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Abstract. Important characteristics of the previously proposed reduced stiffness method and a summery of
itsdesign curvesfor the buckling of the axially loaded sandwich cylindrical shellsis presented. Comparison of
the lower bound obtained with FEM analysis with that from the reduced diffness anadlysis shows that the
proposed reduced stiffness method can provide safe lower bounds for the buckling of geometrically imperfect,
axialy loaded sandwich cylindrical shells. One of the attractive features of the reduced stiffness elagtic lower
bound analysisis that it provides safe estimates of buckling loads that do not depend on the specification of
the precise magnitude of theimperfection spectra. Asaresult, designers can reedily apply this method without
being worried about possible geometrical imperfections that might be generated during fabrication and
congtruction of sandwich cylindrica shdlls.
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1. Introduction

The light-core sandwich construction has been identified as an dternative to conventional thin walled
structures due to its higher gtiffnessiweight and strength/weight ratios. As a result, sandwich construction
results in lower lateral deformation, higher buckling resistance, and higher natural frequencies than do
other single-material constructions. Such advantages will insure that the sandwich construction will
continue to be in demand (Vinson 1999). Among many types of sandwich constructions, the sandwich
cylindrical shell is continuing to find many applications as an axialy compressed structure in civil,
mechanical, offshore, and aerospace engineering. Its ever expanding applications have created many
imperfectly understood problems such as imperfection sensitivity, shear instability and buckling.
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Cylinders are unfavorably sengitive to initia geometric imperfections such that they can collapse
under a fraction of the strength of the perfect shell (Nemeth and Starnes 1998). Recently, it has been
redized that the initial imperfection in the sandwich cylindrical shell structure combined with the
highly unstable forms of post buckling behavior is responsible for the scatter of the buckling loads
below that of predicted by the classical buckling analysis (Croll 1981, 1995, Ohga and Umakaoshi
2001). In this regard, a reduced stiffness analysis method would not only provide a safe lower bound,
but dso simplify the design of the sandwich cylindrical shell. Therefore, a Reduced Stiffness (RS)
method has been proposed for the estimation of the lower bound of the buckling of the sandwich
cylindrical shell (Ohga and Umakoshi 2001).

In this paper, important characteristic of the proposed reduced stiffness method are discussed. In
addition, the reduced stiffness design curves for the axially loaded sandwich cylindrical shell are
summarized. This process begins with classical buckling analysis of the shell and identifying those
energy components that adversely affect the stability of the shell. Elimination of so identified
energy components from the total potential energy leads to the derivation of the reduced stiffness
lower bound. The accuracy of the proposed reduced stiffness lower bound is verified by
comparing it with that obtained with FEM analysis of the geometrically imperfect sandwich
cylindrical shell. This FEM program employs so-called 9-node isoparametric shell element with
three displacement and two rotational displacement degrees of freedom at each nodal point for
discretization of the model. The use of the isoparametric shell element allows layered analysis of
the sandwich cylindrical shell and, as a result, allows different material properties through the
thickness of the cylinder.

One of the attractive features of the proposed eastic lower bound analysis is that it provides safe
estimates of buckling loads that do not depend on the specification of the precise magnitude of the
imperfection spectra. Therefore, designers can readily apply this method to design sandwich cylindrica
shell without being worried about potential geometric imperfections that might be generated as a result
of mishandling during fabrication, eruption, earthquakes etc.

2. RS buckling strength of the axially loaded sandwich cylindrical shell
2.1. Total potential energy of an axially loaded sandwich cylindrical shell

In the classical analysis of a sandwich cylinder of length L, mean radius a, face thickness hy and core
thickness h, (Fig. 1), a convenient way of examining the various possible equilibrium paths described
by the stationarity of the total potential energy is to first define the membrane fundamental sate.
Assuming that the axial load is supported only by the inner and outer faces while the core supports only
transverse shear (Fig. 2), the fundamental state of the present problem can be given as

(Ny, N&, Ng) = (=20hy, 0, 0) (1a)

(M, M, M) = (0,0,0) (1b)

Here, N7, NS and N,5 are the membrane fundamental stresses and M,", M and N& denotes relevant
moments. Corresponding strains E,", ES” and E,5 can be written as
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Fig. 2 Element of a sandwich shell, stresses in the core and faces

(E., EL EL) = (-0/E;, v,0/E;, 0) )

Where, o is the externaly applied axial stress, E;; the modulus of elagticity of face material and v;;
the Poisson’s ratio of the face material.

At the bifurcation from the fundamental state, depending on the incremental membrane strains that
are linear (&, &, &s) and quadratic (&', &', & ), the constant, linear, quadratic components of the
total potential energy can be written as

n:n0+n1+n2+n3+ ...... (3)
1
My = Sfff(NCES + NEES)dsdxd{ - [[foU” dsdxag (43)
rn = %‘[J"[[(Nisx' + O,E,) + (NS e, + 0.EL)] dsdxd? - [ oudsdl (4b)

I72 = EJ-J’J-[ Oyt 08+ Tyshys T (374 %4 + TsZysZ] dsdxd{
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1 L 1.0 . ‘
+§H(N§sx + OE. )dsdx + éﬂ(asEE)dsdxzu + V4 V° (40)

Where, U is the sum of gtrain energies. While, V* and V*° denote the non-linear membrane energy
components in axial and circumferential direction respectively. By employing the sine convention
and the notations given in Fig. 2, the linear incremental membrane stress resultants oy, 0g, Tys, Tz,
and 1y in Eq. (4) can be given as

oy = Dy (& +Vvs &) (53)
s = D (& tvrg) (5b)
Ls = Gt Vxs (5c)

Ty = G Vye (5d)

T = GeYe (5¢)

Here, G, and G; denote the core and face material shear strengths respectively. Further, D; = E /(1-v).
The linear incremental stresses (Eq. (5)) associate with the linear strains defined by the orthogonal
curvilinear coordinate system (x, s, {) given in Fig. 1. They can be given as

e =0 Loz vk (63
= ZZ Wi Peo e n, (6b)

, 0V, du [ﬁ__@_

yxs dX ds Ddx d yXSO kas (GC)
, ow
yxZ dS + Bx (6d)
, d
Vie =52 -2+ B, (69)

The non-linear stresses ', and d:' in EQ. (4c) that results from the fundamental state Poisson
expansion can be given as
0 = Di (&' +vi &) (7a)

05" = Dy (&' + v &) (7b)

They associate with the non-linear strain components,

L, 1@w? _ 1,
EX - ZwXD - 2(WX) (8a)
2
g = JOWT _ 1 02 (8b)

2pxd0 2
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2.2. Displacement functions
Assuming that the cylindrical sandwich shell is smply supported at the ends, the displacements (u, v, w)

in the directions of (x, s, {) and rotations (3,, B about the s and x axes (Fig. 1) can be formulated into
displacement functions.

u=A; COS as CoS PX (99
v=A; sSih as sn px (9b)
W = Az COS as Sin px (90)
B« = A4 COS as cos pX (od)
Bs=As sSin as sin px (%)

In which, a =n/a, p=mr/L. Here m denotes the axial half-wave number and n, the circumferential
full-wave number. A is the amplitude of the displacement function.

2.3. Classical buckling strength
Of the present concern is the quadratic component 1, of the total potentid energy for it is that
controls the critical behavior and from which the homogeneous equations yielding the critically stable
state is derived. From Eqg. (4c), first variation of the quadratic component /7, can be written as
orl, = J’H[ax’ 0& + 0,08 + T, 0V + 1,7 O}, + T, Oy, | dsdxdd
+ [J{(Nx3&") +D; (35" + v; 8&")E} dsdx
+ [[Dr(8e" + vy de,")ELdsdx = oU + OV *+ oV° (10)
Application of the variational principles to Eg. (10) in the presence of the stress-strain relations from

Egs. (5) and (7), strain-displacement relations from Egs. (6) and (8) and displacement functions from
Eq. (9) result in a set of homogeneous equations,

[C11 C12 Cy3 Cys C157 AL

C21 Cx Cp3 Cos Cos || Az

Ca1 C3p Cg3 —AT Cgy Cy5||As| = 0 (1)
C41 C4p Cy3 Cag Css || Ay
LCs1 Csz Cs3 Cs4 Cs5/LAs.

Where the coefficients (C;j=C;;) are obtained as
V,
Cu= PZDM1 + azDM2; Ci2 = (Vs apDy; + apDy,); Cyz = —ngDlvu; Cu=Cy5=0

S a O.. . S
Cy1 = a°Dys+ p Dy + = Co = aDml + aSs’ Cau=0; Cs=—7
a a
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1
Cx = ;ZDW +p°S+a°S;; Cyy = pS; Cas=—0S,; Cyy = p'Dyy+ a°Diy + S,
Cus = ~(V; pDg1 + aPpDgy,); Cos = 0°Digy + p°Dig, + S

D ]
A= PP+ S -
0 f O

Where, the membrane, bending and shear stiffness are obtained as
- & D —ohG D= —E 3
Dy = Tyt + Dwe = 2MGy Doy = o (e 20) ~h3

G
DBZ = ]__Zf{ (hc + th)3_hg} ; S( = Gchc; Ss = Gchc

By solving Eq. (11), amplitudes A1, Ay, A4, and As of the displacement functions can be obtained as
a function of As.

C,A, +C
A= SR T ALA, (123)
_ (012013 - CllCZ3)(C£215 - C44055) + (ClchS)(C34045 - C3SC44) _ ]
A A, = A, A;  (12b)
2 = 3 = 2 M\3
C11C5Cas — (CF, — C11C20) (Ciis — CasCos)
Cay + CuAl
A, = (Cas* Cas) c4445 5)A3 = AL A (120)
_ (ClZClS_C11C23)(_C25C44)_(C34C45_CSSCM)(CiZ_CllCZZ) _ '
A A, = ALA;  (12d)
- 3 = 3
) (C3,—C11C2)(Chs — CasCas) — C11CosCus )
The classical axia buckling strength is obtained as
1 T I T 1
0. = X(CslAl + CpAy; + Cxi3+ CyA; + CxAg) (13)

The critical axid and circumferentiad mode numbers and relevant classicd buckling strength are obtained
by the numerica iteration of Eq. (13). By applying a. =q./2h in the above equation, classica critica
buckling load per unit run on the circumference of the sandwich shell is obtained as

2hf 1 [ 1 I
Q. = T(C31Al +CpA; +Cgyi+ CyAy + CxsAs) (14)
_ O
ke = _2Ef h (15)

Here, k. denotes the classical critical buckling coefficient.
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2.4. Reduced stiffness buckling strength

In the lower bound buckling analyss, the membrane, bending and shear energies of quadratic component of
the total potential energy are well analyzed for their behaviors during the buckling process. In this way,
those energy components that contribute to the stabilization of the axially loaded sandwich cylindrica
shell areidentified. In addition, those that are at risk through the combined action of mode interaction
and imperfections are identified. Loss of such energy components has destructive effects on the sandwich
cylindrical shell’s axia load carrying capacity and, therefore, can adversely affect the stability of the
shell. Therefore, these energy components are eliminated to derive the reduced stiffness model (Croll
1981, Ohga and Wijenayaka 2003).

From Eg. (4c), quadratic component /7, can be written as

M, = Uy +Ug+Ug+ Vg + Vy (16)

Where, Uy, Ug and Us are the membrane, bending and shear energies respectively. Their components in
relevant directions and planes can be written as

Uy = Uy + Uy + Uy (179
Ug = Ui+ US+U (17b)
Ug = U+ UY (17¢)

The energy components in Eq. (17) can be given as

Ul = 3f[{ Dusl8o+vi £, dsdx (189)
Uit = SJ{ Dua(uo +V; £.0) s dsdx (180)
Ui =3[ Duseobied dslx (180)

Ul = %H{ Dy (K, + v k)k} dsdx (18d)
us = %ﬂ{ Dgy(k, + v k)k} dsdx (18¢)
US* = S[f{ Dackysokied dsdlx (18f)
U = 2[[{ Sk dsdx (18)

< _ 1
US’ = SfJ{ Sy dsdx (18h)
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Vi and Vy, are the contributions arising from the non-linear stresses and strains, as given in Eq.
(19a) and Eq. (19b) below,

X _ 1— Faon npeF
Vy = 2H(NX€X + 0,"E, ) dsdx

— 1- Dl 12 1 "2 "2 0 _ X
= —93ff %(Wx) *anE EfDMl((Wx) + vt (W) )EdeX = qVwm (19a)

s_ 1 wF
Vi = Sff (04" Es)dsax
= 1' D Vf I 2 I 2 |:| _ —,S
- qz.UD4Dhf £ Dua((We)” +ve (W) )EdeX = qVu (19b)

By subgtituting Eq. (19) in Eqg. (16) and considering the stationary condition of the quadratic
component /7, of the potential energy, the classica critical buckling strength . can be written as

Uy + Ug +Ug+ g (Vi + Vi) = 0 (20)

In Eqg. (19b), the circumferential contribution V)i arises entirely from the fundamental circumferentia
strain E£ that results from the Poisson expansion when the cylindrical sandwich shell is axially loaded.
Furthermore, and it is for this reason that this circumferential term is of such significance, that it
depends on non-linear hoop stress g, and it is positive definite regardliess of the form of the critical
deformation, i.e., the non-linear circumferential energy together with the strain energy components will
contribute to the stabilization in the critical mode. Virtually, all the destabilization arises form the non-
linear axia term V).

Mode coupling can result the non-linear circumferential membrane energy, Vi being counter
balanced by the linear axial membrane energy, Uy (Croll and Batista 1981, Ohga and Wijenayaka
2003). As a result, the stabilization provided by both the energy components is lost. Therefore,
elimination of these two energy components leads to the reduced incremental quadratic potential
energy. The reduced stiffness buckling strength (q.s) is derived from the reduced incrementa
quadratic potential energy.

Ug+Uy+Ug+Ug+qo(V) = 0 (21)

From Egs. (20) and (21), the reduced stiffness buckling strength can be obtained as a function of
classical buckling strength.

U+ U+ U+ UOGyS + v
s = QLT %DM_X”E
0O UuwtUstUs OO v O

(22)

The critical axia and circumferentid mode numbers and relevant reduced stiffness buckling strength
are obtained by the numerical iteration of Eq. (22). Similarly, the reduced stiffness buckling coefficient
can be obtained as a function of classical buckling coefficient.



Buckling of sandwich cylindrical shells under axial loading 9

Uy + U+ Ug + UOGy,* + v, 0
M M B M I\/E ( 23)

kl’S = kCE UM + UB+ US DD \_/’\)/(I

3. Characteristic of reduced stiffness buckling strength

The minimum reduced stiffness buckling coefficient (k.s) [Eq. (23)] occurs when the axial half-wave
number is minimum as can be seen in Fig. 3. It reaches the unique minimum a a particular
circumferential wave number. The critical stress corresponding to this reduced stiffness critical mode
can be expected to provide the least possible resistance of the shell to incremental displacementsin the
post-critical region (Croll and Batista 1981). However, the classical buckling coefficient (k) [Eq. (15)]
is amost constant irrespective of the circumferential wave number.

Variation of the classical buckling coefficient (ko) [Eg. (15)] and the RS buckling coefficient (k.s) [EQ.
(23)] with the parameter L/a are given in Fig. 4. Here, V(=E; h / 4aG,(1-V?)) is the transverse shear
flexibility parameter. As can be seen in thisfigure, the reduced stiffness buckling coefficient reduces as
the length of the cylinder increases. On the other hand, the classical buckling coefficient is dmost constant
with L/a. The classica criticd buckling mode shape consigts of number of axid haf-waves and that
increases as L/a increases. This helps to maintain the classical buckling coefficient at a constant value
even when L/a increases. However, the critical reduced stiffness mode shape consists of only one axial
half-wave. As aresult, the reduced stiffness buckling coefficient reduces as L/a increases. Further, all
three curves of reduced stiffness buckling coefficient merge to one line as the L/a increases. This
implies that the critical RS buckling coefficient becomes independent of the core material shear
strength as L/a increases. Or in other words, the contribution of the core to the buckling strength of the
shell becomes comparatively less. Further, both classical and RS buckling coefficients corresponding to
V=0.01 and V=0.0 are dmost equal. This characteristic is discussed below.

ke & kg k. &k,
R sl SSNLEAAALG SUARARA
| IR Cl 1
| 0.002 _\\ assica
' N\
|
0.004 + +
\‘ /
=3
! . 0.001 |
| 0.0022.:1 ---------------- > ’,,_
0.002 m=1 =2 =3, - /:5/’
\ ~ \/12’7
. : L 0.000 |-
OOOO 5 10 ]5 20 RN ET | r ool
. . 0.1 1 10
Circumferential wave number, n Lla

Fig. 3 Classcd and RS spectra (L/a=1.0, V=0.01,
E;=2.05x10° MPa, v;= 0.3, a/hy= 5000, hy/hx=10,
a=1.0m)

Fig. 4 Vaiaion of dassicd and RS buckling coefficients
with L/a (E=2.06x10° MPa, =0.3, alhy=5000,
he/h=10, @=1.0 m)
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Fig. 5 Vaiation of dassicd and RS buckling coefficients with 1/V (E; =2.05x10° MPa, v;=0.3, L/a=5.0, a/h;=5000,
a=1.0m)
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Fig. 6 Variation of dassical and RS buckling coefficients with a/hy (L/a=5.0, E;=2.05x10° MPa, v;=0.3, a/h;=5000,
h./h¢=10, a=1.0 m)

Variation of k. [Eq. (15)], and ks [Eq. (23)] with 1/V isgivenin Fig. 5 (L/a=5.0). Both seem to have a
smilar behavior with 1/V. And, the critical classical and RS buckling coefficients asymptotically reach
the value corresponding to V equals zero (G.= o ). When 1/V>200, the rate of increase of both k. and ks
are amost zero. This implies that the gain in the buckling strength by a certain increment of the core
shear strength when 1/V >200 is comparatively less compared to the gain by the same increment when
1/V <200. Thus, the reduced stiffness buckling strength of the axially loaded sandwich cylindrical shell
is hardly improved by increasing the core shear strength at its higher values. The very same was
observed even when L/a increased.

The variation of k. [Eqg. (15)], and ks [Eq. (23)] with a/h; are examined in Fig. 6 (L/a=5.0). Asitis
evident in this figure both reduced stiffness and classical buckling coefficients have similar variations
that al three cases of V in both the classical and RS method merge as the ratio a/h; increases. This
implies that as the ratio a/hy increases the contribution from the core material shear strength to the
buckling strength reduces. The reduced stiffness buckling coefficient curves seem to merge faster than
that of classica buckling coefficient.
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4. Geometrically nonlinear analysis of the sandwich cylindrical shell

A nonlinear analysis method has been devel oped into a finite-element code to allow investigation of
the behavior of geometrically imperfect sandwich cylindrical shells. The validity of the proposed
method is assessed by comparing the reduced tiffness lower bound with that obtained with FEM
analysis of geometrically nonlinear sandwich cylindrical shells.

The FEM program developed for this purpose employs so called 9-node isoparametric shell element
for the discretization of the model. Five degrees of freedom are specified at each nodal point
corresponding to its three displacements and two rotations. The use of the isoparametric shell element
dlows layered analysis and, as a result, different material properties through the thickness of the
sandwich cylindrical shell.

5. FEM lower bound buckling analysis

FEM buckling analysis of sandwich cylindricd shells having L/a=0.5, 1.0 2.0, 3.0, 5.0, 7.0 and 10.0
were sdlected for numerical examples. In addition, each model was considered for V(=E; h; / 4aG,(1-vi))
equas0.1, 0.01, and 0.0 (G= o ). V equals 0.1 corresponds to avery weak core and representsthe normal
cross section. The critica mode shape from the reduced stiffness method was introduced as the initia
geometric imperfection in the FEM analysis as it is expected to provide the least resistance in the post-
critical region. The analyses were carried out by magnifying the amplitude of the initial deformation
(Wo /h), where, wy istheinitid lateral deformation while h is the total thickness of the cylinder. The stress
resultant from FEM analysis was taken as 0. The resulting equilibrium path curvesfor L/a=1.0 (V=0.1,
0.01, 0.0) are given in Figs. 7(a), (b) and (c) respectively. These equilibrium path curves were obtained by
plotting the stress parameter (/) With the respective laterd deformation (w/h). As it can be seenin
those figures, the variation of atypical curve is such that the stress peaks up a a certain point and then
reduces as the deformation develops. Moreover, the maximum stress parameter (Gian /0p) of the
equilibrium path seems to decrease as the magnitude of the initial imperfection increases. The curve
corresponding to wy/h equals 2.5 is special that beyond this curve the above mentioned peaking does not
appear. This curve is named as the ‘limiting equilibrium path’ and the maximum stress parameter on the
same (i’ | o) is taken as the lower bound from the FEM analysis. The post-buckling deformation shapes
corresponding to al three cases of transverse shear flexibility parameters (V=0.1, 0.01, 0.0) are similar to
each other and the one corresponding to V=0.01 and wy/h=1.5 is shown in Fig. 7(d). All selected numerical
examples gave similar results to that of Figs. 7(a), (b) and (c). Further, the classicd and Plantema(1966)
buckling strengths are given in Fig. 7. Both the methods give amost equa results. However, the reduced
diffnessand FEM lower bounds occur well below the results obtained from classical and Plantema methods.

When the maximum stress parameter (afn;ix / a.) on each equilibrium path shown with ‘dot marks' in
Fig. 7 is plotted against the respective initia imperfection, that results in the imperfection sensitivity
plot. The samefor particular example of L/a=1.0 and 3.0 are given in Figs. 8(a) and (b) respectively. As
it can be seen in these figures, each curve of V=0.1, 0.01, and 0.0 asymptotically reach from and above
the relevant reduced stiffness buckling strengths. Moreover, the above-mentioned FEM lower bound
(afé%W /o;) appears abovethat from reduced stiffness analysis. Asaresult, it is evident that the proposed
reduced stiffness method provides safe lower bounds for axialy loaded sandwich cylindrical shell for
al possible transverse shear flexibility parameters (V). In other words, the reduced stiffness method
provides safe lower bounds for all possible core shear strengths.
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(d) Post-buckling deformation shape
(c) V=0.0 (V=0.01, wy/h=1.5)

Fig. 7 FEM buckling analysis of geometrically imperfect sandwich cylinder (L/a=1.0, V=0.01, E;=2.05x10°
MPa, v=0.3, a/h=5000, h./h;=10, a=1.0 m)
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Fig. 8 Imperfection sensitivity of the sandwich shells (E;=2.05x10° MPa, v;=0.3, a/hy=5000, h./h=10, a=1.0 m)
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Fig. 9 Variaion of the FEM and reduced stiffness lower bounds with L/a (E; =2.05x10° MPa, v=0.3, a/h=5000,
h./h=10, a=1.0 m)

Figs. 9 ga), (b) and (c) show the variation of the reduced stiffness strengths (o.4/0.) and FEM lower
bound (afeﬁ“]” /o) with L/afor shells having V=0.1, 0.01 and 0.0. Both show a similar trend of variation
as L/a increases; there is a sharp descend when L/a<5. However, this descend is comparatively small
when L/a>5. In addition, asit can be seen in Fig. 9, the reduced stiffness lower bound is obtained bellow
that from the FEM analysisfor all core shear strengths. Thisimplies that the proposed reduced stiffness

method provides explicit and safe lower bounds for the axialy loaded sandwich cylindrical shell.

6. Conclusions

Conclusive remarks of the classical and reduced stiffness methods are summarized here. These

conclusions are based on their characteristics and can be considered in the design process.

1. Different reduced stiffness buckling coefficient curves corresponding to different shear strengths of
core merge to one line as L/a increases. This implies that as L/a increases, the reduced stiffness
buckling strength becomesindependent of the core material shear strength. In addition, the reduced
stiffness buckling coefficient gradualy decrease as L/a increases. The classica buckling
coefficient, on the other hand, is almost constant with L/a.

2. The classical and reduced stiffness buckling coefficients asymptotically reach from bellow the
horizontal line of V equals zero (G.= o) . Thisimplies that the reduced stiffness buckling strength
of the axialy loaded sandwich cylindrical shell is hardly improved by increasing the core shear
strength at its higher values. The very same was observed even when L/a increased.

3. Both reduced stiffness and classical buckling coefficients have similar variations that al curves
corresponding to different shear strengths of core merge to one line as a/h; increases. Thisimplies
that as a/hy increases, the contribution from the core shear strength to classica and reduced
stiffness buckling strength reduces.

The reduced stiffness lower bound occurs bellow that from the FEM analysis. Further, the difference

between these two indicates the effectiveness of the proposed reduced stiffnesslower bound method for
the axialy loaded sandwich cylindrical shell. From design point of view, one of the attractive features
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of reduced stiffness method is that it provides safe lower bound buckling strengths that do not depend
on precise magnitude of the imperfection spectra of the shell. As aresult, designers can readily apply
this method without being worried about possible geometrical imperfections that might be generated
during fabrication and construction of the shell. In addition, this difference indicates appropriateness of
the proposed reduced stiffness method for initial sizing of the axially loaded sandwich cylindrical shell
in its design process.
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Notation

Following notations have been used in this paper.

: mean radius of the sandwich cylinder

: amplitude of the displacement function

: coefficients of the eigenmatrix

: Young's module of the face material

: total membrane strains about unloaded and undeformed state
: shear modulus of core material

: shear modulus of face materia

: total thickness of the sandwich cylinder (h+2hy)
: thickness of the core

: thickness of the face

: classical critical buckling coefficient

: reduced stiffness critical buckling coefficient

. length of the sandwich cylindrica shell

: number of axia hdf waves

w Mg, My : totd moment resultants
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Buckling of sandwich cylindrical shells under axial loading

: number of circumferentiad waves

: classical critical buckling load

- reduced stiffness critical buckling load

: incremental displacements

. Poisson’s ratio of the face materia

: total potential energy

: congtant, linear, quadratic components of the total potential energy
: axial and circumferential stresses

: shear stressin the xs, x{ and s¢ planes

: axid and circumferentia strains

: shear dtrains in the xs, x{ and s¢ planes

. circumferential wavelength parameter (n/a)

: non-dimensional axial wavelength parameter (mrt/ 1)
. incremental rotations about s and x axes

Subscripts and Superscripts

c
fem
rs

CcC

: belonging to classica (variational) model

: belonging to FEM analysis

: belonging to reduced stiffness model

. stresses and strains that linearly dependant on displacements

: stresses and strains that nonlinearly dependant on displacements
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