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Abstract. Important characteristics of the previously proposed reduced stiffness method and a summery of
its design curves for the buckling of the axially loaded sandwich cylindrical shells is presented. Comparison of
the lower bound obtained with FEM analysis with that from the reduced stiffness analysis shows that the
proposed reduced stiffness method can provide safe lower bounds for the buckling of geometrically imperfect,
axially loaded sandwich cylindrical shells. One of the attractive features of the reduced stiffness elastic lower
bound analysis is that it provides safe estimates of buckling loads that do not depend on the specification of
the precise magnitude of the imperfection spectra. As a result, designers can readily apply this method without
being worried about possible geometrical imperfections that might be generated during fabrication and
construction of sandwich cylindrical shells.
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1. Introduction

The light-core sandwich construction has been identified as an alternative to conventional thin walled
structures due to its higher stiffness/weight and strength/weight ratios. As a result, sandwich construction
results in lower lateral deformation, higher buckling resistance, and higher natural frequencies than do
other single-material constructions. Such advantages will insure that the sandwich construction will
continue to be in demand (Vinson 1999). Among many types of sandwich constructions, the sandwich
cylindrical shell is continuing to find many applications as an axially compressed structure in civil,
mechanical, offshore, and aerospace engineering. Its ever expanding applications have created many
imperfectly understood problems such as imperfection sensitivity, shear instability and buckling.
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Cylinders are unfavorably sensitive to initial geometric imperfections such that they can collapse
under a fraction of the strength of the perfect shell (Nemeth and Starnes 1998). Recently, it has been
realized that the initial imperfection in the sandwich cylindrical shell structure combined with the
highly unstable forms of post buckling behavior is responsible for the scatter of the buckling loads
below that of predicted by the classical buckling analysis (Croll 1981, 1995, Ohga and Umakoshi
2001). In this regard, a reduced stiffness analysis method would not only provide a safe lower bound,
but also simplify the design of the sandwich cylindrical shell. Therefore, a Reduced Stiffness (RS)
method has been proposed for the estimation of the lower bound of the buckling of the sandwich
cylindrical shell (Ohga and Umakoshi 2001).

In this paper, important characteristic of the proposed reduced stiffness method are discussed. In
addition, the reduced stiffness design curves for the axially loaded sandwich cylindrical shell are
summarized. This process begins with classical buckling analysis of the shell and identifying those
energy components that adversely affect the stability of the shell. Elimination of so identified
energy components from the total potential energy leads to the derivation of the reduced stiffness
lower bound. The accuracy of the proposed reduced stiffness lower bound is verified by
comparing it with that obtained with FEM analysis of the geometrically imperfect sandwich
cylindrical shell. This FEM program employs so-called 9-node isoparametric shell element with
three displacement and two rotational displacement degrees of freedom at each nodal point for
discretization of the model. The use of the isoparametric shell element allows layered analysis of
the sandwich cylindrical shell and, as a result, allows different material properties through the
thickness of the cylinder.

One of the attractive features of the proposed elastic lower bound analysis is that it provides safe
estimates of buckling loads that do not depend on the specification of the precise magnitude of the
imperfection spectra. Therefore, designers can readily apply this method to design sandwich cylindrical
shell without being worried about potential geometric imperfections that might be generated as a result
of mishandling during fabrication, eruption, earthquakes etc.

2. RS buckling strength of the axially loaded sandwich cylindrical shell

2.1. Total potential energy of an axially loaded sandwich cylindrical shell

In the classical analysis of a sandwich cylinder of length L, mean radius a, face thickness hf  and core
thickness hc (Fig. 1), a convenient way of examining the various possible equilibrium paths described
by the stationarity of the total potential energy is to first define the membrane fundamental state.
Assuming that the axial load is supported only by the inner and outer faces while the core supports only
transverse shear (Fig. 2), the fundamental state of the present problem can be given as

(1a)

(1b)

Here, Nx
F, Ns

F and Nxs
F are the membrane fundamental stresses and Mx

F, Ms
F and Nxs

F denotes relevant
moments. Corresponding strains Ex

F, Es
F and Exs

F can be written as

Nx
F Ns

F Nxs
F, ,( ) 2σ hf  – 0 0, ,( )=

Mx
F Ms

F Mxs
F, ,( ) 0 0 0, ,( )=
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(2)

Where, σ is the externally applied axial stress, Ef ; the modulus of elasticity of face material and νf ;
the Poisson’s ratio of the face material.

At the bifurcation from the fundamental state, depending on the incremental membrane strains that
are linear (εx', εs', εxs' ) and quadratic (εx'', εs'', εxs'' ), the constant, linear, quadratic components of the
total potential energy can be written as

(3)

(4a)

(4b)

Ex
F Es

F Exs
F, ,( ) σ– Ef  ⁄ ν f σ Ef⁄ 0, ,( )=

Π Π 0 Π1 Π2 Π3 ……+ + + +=

Π0
1
2
--- Nx

FEx
F Ns

FEs
F+( ) sd xd ζd∫∫∫ σUF sd xd ζd∫∫∫–=

Π1
1
2
--- Nx

Fεx
′ σx

′Ex
F+( ) Ns

Fεs
′ σs

′Es
F+( )+[ ] sd xd ζd∫∫∫ σu sd ζd∫∫–=

Π2
1
2
--- σx

′εx
′ σs

′εs
′+ τ xs

′ γxs
′ τ xζ

′ γxζ
′ τ sζ

′ γsζ
′+ ++[ ] sd xd ζd∫∫∫=

Fig. 1 Geometry, axis system, and the applied loads of the axially loaded sandwich cylindrical shell

Fig. 2 Element of a sandwich shell, stresses in the core and faces
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(4c)

Where, U is the sum of strain energies. While, V x and V s denote the non-linear membrane energy
components in axial and circumferential direction respectively. By employing the sine convention
and the notations given in Fig. 2, the linear incremental membrane stress resultants σx' ,σs', τxs' , τxζ' ,
and τsζ'  in Eq. (4) can be given as 

(5a)

(5b)

(5c)

(5d)

(5e)

Here, Gc and Gf denote the core and face material shear strengths respectively. Further, Df = Ef /(1−νf
2).

The linear incremental stresses (Eq. (5)) associate with the linear strains defined by the orthogonal
curvilinear coordinate system (x, s, ζ) given in Fig. 1. They can be given as

(6a)

(6b)

(6c)

(6d)

(6e)

The non-linear stresses σx'', and σs'' in Eq. (4c) that results from the fundamental state Poisson
expansion can be given as 

(7a)

(7b)

They associate with the non-linear strain components,

(8a)

(8b)

+
1
2
--- Nx

Fεx
″ σx

″Ex
F+( ) sd xd∫∫ 1

2
--- σs

″Es
F( ) sd x U V x V s+ +=d∫∫+

σx′ Df εx′ ν f εs′+( )=

σs′ Df εs′ ν f εx′+( )=

τ xs′ Gf γ xs′=

τ xζ′ Gc γxζ′=

τ sζ′ Gc γ sζ′=

εx′
∂ u
∂ x
------= ζ  

∂βx

∂ x
--------+ εx0= ζkx+

εs′
∂ v
∂ s
-----=

w
a
---- ζ+  

∂βs

∂ s
--------+ εs0= ζks+

γxs′
∂ v
∂ x
-----=

∂ u
∂ s
------ ζ+  

∂βs

∂ x
--------

∂βx

∂ s
--------+ 

 + γxs0= ζkxs+

γxζ′
∂ w
∂ s
-------= βx+

γsζ′
∂ w
∂ s
------- v

a
---–= βs+

σx″ Df εx″ ν f εs″+( )=

σs″ Df εs″ ν f εx″+( )=

εx″
1
2
--- ∂ w

∂ x
------- 

 
2 1

2
--- wx ′( )2= =

εs″
1
2
--- ∂ w

∂ x
------- 

 
2 1

2
--- ws ′( )2= =



Buckling of sandwich cylindrical shells under axial loading 5

2.2. Displacement functions

Assuming that the cylindrical sandwich shell is simply supported at the ends, the displacements (u, v, w)
in the directions of (x, s, ζ) and rotations (βx, βs) about the s and x axes (Fig. 1) can be formulated into
displacement functions.

u = A1 cos αs cos ρx (9a)

v = A2 sin αs sin ρx (9b)

w = A3 cos αs sin ρx (9c)

βx = A4 cos αs cos ρx (9d)

βs = A5 sin αs sin ρx (9e)

In which, α = n/a, ρ = mπ /L. Here m denotes the axial half-wave number and n, the circumferential
full-wave number. Ai is the amplitude of the displacement function.

2.3. Classical buckling strength

Of the present concern is the quadratic component Π2 of the total potential energy for it is that
controls the critical behavior and from which the homogeneous equations yielding the critically stable
state is derived. From Eq. (4c), first variation of the quadratic component Π 2 can be written as

= (10)

Application of the variational principles to Eq. (10) in the presence of the stress-strain relations from
Eqs. (5) and (7), strain-displacement relations from Eqs. (6) and (8) and displacement functions from
Eq. (9) result in a set of homogeneous equations;

(11)

Where the coefficients (Cij=Cji) are obtained as
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Where, the membrane, bending and shear stiffness are obtained as

By solving Eq. (11), amplitudes A1, A2, A4, and A5 of the displacement functions can be obtained as
a function of A3.

(12a)

(12b)

(12c)

(12d)

The classical axial buckling strength is obtained as 

(13)

The critical axial and circumferential mode numbers and relevant classical buckling strength are obtained
by the numerical iteration of Eq. (13). By applying σc = qc /2hf in the above equation, classical critical
buckling load per unit run on the circumference of the sandwich shell is obtained as

(14) 

(15)

Here, kc denotes the classical critical buckling coefficient.
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2.4. Reduced stiffness buckling strength

In the lower bound buckling analysis, the membrane, bending and shear energies of quadratic component of
the total potential energy are well analyzed for their behaviors during the buckling process. In this way,
those energy components that contribute to the stabilization of the axially loaded sandwich cylindrical
shell are identified. In addition, those that are at risk through the combined action of mode interaction
and imperfections are identified. Loss of such energy components has destructive effects on the sandwich
cylindrical shell’s axial load carrying capacity and, therefore, can adversely affect the stability of the
shell. Therefore, these energy components are eliminated to derive the reduced stiffness model (Croll
1981, Ohga and Wijenayaka 2003). 

From Eq. (4c), quadratic component Π 2 can be written as

(16)

Where, UM, UB and US are the membrane, bending and shear energies respectively. Their components in
relevant directions and planes can be written as

(17a)

(17b)

(17c)

The energy components in Eq. (17) can be given as

(18a)

(18b)
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(18e)
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VM
x  and VM

s  are the contributions arising from the non-linear stresses and strains, as given in Eq.
(19a) and Eq. (19b) below,

(19a)

(19b)

By substituting Eq. (19) in Eq. (16) and considering the stationary condition of the quadratic
component Π 2 of the potential energy, the classical critical buckling strength qc can be written as 

(20)

In Eq. (19b), the circumferential contribution VM
s  arises entirely from the fundamental circumferential

strain Es
F  that results from the Poisson expansion when the cylindrical sandwich shell is axially loaded.

Furthermore, and it is for this reason that this circumferential term is of such significance, that it
depends on non-linear hoop stress σs" and it is positive definite regardless of the form of the critical
deformation, i.e., the non-linear circumferential energy together with the strain energy components will
contribute to the stabilization in the critical mode. Virtually, all the destabilization arises form the non-
linear axial term VM

x .
Mode coupling can result the non-linear circumferential membrane energy, VM

s being counter
balanced by the linear axial membrane energy, UM

x (Croll and Batista 1981, Ohga and Wijenayaka
2003). As a result, the stabilization provided by both the energy components is lost. Therefore,
elimination of these two energy components leads to the reduced incremental quadratic potential
energy. The reduced stiffness buckling strength (qrs) is derived from the reduced incremental
quadratic potential energy.

(21)

From Eqs. (20) and (21), the reduced stiffness buckling strength can be obtained as a function of
classical buckling strength.

(22)

The critical axial and circumferential mode numbers and relevant reduced stiffness buckling strength
are obtained by the numerical iteration of Eq. (22). Similarly, the reduced stiffness buckling coefficient
can be obtained as a function of classical buckling coefficient.
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 
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=∫∫–=

VM
s 1

2
--- σs″Es

F( ) sd xd∫∫=
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 
 
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 
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 
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(23)

3. Characteristic of reduced stiffness buckling strength

The minimum reduced stiffness buckling coefficient (krs) [Eq. (23)] occurs when the axial half-wave
number is minimum as can be seen in Fig. 3. It reaches the unique minimum at a particular
circumferential wave number. The critical stress corresponding to this reduced stiffness critical mode
can be expected to provide the least possible resistance of the shell to incremental displacements in the
post-critical region (Croll and Batista 1981). However, the classical buckling coefficient (kc) [Eq. (15)]
is almost constant irrespective of the circumferential wave number. 

Variation of the classical buckling coefficient (kc) [Eq. (15)] and the RS buckling coefficient (krs) [Eq.
(23)] with the parameter L/a are given in Fig. 4. Here, V(=Ef hf / 4aGc(1−νf

2)) is the transverse shear
flexibility parameter. As can be seen in this figure, the reduced stiffness buckling coefficient reduces as
the length of the cylinder increases. On the other hand, the classical buckling coefficient is almost constant
with L/a. The classical critical buckling mode shape consists of number of axial half-waves and that
increases as L/a increases. This helps to maintain the classical buckling coefficient at a constant value
even when L/a increases. However, the critical reduced stiffness mode shape consists of only one axial
half-wave. As a result, the reduced stiffness buckling coefficient reduces as L/a increases. Further, all
three curves of reduced stiffness buckling coefficient merge to one line as the L/a increases. This
implies that the critical RS buckling coefficient becomes independent of the core material shear
strength as L/a increases. Or in other words, the contribution of the core to the buckling strength of the
shell becomes comparatively less. Further, both classical and RS buckling coefficients corresponding to
V=0.01 and V=0.0 are almost equal. This characteristic is discussed below.

krs kc

UM
s UM

xs UB U+ S+ +

UM UB U+ S+
------------------------------------------------

 
 
  VM

x
VM

s
+

VM
x

--------------------
 
 
 

=

Fig. 3 Classical and RS spectra (L/a=1.0, V=0.01,
Ef =2.05×105 MPa, vf = 0.3, a/hf = 5000, hc/hf =10,
a =1.0 m)

Fig. 4 Variation of classical and RS buckling coefficients
with L/a (Ef=2.05×105 MPa, vf =0.3, a/hf=5000,
hc /hf =10, a=1.0 m)
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Variation of kc [Eq. (15)], and krs [Eq. (23)] with 1/V is given in Fig. 5 (L/a=5.0). Both seem to have a
similar behavior with 1/V. And, the critical classical and RS buckling coefficients asymptotically reach
the value corresponding to V equals zero (Gc=� ). When 1/V>200, the rate of increase of both kc and krs

are almost zero. This implies that the gain in the buckling strength by a certain increment of the core
shear strength when 1/V >200 is comparatively less compared to the gain by the same increment when
1/V <200. Thus, the reduced stiffness buckling strength of the axially loaded sandwich cylindrical shell
is hardly improved by increasing the core shear strength at its higher values. The very same was
observed even when L/a increased.

The variation of kc [Eq. (15)], and krs [Eq. (23)] with a/hf are examined in Fig. 6 (L/a=5.0). As it is
evident in this figure both reduced stiffness and classical buckling coefficients have similar variations
that all three cases of V in both the classical and RS method merge as the ratio a/hf increases. This
implies that as the ratio a/hf increases the contribution from the core material shear strength to the
buckling strength reduces. The reduced stiffness buckling coefficient curves seem to merge faster than
that of classical buckling coefficient. 

Fig. 5 Variation of classical and RS buckling coefficients with 1/V (Ef =2.05×105 MPa, vf =0.3, L/a =5.0, a/hf =5000,
a=1.0 m)

Fig. 6 Variation of classical and RS buckling coefficients with a/hf (L/a=5.0, Ef =2.05×105 MPa, vf =0.3, a/hf =5000,
hc /hf =10, a=1.0 m)
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4. Geometrically nonlinear analysis of the sandwich cylindrical shell

A nonlinear analysis method has been developed into a finite-element code to allow investigation of
the behavior of geometrically imperfect sandwich cylindrical shells. The validity of the proposed
method is assessed by comparing the reduced stiffness lower bound with that obtained with FEM
analysis of geometrically nonlinear sandwich cylindrical shells.

The FEM program developed for this purpose employs so called 9-node isoparametric shell element
for the discretization of the model. Five degrees of freedom are specified at each nodal point
corresponding to its three displacements and two rotations. The use of the isoparametric shell element
allows layered analysis and, as a result, different material properties through the thickness of the
sandwich cylindrical shell. 

5. FEM lower bound buckling analysis

FEM buckling analysis of sandwich cylindrical shells having L/a=0.5, 1.0 2.0, 3.0, 5.0, 7.0 and 10.0
were selected for numerical examples. In addition, each model was considered for V(=Ef hf / 4aGc(1−νf

2))
equals 0.1, 0.01, and 0.0 (Gc=� ). V equals 0.1 corresponds to a very weak core and represents the normal
cross section. The critical mode shape from the reduced stiffness method was introduced as the initial
geometric imperfection in the FEM analysis as it is expected to provide the least resistance in the post-
critical region. The analyses were carried out by magnifying the amplitude of the initial deformation
(w0 /h), where, w0 is the initial lateral deformation while h is the total thickness of the cylinder. The stress
resultant from FEM analysis was taken as σfem. The resulting equilibrium path curves for L/a=1.0 (V=0.1,
0.01, 0.0) are given in Figs. 7(a), (b) and (c) respectively. These equilibrium path curves were obtained by
plotting the stress parameter (σfem/σc) with the respective lateral deformation (w/h). As it can be seen in
those figures, the variation of a typical curve is such that the stress peaks up at a certain point and then
reduces as the deformation develops. Moreover, the maximum stress parameter (σfem

max /σc) of the
equilibrium path seems to decrease as the magnitude of the initial imperfection increases. The curve
corresponding to w0/h equals 2.5 is special that beyond this curve the above mentioned peaking does not
appear. This curve is named as the ‘limiting equilibrium path’ and the maximum stress parameter on the
same (σfem

low /σc) is taken as the lower bound from the FEM analysis. The post-buckling deformation shapes
corresponding to all three cases of transverse shear flexibility parameters (V=0.1, 0.01, 0.0) are similar to
each other and the one corresponding to V=0.01 and w0/h=1.5 is shown in Fig. 7(d). All selected numerical
examples gave similar results to that of Figs. 7(a), (b) and (c). Further, the classical and Plantema(1966)
buckling strengths are given in Fig. 7. Both the methods give almost equal results. However, the reduced
stiffness and FEM lower bounds occur well below the results obtained from classical and Plantema methods.

When the maximum stress parameter (σfem
max

/σc ) on each equilibrium path shown with ‘dot marks’ in
Fig. 7 is plotted against the respective initial imperfection, that results in the imperfection sensitivity
plot. The same for particular example of L/a=1.0 and 3.0 are given in Figs. 8(a) and (b) respectively. As
it can be seen in these figures, each curve of V=0.1, 0.01, and 0.0 asymptotically reach from and above
the relevant reduced stiffness buckling strengths. Moreover, the above-mentioned FEM lower bound
(σfem

low /σc) appears above that from reduced stiffness analysis. As a result, it is evident that the proposed
reduced stiffness method provides safe lower bounds for axially loaded sandwich cylindrical shell for
all possible transverse shear flexibility parameters (V). In other words, the reduced stiffness method
provides safe lower bounds for all possible core shear strengths.
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Fig. 7 FEM buckling analysis of geometrically imperfect sandwich cylinder (L/a=1.0, V=0.01, Ef =2.05×105

MPa, vf =0.3, a/hf =5000, hc /hf =10, a=1.0 m)

Fig. 8 Imperfection sensitivity of the sandwich shells (Ef =2.05×105 MPa, vf =0.3, a/hf =5000, hc /hf =10, a=1.0 m)
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Figs. 9 (a), (b) and (c) show the variation of the reduced stiffness strengths (σrs/σc) and FEM lower
bound (σfem

low /σc)  with L/a for shells having V=0.1, 0.01 and 0.0. Both show a similar trend of variation
as L/a increases; there is a sharp descend when L/a<5. However, this descend is comparatively small
when L/a>5. In addition, as it can be seen in Fig. 9, the reduced stiffness lower bound is obtained bellow
that from the FEM analysis for all core shear strengths. This implies that the proposed reduced stiffness
method provides explicit and safe lower bounds for the axially loaded sandwich cylindrical shell.

6. Conclusions

Conclusive remarks of the classical and reduced stiffness methods are summarized here. These
conclusions are based on their characteristics and can be considered in the design process. 

1. Different reduced stiffness buckling coefficient curves corresponding to different shear strengths of
core merge to one line as L/a increases. This implies that as L/a increases, the reduced stiffness
buckling strength becomes independent of the core material shear strength. In addition, the reduced
stiffness buckling coefficient gradually decrease as L/a increases. The classical buckling
coefficient, on the other hand, is almost constant with L/a.

2. The classical and reduced stiffness buckling coefficients asymptotically reach from bellow the
horizontal line of V equals zero (Gc=� ) . This implies that the reduced stiffness buckling strength
of the axially loaded sandwich cylindrical shell is hardly improved by increasing the core shear
strength at its higher values. The very same was observed even when L/a increased.

3. Both reduced stiffness and classical buckling coefficients have similar variations that all curves
corresponding to different shear strengths of core merge to one line as a/hf increases. This implies
that as a/hf increases, the contribution from the core shear strength to classical and reduced
stiffness buckling strength reduces.

The reduced stiffness lower bound occurs bellow that from the FEM analysis. Further, the difference
between these two indicates the effectiveness of the proposed reduced stiffness lower bound method for
the axially loaded sandwich cylindrical shell. From design point of view, one of the attractive features

Fig. 9 Variation of the FEM and reduced stiffness lower bounds with L/a (Ef =2.05×105 MPa, vf =0.3, a/hf =5000,
hc /hf =10, a=1.0 m)
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of reduced stiffness method is that it provides safe lower bound buckling strengths that do not depend
on precise magnitude of the imperfection spectra of the shell. As a result, designers can readily apply
this method without being worried about possible geometrical imperfections that might be generated
during fabrication and construction of the shell. In addition, this difference indicates appropriateness of
the proposed reduced stiffness method for initial sizing of the axially loaded sandwich cylindrical shell
in its design process.
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Notation

Following notations have been used in this paper.

a : mean radius of the sandwich cylinder
Ai : amplitude of the displacement function
Cij : coefficients of the eigenmatrix
Ef : Young’s module of the face material
Ex, Es, Exs : total membrane strains about unloaded and undeformed state
Gc : shear modulus of core material
Gf : shear modulus of face material
h : total thickness of the sandwich cylinder (hc+2hf)
hc : thickness of the core
hf : thickness of the face
kc : classical critical buckling coefficient
krs : reduced stiffness critical buckling coefficient
L : length of the sandwich cylindrical shell
m : number of axial half waves
Mx, Ms, Mxs : total moment resultants
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n : number of circumferential waves
qc : classical critical buckling load
qrs : reduced stiffness critical buckling load
u, v, w : incremental displacements
νf : Poisson’s ratio of the face material
Π : total potential energy
Π0, Π1, Π2 : constant, linear, quadratic components of the total potential energy
σx, σs : axial and circumferential stresses
τxs, τxζ, τsζ : shear stress in the xs, xζ and sζ planes
εx, εs : axial and circumferential strains
γxs, γxζ, γsζ, : shear strains in the xs, xζ and sζ planes
α : circumferential wavelength parameter (n/a)
ρ : non-dimensional axial wavelength parameter (mπ / l)
βx, βs : incremental rotations about s and x axes

Subscripts and Superscripts
c : belonging to classical (variational) model
fem : belonging to FEM analysis 
rs : belonging to reduced stiffness model
' : stresses and strains that linearly dependant on displacements
" : stresses and strains that nonlinearly dependant on displacements
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