu3(x) = (K23/6)x3 – (K33/2)x2 + C31x + C32 (13)
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The constants of integration C31 and C32 are evaluated using the boundary conditions of the beam

segment of the frame with semi-rigid connection when unit rotation is given at ‘ A’.

Fig. 16(c) shows the displacement curve for unit vertical displacement at the end ‘B’. The bending

moment is given by

EIu5
" (x) = K25 x − K35 (14)

EIu5
' (x) = (K25/2) x

2 – K35x + C51 (15)

EIu5(x) = (K25/6)x3 – (K35/2)x2 + C51x + C52 (16)

The constants of integration C51 and C52 are evaluated using the boundary conditions of the beam

segment of the frame with semi rigid connection when unit vertical displacement is given at ‘B’.

Fig. 16(d) shows the displacement curve for unit rotation at the end ‘B’. The bending moment is

given by

EIu6
" (x) = K26 x − K36 (17)

EIu6
' (x) = (K26/2) x

2 – K36 x + C61 (18)

EIu6(x) = (K26/6) x
3 – (K36/2) x

2 + C61 x + C62 (19)

The constants of integration C61 and C62 are evaluated using the boundary conditions of the beam with

semi-rigid connection when unit rotation is given at ‘B’.

Fig. 16 Deflection curves due to unit displacement at one of the nodal co-ordinates
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The deflected curves u1(x) and u4(x) for axial effects of the beam element of the frame can be found

by applying unit axial displacement at the end ‘A’ and ‘B’ respectively. The equations of the deflected

curves can be used directly in the formulation of the mass matrix as follows.

(20)

in which ‘m’ is the mass per unit length of the element. The mass matrix [M] for prismatic members can

be, therefore, evaluated directly as below

(21)

(22)

       [(K22/6)x3 – (K32/2)x2 + C21x + C22][(K22/6)x3 – (K32/2)x2 + C21x + C22]dx

(23)

[(K23/6)x3 – (K33/2)x2 + C31x + C32][(K22/6)x3 – (K32/2)x2 + C21x + C22]dx

(24)

[(K23/6)x3– (K33/2)x2 + C31x + C32][(K23/6)x3 – (K33/2)x2 + C31x + C32]dx

(25)

(26)

(27)

[(K25/6)x3 – (K35/2)x2 + C51x + C52][(K22/6)x3 – (K32/2)x2 + C21x + C22]dx

(28)

[(K25/6)x3 – (K35/2)x2 + C51x + C52][(K23/6)x3 – (K33/2)x2 + C31x + C32]dx

Mij[ ] mui x( )uj x( ) xd

0

L
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m11 mu1 x( )u1 x( ) xd

0
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m

EI( )2
-------------
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m

EI( )2
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(29)

[(K25/6)x3 – (K35/2)x2 + C51x + C52][(K25/6)x3 – (K35/2)x2 + C51x + C52]dx

(30)

[(K26/6)x3 – (K36/2)x2 + C61x + C62][(K22/6)x3 – (K32/2)x2 + C21x + C22]dx

(31)

[(K26/6)x3 – (K36/2)x2 + C61x + C62][(K23/6)x3 – (K33/2)x2 + C31x + C32]dx

(32)

[(K26/6)x3– (K36/2)x2 + C61x + C62][(K25/6)x3 – (K35/2)x2 + C51x + C52]dx

(33)

[(K26/6)x3 – (K36/2)x2 + C61x + C62][(K26/6)x3 – (K36/2)x2 + C61x + C62]dx

m21 = m31 = m41 = m42 = m43 = m51 = m54 = m61 = m64 = 0 (34)

CC

m55 mu5 x( )u5 x( ) xd

0

L

∫=

m

EI( )2
-------------

0

L

∫=

m62 mu6 x( )u2 x( ) xd

0

L

∫=

m

EI( )2
-------------

0

L

∫=

m63 mu6 x( )u3 x( ) xd

0

L

∫=

m

EI( )2
-------------

0

L

∫=

m65 mu6 x( )u5 x( ) xd

0

L

∫=

m

EI( )2
-------------

0

L

∫=

m66 mu6 x( )u6 x( ) xd

0

L

∫=

m

EI( )2
-------------

0

L

∫=




