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Abstract. The paper derives, validates and illustrates the application of GBT-based formulae to estimate
distortional critical lengths and bifurcation stress resultants in cold-formed steel rack-section columns, beams
and beam-columns with arbitrarily inclined mid-stiffeners and four support conditions. After a brief review of

the Generalised Beam Theory (GBT) basics, the main concepts and procedures employed to obtain the
formulae are addressed. Then, the GBT-based estimates are compared with exact results and, when possible
also with values yielded by formulae due to Lau and Hancock, Hancock andtT@ng few remarks on

novel aspects of the rack-section beam-column distortional buckling behaviour, unveiled by the GBT-based
approach, are also included.

Key words: distortional buckling; distortional buckling formulae; generalised beam theory (GBT); rack-
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1. Introduction

A distortional buckling mode was first reported by Van der Maas (1954), in the context of thin-walled
hat-section columns. He described it as “a distinct kind of ‘local’ buckling mode configuration
characterised by the occurrence of simultaneous web flexural deformations and lateral movements o
the flanges and stiffeners”. Nowadagsstortional bucklingdesignates a specific type of bifurcation
instability: themember axis remains undeformed and the in-plane cross-section deformations involve
(i) moderate plate bending and (ld line motionsThe latter induce cross-sectidistortionand are
the “trademark” of this buckling phenomenon. Figs. 1(a)-(b) show the geometry and distortional buckling
mode (DM) shapes of rack-secttorplumns and beams.

Experimental analyses and numerical simulations performed in thin-walled menitresngle-
wall webs clearly showed that (i) relevant flexural deformations appear only in the web and (ii) the
compressed flange-stiffener assemblies remain practically undeformed - they just rotate about the web
flange longitudinal edge (see Fig. 1(b)). Based on this evidence, Lau & Hancock (1987) unveiled the
similarity between (i) the thin-walled member distortional buckling behaviour and (ii) the flexural-
torsional buckling behaviour of the (uniformly compressed) structural model depicted in kjg. 1(c
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Designation stemming from the frequent use of these cold-formed steel profiles in storage racks (Hancock 1985).



50 N. Silvestre and D. Camotim

by
A RN
b
bw : kx ’>1;"§¢ k¢=M/¢
e / PETN L

(a) (b) (c1) (c2)

Fig. 1 Rack-section (a) geometry, (b) column and beam DM configurations; (c) Lau & Hanceck'sdel
and (¢) column and beam web deformed configurations

(“flange-stiffener strut” elastically supported along the web-flange edge). Subsequently, (i) Lau & Hancock
(1987), for C, Z and rack-section columns, (ii) Hancock (1997), for C and Z-section beams, and (iii)
Bambachet al. (1998), for C and Z-section columns and beams with double-lip stiffeners, used this
model to develop formulae to estimate distortional buckling stresses in columressamslwith pinned

and free-to-warp end sections. Some of these formulae are mtnetp employed and a few have
already been included in the Australia/New Zealand cold-formed steel code (SAA 1996). Since Lau
and Hancock’s approach breaks down for members with very slender webs, Schafer (1997) and Davie:
& Jiang (1998) proposed slight modifications, both for columns and beams. RecentlyetTang
(2003) extended the application of Lau & Hancock’s model to C and rack-section beam-columns
(bending in the plane of symmetry only).

Very recently, the authors used Generalized Beam Theory (GBT) (Schardt 1989, 1994a) to derive fully
analytical distortional buckling formulae for C and Z-section cold-formed steel members (Silvestre &
Camotim 2003 It seems fair to regard them as “superior” to the ones proposed by Lau & Hancock
(1987), Hancock (1997), Schafer (1997) and Teingl. (2003), in the sense that they (i) consistently
yield equally or more accurate estimates and (ii) can be applied to a wider range of members (all othel
formulae apply only to members with pinned and free-to-warp end sections). However, symbolic
manipulation limitations preclude using the derivation technique previously employed to obtain
formulae for cross-sections with more tHare walls, such as rack-sections (seven walls). In order to
overcome this five-wall limitation, a slightly é&rent technique was recently developed (Silvesttes.

2002) and applied to rack-section columns and beams with pinned and free-to-warp or fixed and
warping-prevented end sections. Since it requiresntitaerical solution of an auxiliary standard
eigenvalue problem, it was termed as “quasi-analytical”.

The objective of this work is to present the derivation, validate and illustrate the application of GBT-based
distortional buckling formulae for cold-formed steel rack-section columns (uniform compression),
beams (pure bending) and beam-columns (combination of both) with arbitrarily inclined mid-stiffeners
(see Fig. 1(a)). Four support conditions are dealt with, namely members with (i) both end sections
pinned and free-to-warp, (ii) both end sections fixed and warping-prevented, (iii) one end section fixed
and warping-prevented and the other pinned and free-to-warp and (iv) one end section fixed and
warping-prevented and the other “sliding” and warping-prevented. The formulae are still “quasi-analytical”,
i.e., require thenumericalsolution of an auxiliary eigenvalue problem, whichilytically definedn
terms of the member cross-section dimensions. In order to (i) assess the accuracy and validity and (ii
illustrate the application and capabilities of the proposed distortional buckling formutaerical

Note that Schardt himself exploited the use of GBdietive distortionalbuckling formulae (Schardt 1994b).
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results are presented and discussed. The GBT-based estimates are compared with (i) exact results ar
for pinned and free-to-warp members only, also with (ii) values yielded by the formulae due to Lau &
Hancock (1987), Hancock (1997) and Tezigal. (2003). The paper also includes a few remarks on
novel aspects of the distortional buckling behaviour of rack-section beam-columns, unveiled by the
present GBT-based approach.

2. Brief GBT outline

The application of second order GBT (Schardt 1989, Dasfies. 1994, Silvestre & Camotim
2002a,b) leads to the system of equilibrium equations (one pendgion mode)

EGi @ xox—GDij@ xx+ Bij @ + WiXiii @ xx = 0 (1)

where (i) X is the axial coordinate, (i) functiog (X) provides the longitudinal variation of the mode
amplitude, (iii) E and G are Young's and shear moduli and (iv) &0(-)/dx In each equation, (i)

the first three terms concern the memb®mfder behaviour and (i) the last one deals with tHe 2
order effects (interaction between cross-section normal stresses and out-plane deformations). The
tensor component€; (warping constant)D; (torsion constant)B; (transverse bending stiffness)
andX; (geometric stiffness related to stress resuld)s related to modesandj, are given by

13
Cij = t{u,ujds D” = ét {Wi’SWJ"SdS B” = K{Wi,SSWj,SSdS
t
Kyij = aﬂ[uk(vi\/j +wiw)ds Wi = ~EGk@xx (2)

where (i)t andK are the wall thickness and bending stiffndés Et312(142)), (ii) s is the cross-
section mid-line coordinate, (i) ¢¥ d(-)/ds and (iv)u, v andw are warping, membrane and flexural
displacements along s andz (see Fig. 2).

A GBT stability analysis comprisesess-sectiomnd amembeianalysis: while the former identifies the
cross-section deformation modes and evaluates the modal prop&itieS;( Bj, Xy;j), the latter
establishes and solves theember eqjilibrium equations and boundary conditions, on the basis of its
cross-section geometry, material properties, length, support conditions and applied load.

Fig. 2 Local coordinate system and displacement components
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Fig. 3 Rack-section (a) discretisation and (b) elementary warping funcli@h$8 = 90°)

2.1. Cross-section analysis

The performance of a GBT tleenss-sectiormnalysis, for a cross-section witlwalls andn+1 nodes
(n=7 for the a rack-section - see Fig. 3(a)), involves the following operations:

(i) Obtain displacement functiongs), v(s) andw(s), by imposing unit warping displacements in
each nodey = -1, k = 1...n+1 — see Fig. 3(b)), which leads to the identificatiomel “warping
functions” ug(s), varying linearly between consecutive nodes.

(il) Using Vlasov's null shear strain assumptigf € 0) and the force method to obtain the cross-section
deformed configurations due to thgs) - constant(s), linearuy(s) and cubiowm(s). Compatibility
betweenvi(s) andw(s) is ensured.

(iii) Calculate matrice<C andB (see Egs. (2)), which afally populated(i.e., Eqgs. (1) aréhighly
coupled). Their components have no obvious physical meaning, even for trivial phenomena.

(iv) Diagonalise the above matrices, by solving the eigenvalue problem

(B=A,C)u, =0 (a=1,..n+l) A3)

operation which comprises several stages andtitotes a key GBTeature (Schardt 1989,
Silvestre & Camotim 2002a,b). One is ledni®l eigenvectors of the form

(4)

one perdeformation modésee Fig. 4(a)). The, components are the axial (warping) displacement
nodal values of mode (see Fig. 4(b)).

(v) Calculate the axialu) and transversev( wy) displacement nodal values associated with each
deformation mode.

Since rack-sections ha8enodes, they exhib@ orthogonaldeformation modes: (i) the first four (1 -
extension; 2 and 3 - major and minor axis bending; 4 - torsion) are rigid-body motions, foBygich

(Wy s O - see 2)), while (ii) the remaining four (modes 5 -&ed distortional modes, involve cross-
section deformation with non-null transverse curvatunggs¢ 0), i.e., By# 0.
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Fig. 4 GBT deformation modes: (a) in-plane configurations (b) warping displacements

2.2. Member (linear stability) analysis

After incorporating the (i) cross-section modal propedigsB;, Dj, X, (ii) material constants, v,
G, (iii) quantities related to the applied loadlg) and (iv) member length and support conditions into
Egs. (1), then-dimension eigenvalue problem providing thember stability behaviour (expressed in
terms of deformation mode amplitudggx)) is totally defined. A major advantage of the GBT
approach is the possibility of performing “approximate (but accurate) stability analyses”: one solves
only the “subsystem” of Egs. (1) corresponding to a few selected deformation modes. This unique
feature is essential to derive the distortional buckling formulae.

3. Derivation of distortional buckling formulae

The observation of Fig. 4(a) shows that the rack-section distortional deformation modes can be
divided into two groups: (i) modes 5 and 6, involving the distortion of the compressed three-wall
flange-stiffener assemblies (rotation about the web-flange edge and plate bending only in the web) anc
(i) modes 7 and 8, involving the distortion of only the compressed two-lip stiffeners (rotation about the
flange-stiffener and plate bending in the web and compressed flanges). Since it has been recognise
that, in general, the latter group plays a mggle role in the distortional buckling behaviour of rack-
section members (Bambaehal 1998), this work addresses only DM combining deformation modes
5 and 6, from now on designated as follows: (i) mode 5 by S (web besbglacurvature) and (ii)
mode 6 by D (web bends doublecurvature).

Modes S and D are associated with migchanical propertie€s, Bs, Ds and Cp, Bp, Dp and,
depending on the applied load, also with (ii) one or more geometric stiffness propgiXiesxs', Xo",

Xdp. The amplitude functiongs (x) and g, (X) provide the cross-section displacement variation along
the member length. If one is to derive fully analytical formulae, the above properties must be expressed
in terms of the cross-section geometny, by, bs, by, 8, t) and material constantg,(v).

The derivation of the GBT-based distortional buckling formulae is presented in two stages: (i)
deriving the formulae in terms of the distortional properties (this section) and (ii) determining analytical
expressions to calculate these properties (next section). First, one must recognise that the DM shape ¢

3These authors designated this type of DM as “flange-lip DM” and stated that it is never likely to be critical.
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Fig. 5 (a) GBT modes required to approximate an arbitrary beam-column DM shape (b) Bendindp;about (
an arbitrary neutral axish{) thel-axis and p,) thell-axis

any beam-columr(bending about aarbitrary neutral axis) can always be closely approximated by a
combination of modes S and D, shown in Fig. 5(a). Thus, even if the formulae are presented separatel
for columns beamsandbeam-columnghe first two are to be regarded as special cases of the third one
(note that the column DM shape involves only mode S - see Fig. 1(b)).

Because all GBT properties are evaluated w.r.t. the cross-section central principal axes, one starts b
defining a consistent notation. Since, for the most common rack-section dimensions, thé-axégpr (
and minor [l-axis) axes are parallel to the flanges and web, respectively, one adopts the following
conventionil-axis andll-axis always stand for theymmetryandnon-symmetryaxes, regardless of the
cross-section dimensions. Moreover, to avoid unnecessarjticepgetone denotesnembers bending
about thd-axis (ll-axis)” by I-axis (ll-axis) membersMoreoverxs (see Fig. 5(b)) is the distance from
the cross-section centroid G to the web.

Denoting the beam-column (i) bifurcation stress parametek,bgnd (ii) compressive load and
bending moment reference values®yandM, bifurcation occurs when the applied stress resultants
reach the valueB, = A,P andM, = A,M (columns and beams are particular cases, for wArh and
P=0). Then, the GBT equation subsystem for modes S and D reads (see Egs. (1))

E CS 0 S(ps XXXXE_G CS 0 S(ps XXS_'_ BS 0 E]](ps%l-
0 CD_ D% xxxxd 0 CD %O |0 BD %0
a 7 [ 1
_ — O
+Ab%{xs Ol s NMicosa| © %9+ WMsina|*s © (PsxxD: 0 (5)
0 L0 Xp Xsp O 0 Xp xx[J

where the mode S and D properties, further addressed in ségtame evaluated by means of

cszt{uéds Dszét"*{wgsds BS=K{W§SQS

Cp = t{udes Dp = %ti[wésds Bp = K}I;WZD’SSdS

Xg = iﬁ[(v@wﬁ)ds Xp = i[(VZD'FWZD)dS
Xg = ILJ’UII(VE"'W%)dS Xp = IL{U||(V2D+W2D)dS
Iy "

t
Xso = | fu(VsVo + wewo)ds (6)
b



Distortional buckling formulae for cold-formed steel rack-section members 55

Once the functiongy(x) andg(x) are known, it is possible to obtain formulae to provide bifurcation
stress estimates. One writ@gx) and ¢»(x) in the form

@s(x) = asp(x) @(x) = ap@(x) (7)
where (i) as and ap are deformation mode amplitudes and @ifx) is a unit shape function

describing (exactly or approximately) their longitudinal variation. Introducing Eg. (7) in Eq. (5) and
applying Galerkin’s method, one is led to the eigenvalue problem

Ks—AyPXs —A,McosaXspasO 00

> | — o o= E]pm (8)
—AMcosaXsp, Kp—APXp |(Po0 [P0
with
ks = ECT e+ 6D+ BSE;E/JB Ko = ECo D puc+ 6Dy + BDE;E/JB (9)
Xs=PXs+M sinaXs  Xp = PXp+M sinaXp (10)

where a is the angle between the applied bending moment vector and the crossdsaxisofsee
Fig. 5(b)). Moreover, parametegg and Lic are given by (note the change of variapke rx / L).

¢y (@ydy

Mg = IE— Hc = {L (11)
-2 -2
I[qJ,ydy I[qJ,ydy

and depend only on the characteristics of funci(y), i.e, the member support conditions and
half-wave numben. Expressions fofz andc are given in sectioB., for four support conditions.
Solving Egs. (8) (eigenvalue problem) analytically leads tol\fhestimate (in terms df)

_ M, nnf KKp
Mp= okt | _2sho 12
" 2n, 00 n, (12)

* * * * —_— 2
N =KsXp+KpXs N, = Xs Xp—(McosaXsp) (13)

where

and the plus (minus) sign holds fgs<O (>0). After knowingA,, one readily calculates the buckling
load P,=A,P and moment componermb'z}\b M cosa andM,"=A, M sina. The eigenvector related
to Ap provides the degrees of participation of modes S and D ibedm-columrDM:

a5=; ap=1-ag (24)

1 MiXso.
Ko=PpXo

The critical length L, corresponding to the minimuiy, (Ap.min), is the relevant root adAy/dL=0.
However, since functiony(L) is highly non linear (see Eg. (12)), the exact value of this root cannot be
determined analytically. However, it was found that expression
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L, = T[N/ BCS:S[Bz_ %:_ECOSZG + —sm a%ﬁ} J"TC (15)

estimated_.; quite accurately (errors seldom above 2%), provided that the normalisation condition

P+M=1 (16)

is used to determin@ andM. Then, introducing Eq. (15) in Eq. (12), one readily obtains
If P=1 andM=0, the above expressions yieglolumnL andPy min (=Ap.min) €Stimate. Since Egs. (8)
are uncoupled and only the first one (mode S) is relevant and Egs. (12) and (15) become

=T 4IE_CS4A/E7 =) _ Ksor _ 2JECBsJHcHs+GDg 17)
Bs N Us

whereKs .~KdLc) (see Eqg. (9)). They are much simpler than their beam-column counterparts.
If P=0 and M=1, on the other hand, one obtabeamL.; andMp min (= Abmiy) estimates. Although
the formulae apply to bending about amitrary neutral axis (Fig. 5¢), rack-section beams are
mostly subjected toniaxial bending, a much simpler case. Then, one has:
(i) In l-axis beamgFig. 5(3) - a=0), Egs. (12) and (15) become

[E’CcC K
Lcr =mé B—ED ‘k/EC Mb.min = % (18)
sbp Hs (Xsp)

whereKs =K L) andKp =K p(Le) (See Eq. (9)). The estimates yielded by these two expressions
can be directly compared with those provided by Hancock (1997).

(i) In ll-axis beamqFig. 5() - a = -1/ 2), the DM shape isymmetric Thus, Egs. (8) are uncoupled
and only the first one matters (as in columns). Then, Egs. (12) and (15) become

- ECs |Hc M _ Ks.er _ 2JECSBs/Ucs + GDs 19
4B: ik (19)
s B

bmin = T I
Xs Xs
and their estimates can be directly compared with those provided byeTahd2003).

Finally, since the tension flange leéixis beamgcase (i) in Fig. 5() practically doesn’t move (see
Fig. 1(ly)), one anticipates very closge and ap values £ 0.50 each). Since beamapplied stress
diagram varies between thaxis andll-axis bending ones, one can say thatdhendas values are
bounded by (i) 0 andg 0.50 and (ii) 1 ane 0.50, respectively. Moreover, sincd@am-columrstress
diagram varies between tlselumnand abeamones, one can also say thatis either (i) O (-axis
beam-columnsor (ii) bounded by 0 and 0.5(s (I-axis beam-columns

4. Cross-section distortional properties

In order to derive expressions for the cross-section mechanical and geometrical properties, related t
modes S and D, one must know the relevant cross-sedispitacementsand transverse bending
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moments The expressions providing thearping (uy,(s)), membrane(v,(s)) and flexural (wx(s))
displacements in an arbitrary wall (elememtja = 1...7,s, £ S< Sy+1) read (see Fig. 6(a))

1 1
Us(S) = SUa(Wi= W) + SUaua( Wit W) Vol(9) = V¥, (20)
B 1 1.
Wa(s) - Waqjl"' Eba¢aw2_3_Kba(maqj3+ ma+1([-/4) (21)

where (i)b, andK are the wall width and plate bending stiffness and (ii) the shape fun&@is
(E=(s-s) /by by=54+1-5,) are depicted in Fig. 6(b).

Egs. (20)-(21) show thak, v, andw, arelinear, constant and cubic functionsspfully defined by
(i) nodal (i) warping displacements,, u,.1 and (b) transverse moments,, mg.,, and (ii) wall chord
(centre-line) (ii) membranaisplacements, and (ib) flexural displacements, and (ik) rotations ¢,.
For modes S and D, these values are components of veztoers.(.7).

u={y u, U; U, Uy uyy Uy 1}T m={0 0 m m, my mgy O @T (22)
v={Vv Vo Vi VvV, VY VY _Vly}T w={w W We W, Wiy Wy WlV}T (23)
$={¢ o5 ¢ b —Oy —dsy —OV}' (24)

where the value of enables the distinction between modey$1) and D y=-1). Fig. 7 provides the
physical meaning of the above modal vector components, for the cross-section discretisation showr
in Fig. 3(a). Since modes S and D exhibit eitesgmmetricor anti-symmetricdisplacement and
moment diagrams, the unknowns in Eqgs. (22)-(24) can be reduced accordingly.

Before determining the mode S and D mechanical properties, on must satuerically the
auxiliary (standardeigenvalue problerdefined by Eq. (3) a procedure responsible for the formulae
“quasi-analytical’ character. However, one must point out that this eigenvalue prolaeatyiscally
definedin annex (thexplicit expressiongrovided make it possible to determine all matrix components). Its
solution involves the following steps:

Wall element o Y, =-E+4E7-LE7

l<42bq Vb1
S=Sq S=Sa+i

(a) et (b)
Fig. 6 Wall elementr (a) deformed configuratiow,(s) and (b) shape functiorgl(&)

“4In 5 wall members, this is domaalytically thus leading to “fully analytical” formulae (Silvestre & Camotim 2003).
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Fig. 7 Distributions/diagrams af, m, ¢ andw for modes (a) S and (b) D

(I) Determine thegeometricaland mechanical parameters

by b by Et®
", ° b, ' by, 12(1-?) (29)
(I) Using the components ¢ andw , given in annex, determine matrices
M= F"'w B=-wM (26)

(I)Using the components dE, also given in annex, solve tB&-order eigenvalue problem
(B-ACu=0 (27)

which has founull eigenvalues (corresponding to rigid-body deformation modes).
(IV)Determine eigenvectorsis and up, corresponding to thewo smallestnon-null eigenvalues
(0< A< Ap), and write their componentaddal warping displacementss in Eq. (23.
(V) Evaluate vectorsns andmp, by means of

ms=M Ug mp=M Uup (28)

and write their componentaddal transverse bending moments in Eq. (23.
After having theus, up, ms, mp components, the evaluation of the modal mechanical properties is
fully analytical The code MpPLE (WMS 2001) was used to derive expressionsifag, Vi, Viw @1, @s, ds,
O Wi, Ws, Wr, Wy, INVOIVing the (i)us, Uup, Ms, Mp components, (ii) cross-section dimensibpdy, b,
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b, 6, t and (iii) material constants, v. The derivation comprises five steps:
(V1) Evaluate the wall chordnembrane displacements;, Viys Vs.s Vis andvip, Viup, Vsp, Vip

_Uy(1-y) _Us—U, _U—U; )
w="p, 1= b, Ys= ad, Ty (29)
(VII) Evaluate the wall chordotations ¢rs, pws @ss s and@sp, dwp, Psor Pio
_v(l-y 1g Vi, Y
bu = by ¢ = ap b, tan6+sm6 2( V)D
=y o, b m3
¢S - aisSIne ¢ ¢S (30)

(VII) Evaluate the wall chordlexural displacement®: s, Wy, Ws.s Wi.s andwsp, Wip, Wsp, Wip

_ ¥ ov Y% VY,
W = 2(1+y) Wi = >0ane sing” 2 y)D
ity Vs o Vs,
Ws = 5sine” tand Wi=—Sne" tanB 2¢' aiby, (31)

(IX) Evaluate the cross-sectionodal mechanical propertigSs, Bs, Ds andCp, Bp, Dp

C = S0 A1(2+ YUl 20 (U2+ Ugliy + 1) + 201, (U2+ Uglly+U2) + 201 (U2+ Yy + 1)]

3
B = 3—wa[(2+ V)i + 201, (Mg + mmg +mg) + 2am3]
D = 2b,{*Ch, ¢? 24 0% +2g20 32
= ST 7 + a0l + ar? + 500 (32)
(X) Evaluate the cross-sectigeometric stiffness components
bt
=———5X (33)
15120¢C2 "

(X.1) For the individual modes S and R, Xp, X' andXp'
X, = 15120K°] (Vi + W)U+ (Vi + W) (U + Ug) +
+ay(ve+we) (Us+Up) + oy (v +wp) (U +Uy)]
X, = 84bev[af¢f My(2U,—U,) + %, my(U,—2U,) + 0, my(2U,—U) +%¢W m4U4(y—1)J
X5 = bi[MGU,(64+ 62y) + arm;(35U, + 29U5) + armi(29U, + 35U ) +
+02m5(35U 5+ 29U,) + 62a7m,my(U, + Uy) ]

X, = 5040K%0,[ a7 ¢ wi(Uy—Us) + dapwe(Us—Us) + aigyw(U,—Uy)]
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X5 = 1260K°bL[ a7 ¢7 (U, + Ug) + ale(Us+ Uy) + /¢ (U, + Uy) + LU,
Xg = 84Kb3[15( 1+ ) w,m,U, + 2a;w; m,(8U,+7U,) +
+2aw; My(7U, +8U,) + 2a2wmy(8U5 + 7U,) ]
(X.2) For the coupling between modes S andXE

Xy = 15120K° a1y (Vi Vi p + Wy i p) (U + Ug) + 05V s o We s p) (Us + U) +
+0,(Vi.gVip + W sWi p) (U +Uy)]
X, = 420K[-3¢y, oM, U4+ 05 (95 M p + Ps oM 5) (2U5—U) +
0 ($1.5Mp+ @1 oMy 9 (2Us—Us) + 07 ($r sMap + B1.5Ms ) (Us—2U5)]
X5 = 2520K7 D, [~ Wy, s oUss + 7 (Wi sy o+ Wr o (Us—Us) +
+E(Ws s o+ We ps I (U= Uy) + a7 (Wi 51 5+ Wip d1.6) (U, —U))]
X, = 1260K°D5[ a7 91y s(Us+ Us) + 0205 pfs s(Us +Uo) + i dro i o(Uz + Uy)]
X5 = 84K Wi, sy 5+ aZ(W oMy o +We pMy 6)(8Us + 7U,) +
+af3(Wf.sm4.D +W;pm, o (8U,+7U5) + afg(Wf.smg,D +WrpM, o) (7U,+8U3)]
X = bu[6M; My pU,+ 31017 (M, sy o + Mg oMy p) (U + Ug) + a7 My oMy p(35U, +29U5) +
+07 Mg oMy (29U, + 35U5) + agms oMy (35U + 20U, ]
Table 1 shows the values of (i) tipee-buckling nodal axial displacements-U, and (ii) the
associated cross-secti@yproperty, equal té, I, or |, (cross-sectional area, major and minor moments
of inertia) for compression, major or minor axis bending. Recall that (i) the pre-buckling axial
displacements asymmetriqUg=U,, U;,=U,, Ug=U 3, Us=U 4, - columns andl-axis beams: step X.1) or
anti-symmetriqUg=-U 1, U;=-U,, Ug=-U3, Us=-U, - |I-axis beams: step X.2) (see Fig. 8) and that (ii) a
beam-column always concerns two (compression + uniaxial bending) or three (compression + biaxial
bending) diagrams. Note also that the complexity of Egs. (33) is largely due to their generality. In

columns, for instance, because one basU,=Us;=U,=1, all U;-U;) terms vanish and Egs. (33)
become much simpler.

Table 1 Steps X: nodal pre-buckling axial displacements and cross-section C property

Step X U, Us U, U, C
X1 Xs Xp 1 1 1 1 A
' Xs', Xp" XG Xg = O by Us-asb, cosd U,—a; by Iy

X.2 X Y b, Y h, Y b,~asb,sind Y% hb,~asb, sind I,
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Us

Us Us Us
Us U, U,
Us o Us 5 U} 8 v s
U ﬁ Us Us U:
4 U;
@ v (b) (©)

Fig. 8 Nodal pre-buckling axial displacements: (a) columri-@xis beam (c)ll-axis beam

Table 2 Column, beam and beam-column geometric stiffness components

Beams Beam-columns
Columns - - . - - -
[-axis Il-axis Any axis [-axis Il-axis Any axis
Xs X X§ X&p, X8, X5 Xs Xo, Xbp  Xs X X, Xp, Xép, X$, X5

Finally, Table 2 shows the geometric stiffness components. Note that columihs@adeams and
beam-columns need only mode S properties. In all other cases, both S and D properties are requirec

5. End support conditions

As mentioned earlier, four end support conditions are considered in this work: (i) pinned and free-to-
warp end sections (PFW), (ii) fixed and warping-prevented end sections (FWP), (iii) one FWP section
and the other PFW and (iv) one FWP end section and the other “sliding-fixed” and warping-prevented
(SWP). The followingtrigonometricapproximation functiong(y), which (i) satisfy all end support
conditions and (ii) were successful used by Bradford & Azhari (1995), in the context of finite strip plate
linear stability analyses, have been adopted:

(i) PFW members (in this case, tip¢y) provide theexact solutiorof Egs. (1))

@y) = sin(ny) (34)
(i) FWP members
@y) = sin(ny)sin(y) (35)
(iii) FWP-PFW
@) = sinf(n+1)y] + 2sin(ny) (36)
(iv) FWP-SWP members
oy) = sin[%—%%/}sin%yg (37)

Introducing Egs. (34)-(37) in Eq. (11) and integrating wyrleads to i is the half-wave number):
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(i) PFW members

1
Ho= o= n’ (38)
(i) FWP members
_3(if n=1) or Zif n>2) _ (n=1)*+(n+1)*
- 2 2 c~- 2 2 (39)
(n=1)"+(n+1) (n=1)"+(n+1)
(iii) FWP-PFW members
n+1)%+n? 1
o= ERAT e = 21(n+1)+17) (40)
2n°(n+1)

(iv) FWP-SWP members

_3(if n=1) or ZAif n>2) _on*—4n’+6n*—4n+1
B~ 2, 2 He = 2,2
(n=1)"+n (n=1)"+n

(41)

Finally, recall that the formulae due to Lau & Hancock (1987), Hancock (1997) anéfTan(2003)
apply toPFW membersnly. Moreover, Davies & Jiang (1998) also derived GBT-based expressions,
similar to Egs. (17) and incorporating Eq. (38), RéfW columnsHowever, since no expressions are
given forCs, Ds, Bs, X, their “analytical character” seems quite debatable.

6. A few remarks

After inserting thenechanicapropertiesgeometric stiffnessomponents anehd supporparameters, the
formulae derived in sectidB. provide distortional buckling stress resultant estimdgsd/orMp) and
also bifurcation stress diagrams, defined by (compression is positive)

—X, (42)

Knowing the distortional buckling stress resultant, one readily (i) calculatgsattieipation factors
of modes S and Da§ andap) and (ii) characterises the cross-section deformed configuration. Indeed,
multiplying as andap by the corresponding wall displacement fields (see Egs. (20)-(21) and Fig. 7)
leads to the cross-section deformation related to the distortiondingumode.
The derived GBT-based formulae also unveil severaélandusefulaspects concerning distortional
buckling of ll-axis beam-columngbending in thesymmetryplane):
() L isindependenof the axial force/bending moment combinatidndeed, ifa = -1t/ 2 Eq. (15)
is identical to Egs. (LY and (19) for anyP - M combination. This result remains practically true
also forexactL., value$.
(i) The distortional buckling parametdp (Eq. (12)), related to a given combination of axial load
and bending moment, can be expressedusivelyin terms of thecolumnbuckling loadP, and

50n the basis of a large number of finite strip analyses, &ag (2003) reached a similar conclusion.
A minor variation may occur if thexactDM configuration includes small contributions from other GBT modes.
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beambuckling momenMY,. In fact, fora =-7/ 2, Eq. (12) may be rewritten as

P_A!)+M_A!)= 1 (43)
Py MLI

and corresponds to a linear variation betwBgandMy,.

It is still worth noting that the GBT-based formulae incorporate genuine folded-plate thieatyre

which (i) accounts for thesiccuracyandgeneralityand (i) makes it possible to clarify (overcome) the
assumptions (limitations) of the other distortional buckling formulae. Indeed:

(i) Allformulae based on Lau and Hancock’s model involve estimating the elastic lateral restraint provided
by the web to the “flange-stiffener assembly™(see Fig. 1(9). Since it is not possible to find exégt
values, the two extreme casggs 0 andk,— oo have been dealt with and the former wégpéed. The
GBT-based formulaeonfirmthatk= 0 is a correct assumption, since sli®wn that the web-flange
corner moves by 4{i W, s (columns) and £) agm,st¥2apbwdwp (I-axis beams) - see Fig. 7.

(i) Numerical simulations provided evidence that, besides rigid-body motions, the compressed
flanges may also experienoen-negligibleflexural deformations if the width ratia /b, is large
enough (Lau & Hancock 1987 and Teegal 2003). Thus, all the formulae based on Lau and
Hancock’s model need to include an adjustment factdeterminedh priori and accounting for
the flange flexural deformations. As shown in Fig. 7, the GBT-based formulae automatically
incorporate this effect (flange componentsmafandmp).

(iii) Bambachet al. (1998) showed, in the context of C-sections with return lips (similar to rack-
sections), that accurateaxis beam buckling stress estimates require the consideration of the
stiffener stress gradienin order to improve the formulae derived by Hancock (1997), assuming
the stiffeners undeuniform stressthey proposed the inclusion of adjustment factorin the
case of the GBT-based formulae, which already incorporate the effect the stress gradients acting
in every cross-section wall, this issue is automatically accounted for.

7. Application

First, for illustrative purposes, the application of the distortional buckling formulaentwers with
PFW support conditions is described irea@f detail. All members have the same geometry and are
subjected to (i) uniform compression, (ii) uniaxial bending, (iii) biaxial bending and (iv) combinations
of the above. Then, in order to show the versatility of the formulae, they are also appiechbers
with FWP support conditions. In both cases, (i) all intermediate steps and values are reported and the
estimates are corapad with “exact” (numerical) results. Since there exist some qualitative differences
between the distortional buckling results presented for PFW members and members with other suppor
conditions (FWP, FWP-PFW or FWP-SWP), note that:
(i) All PFW memberg, estimates areninimum valuesi.e., (i;) concern members with lengths
L=nLg, (L. Yielded by Eq. (15)) and,ficorrespond to critical buckling modes withhalf-
waves (=1 if L=L). This is illustrated in Fig.(@): the buckling curves for individual modes
with different n values exhibit equally-spacedentical minimum valueso, min Moreover, the
“all mode curve” is just a superposition of the individual curve lower parts. This means that the
critical DM alwayscoincides with an individual mode
(i) In FWP, FWP-PFW or FWP-SWP members, on the other hand, the individual mode curves
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Fig. 9 Distortional buckling curves for (a) PFW and (b) FWP members

exhibit equally-spaced bulifferent minimum valuesoyminn (value decreasing witm), as
illustrated in Fig. 9(b) (FWP member). Moreover, the all mode curve lies below the
superposition of the individual curve lower parts, whiokans that the critical DM often
combines more than one individual modaus, it makes no sense to talk about “the minimum
bifurcation stress value” and the formulae are used to estimate distortional bifurcation stresses
for a member (i) with a givenlengthL and (i) buckling in mode with a givehalf-wave
numbern (o). The critical buckling stress estimate is then giveroby min{dy1; Ov,; Obzs;

Oh4;---} @nd tends to slightly overestimate the exact value. These concepts are illustrated in Fig.
9(b): the formulae yieldn,=o0,5; (lowest white circle), which overestimates the exact value
(white square). This means that the critical DM includes participations of, at least, individual
modes with 2 and 3 half-waves.

The rack-section geometry selected to illustrate the application of the formulae is glgnlb@
mm, bs = 40 mm,bs=20 mm,b=20 mm,t=1.5 mm,0= 45° and the material properties &e200 GPa
andv = 0.3. First, one performs the cross-section analysis, comprising the ten steps described in sectior
4.. The values of the relevant quantities involvedd (see Fig. 10):

(i) Geometrical and mechanical parameigtep )

a;=0.5 0;=0.125 ,=0.125 K=61813 Nmm

(i) MatricesM, B andC, defining the auxiliary eigenvalue problem (steps II-llI)

411 -1.71- 5.38.32 -0.53 0.34 - 0.08- 0.08

e o
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2056 0 00O

fiey
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(i) Nodal warping displacementsg., components ofis andup (step 1V)

As = 4.83x 10" N/mm°

us={1.0 -1.716 1.287 -0.208 -0.208 1.287 -1.716 1.0}(mm)
Ap = 14.11x 10* N/mn?°

Up ={-1.0 1.110 -0.733 0.313 -0.313 0.733 -1.110 1.0}(mm)

(iv) Nodal transverse bending momerits,, components oins andmp (step V)
ms={0 0 -0.185 -6.084 -6.084 -0.185 0 O}Nmm/Fm
mp={0 0 1.745 9.072 -9.072 -1.745 0 O}Nmm/Am

(v) Modal displacements and rotations (steps VI-VIII)
Mode S(y=1)

Vw.s= 0

Vis= 0.0374 mm/mm
Vs s= -0.1502 mm/mm
V.s= 0.1358 mm/mm

Mode D (y=-1)

Vwp = 0.0063 mm/mm
Vip =-0.0262 mm/mm
Vsp=0.0922 mm/mm
Vip =-0.1055 mm/mm

@

1.287
-0.208

-1.716

-1.71674 1
1.287

-0.208

(a)

0.733

=
[fode 0]

0.313 -0.733

¢W.S= 0

¢rs=-0.00624 rad/mm
¢ss=-0.00696 rad/mm
¢.s=-0.00697 rad/mm

¢w.p = -0.00052 rad/mm
¢:p = 0.00407 rad/mm
¢sp = 0.00561 rad/mm
¢.o = 0.00571 rad/mm

@)

0.00696

-0.185 0.00624

Wy, s=-0.0374 mm/mm
W= 0.1249 mm/mm
Ws.s= 0.2726 mm/mm
wis=0.4178 mm/mm

Wy p=0

Wip = -0.0752 mm/mm
Wsp=-0.1853 mm/mm
Wip =-0.2930 mm/mm

)

0.1249 0.4178
0.00697

$
o
o
@
N
»

-0.00696 0.1249 0.4178

1 0
-6.084
0
-0.1
& 0.00624
-9.072 -1.745

9.072] +_— 1.745 0.00407

0.0752
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Fig. 10 Displacements and bending moments associated with (a) mode S and (b) mode D
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(vi) Cross-section modal mechanical properties (step 1X)

Cs=156.180 mrh Bs= 7.6349x10° N/mn? Ds= 8.8134x10°> mn?
Cp =62.761 mm Bp = 8.8694x10° N/mn? Dp = 4.6361x10° mn?

(vii) Cross-section geometric stiffness components (step X)

Xs=5.7443x10? Xp = 2.4364x10
Xsp =-8.8915x10* mm?  Xd' =-2.5320x10° mm?  Xp' =-1.3388x10° mni?
A=390 mmM x3=23.26 mm |,=613720 mrfh |, = 235728 mrf

7.1. PFW members

The (i) Ler, (ii) Po.min @and/orMy, minand (iii) as andap estimates concerning PFW columns, beams and
beam-columns are presented next, together wittexlaetL., and Py min and/orMp min values (inside
square brackets), obtained from GBT analyses incorporating all deformation(giotek distortional
and local-plate). Since the results are independemtrefl is adopted for simplicity. Figs. J&§-(as)
show four applied stress diagrams (values in MPa), corresponding to the bifurcation of one column,
two beams and one beam-column. Combining the modal S and D quantities, éy@mglay, one
obtains thebuckling modeguantities, depicted (i) in Fig. 11(b), for thexis beam, and (ii) in Fig.

10(a), for the columnlj-axis beam and beam-columasE1).

All the relevant distortional buckling results are:

(i) Column (Figs. 11(g and 10(a))

Lo = 447 mm[446] Py o = 65.5 kN[65.3]  {as ao} = {1:0}

{q 0
287 106 135

68
206 321 183 250

168

R
1
-206 ;
168 -287 R 95 18
1% e i W 321 0 250

106 135
(a)) (ap (a3) (ay
0.9 0.00622
0265 80 7716 _1.045 0.00504 0.0974;_~_ ;-
- o \ 000627 oy W
1.0 A .
0 I -2.8x104 ~ 0.2244 - 3
-1.378 i 0.3489
® ® | ool @
-0.154 0 35x106 0.0250
J0.105 /
~7-1.2x10€ -
0.01
0.080 0.171 2261 0.881 -5.4x104 0.0143 *
(b)

Fig. 11 (a) Bifurcation (@ column (@) I-axis beam (g ll-axis beam (g ll-axis beam-column stress distributions
and (b)l-axis beam DM quantities
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(ii) l-axis beam & =0 - Figs. 11(g and 11(b))

Lo, = 391 mm[391]  Mpymin= 3530 KNmm[3465]
{as ap} = {0.447;0.553}

(iii) ll-axis beam & =-m/ 2 - Figs. 11(g and 10(a))
L. = 447 mm[430] Py.min = 1487 KNmm[1403] {as ap} = {1,0}
(vi) ll-axis beam-columnKF=4 kN + M = 104.1 kNmm - Figs. 11(aand 10(a))

P=0.037 N M=0.963 Nmm
Ler = 447 mm[440] Abmin= 824743
Pomin=30.5kN[29.8]  Mpmin= 794 KNmm[776] s, ap} = {1,0}

The observation of this set of results leads to the following remarks:
(i) The GBT-based formulae estimates are quite accurate in all cases.
(i) Members subjected to uniform compression antl4axis bending:
(i.1) ThelL, (exact and approximate) values are practically identical for the column, beam and
beam-column, which confirms thedependence of.L(see sectiors.).
(ii.2) Knowing Py mi=65.5 KN, Mp 1487 kNmm andP=0.037,M=0.963, Eq. (43) can be
readily used to determine the correspondirgm-columrparametei,

0.037)\b_mm+ 0.963\y min
65500 1487000 ~

1 < Apmn=824743 (44)

This confirms thaPy, min and My min provide all the data required to obtain any

7.2. FWP members

For FWP members with length-800 mm, determines first theminimising the bifurcation stress
(i.e., theL minimisingKs, andKp , - see Fig. 9(b)). Then, one obtains estimates fét,(@nd/orM,
and (ii) as andap. The relevant values involved in these procedures are presented next (thisimgnim
n is underlined and thexactP, and/orM, is again inside square brackets):

(i) FWP members

n=1 Uc=4 Us =0.75 Ks;=6318 N Ko1=5445N

n=2 Uc=8.2 us =0.20 Kso, = 5618 N <Ks; Kb, =3094 N <Kp;

n=3 Mc = 13.6 Ms = 0.10 K53 =7724 N >K52 KD.3 =3564 N >KD.2
(i.1) Column

P, =97.8 kN [98.9] fs ap} = {1,0}
(i.2) I-axis beam @ = 0)
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Mp = 4689 KNmm [4701] s, ap} = {0.604;0.396}
(1.3) ll-axis beam & = -1/ 2)

Mp = 2219 KNmm [2249] &s ap} = {10}

(i.4) 1 + ll-axis beam-columnd = -1/ 4,P =4 kN + M = 104.1 kNmm)

P=0.037N M =0.963 Nmm Ap=1267343
Py, =46.9 KN[47.5] Mp = 1220 KNmm[1233] as, ap} £{0.891;0.109}
8. Validation

In order to assess the accuracy and range of validity of the derived formulae, an extensive parametri
study was carried out. Its results, given in Tables 3-6 (PFW members) and 7-8 (FWP members),
concern columns, beams and beam-columns with several geome#R30(GPa and = 0.3). The
GBT-based estimates are compared with exact raggdigand, when possible, also with values yielded

Table 3 PFW columngy(= 30 mm,t=1 mm)

Dimensions (mm) Exact Lau & Hancock (1987) GBT-based
bW bf bs 0 Op.ex Ob.min Ub.min/Ub.ex O b.min Ub.min/Ub.ex
60 40 10 90 137 140 1.02 137 1.00
90 116 118 1.02 115 0.99
60 40 15 90 179 179 1.00 181 1.01
90 150 151 1.01 151 1.01
60 60 10 90 97 99 1.02 98 1.01
90 86 85 0.99 86 1.00
120 76 74 0.97 75 0.99
60 60 15 90 130 129 0.99 132 1.02
90 114 111 0.97 115 1.01
120 100 97 0.97 100 1.00
60 40 10 48 82 90 1.10 82 1.00
90 72 77 1.07 70 0.97
60 40 15 48 99 108 1.09 99 1.00
90 86 93 1.08 85 0.99
60 60 10 48 60 62 1.03 60 1.00
90 55 52 0.95 54 0.98
120 49 46 0.94 48 0.98
60 60 15 48 74 79 1.07 75 1.01
90 66 68 1.03 66 1.00
120 60 59 0.98 60 1.00
100 21 5 9C 128 40 0.31 137 1.07
Mear? 1.02 1.00

Sd.dev? 0.05 0.01
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Table 4 PFW-axis beams = 30 mm,t=1 mm)

Dimensions (mm) Exact Hancock (1997) GBT-based
bw bf bs 6 Ob.ex Ob.min ab.min/ab.ex T p.min ab.min/ab.ex
60 40 10 90 232 231 1.00 240 1.03
90 182 188 1.03 185 1.02
60 40 15 90 379 357 0.94 411 1.08
90 271 278 1.03 283 1.04
60 60 10 90 156 143 0.92 168 1.08
90 128 120 0.94 132 1.03

120 112 106 0.95 114 1.02
60 60 15 90 258 221 0.86 270 1.05
90 193 175 0.91 204 1.06

120 164 151 0.92 169 1.03
60 40 10 458 121 140 1.16 123 1.02
90 102 116 1.14 101 0.99
60 40 15 458 167 182 1.09 174 1.04
90 133 140 1.05 134 1.01
60 60 10 48 86 94 1.09 89 1.03
90 74 78 1.05 74 1.00

120 67 68 1.01 66 0.99
60 60 15 458 121 128 1.06 128 1.06
90 98 104 1.06 101 1.03

120 87 91 1.05 88 1.01

Mean 1.01 1.03
Sd.dev. 0.08 0.03

by the Lau & Hancock (1987), Hancock (1997) and Tengl formulae.

All the values displayed in Tables 3 (columns) and-axis beams) correspond to the distortional
bifurcation compressive stress (in MPa) acting on the flange-stiffener corner (node 6 in Fig. 3(a)). The
analysis of these results shows that:

() The GBT-based estimates are consistently quite accurate. Indeed, the average and standar
deviation of thedymin/ Opex Values read 1.00 and 0.01 (columns) and 1.03 and B&3s(
beams). Moreover, only in two cases does the error exceed 6%.

(i) For 8= 9, Lau and Hancock’s formulae yietlumnestimates as accurate as the GBT-based
ones (both “evenly distributed” in the “close vicinity” of 9).0However, note that, unlike the
GBT-based formulae, Lau and Hancock’s formulae are not valid in the case of high web
slenderness. The last line in Table 3 illustrates thiersttt: sincd,, / br =5, the web rotational
stiffness becomes negative and Lau and Hancock’s formulae “break down”, leadingnto
Ob.ex=0.31 (the GBT-based estimatedigmin/Op.ex= 1.07).

(iii) For 6= 45° (sloping mid-stiffeners), on the other hand, Lau and Hancock’s column estimates are

"All the cross-section dimensions considered here were taken from Lau (1988). These conclusions may not remait
valid for columns with different cross-sections, as happened for channel columns (Silvestre & Camotim 2003).

8For this cross-section geometry, one hab=5 mm.

*These values do not include the last line, which contains the “meaninglgss/oh.e=0.31 estimate.
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Table 5 PFWI-axis beams Iy = 30 mm, 8= 90°)

Dimensions (mm) Exact Tergf al. (2003) GBT-based
bw bf bs t Mb.ex Ivlb.min IVlb.min/ Mb.ex I\/lb.min IVlb.min/ Mb.ex
60 40 10 1.0 598 622 1.04 612 1.02
90 581 592 1.02 590 1.02
120 576 582 1.01 587 1.02
60 40 15 1.0 846 880 1.04 874 1.03
90 821 829 1.01 845 1.03
120 815 790 0.97 854 1.05
60 60 10 1.0 671 698 1.04 702 1.05
90 651 671 1.03 674 1.04
120 639 659 1.03 659 1.03
150 636 649 1.02 662 1.04
60 60 15 1.0 965 1004 1.04 1020 1.06
90 938 957 1.02 981 1.05
120 922 931 1.01 965 1.05
150 917 908 0.99 957 1.04
60 60 15 15 2265 2356 1.04 2384 1.05
90 2209 2253 1.02 2304 1.04
120 2178 2200 1.01 2245 1.03
150 2174 2174 1.00 2230 1.03
Mean 1.02 1.04
Sd.dev. 0.02 0.01

less accurate and more scattered than the GBT-based ones.

(iv) All GBT-basedl-axis beamestimates are sldly unconservativémaximum error of 8% and
6%, for beams with orthogonal and inclined mid-stiffeners). Moreover, the estimates tend to be
less accurate for shorter webs and longer flanges astiffeners. The exact results showed that
this tendency is due to the influence of the torsion mode.

(v) Hancock'sl-axis beam estimaté$are considerably less accurate and more scattered than the
GBT-based ones. The errors reach 14% (safe side) and 16% (unsafe side).

Table 5 show$/, min values concerninli-axis beams with cross-section geometries taken from Teng

et al. (2003) (all with@= 90°). One notes that:

(i) Although both the GBT-based and Teng’s formulae yield accurate resylte(iGBT-based
predictions are a bit more on the unsafe side (averages of 1.04 and 1.02), Jviiéndis
estimates are slightly more scattered (standard deviations of 0.02 and 0.01). Nevertheless, one
must mention that the accuracy of Teng's estimates is mostly due to an adjustmerd, factor
which must be determined for each cross-section geometry (if these formulae are to be used for
design purposes, @e-determinedh value will be imperative).

(i) The fact that Teng’s formulae requires)iincrementdon w.r.t.L (to find L,;) and (ib) iteration
w.rt. the rotational stiffnesg, (k, is L-dependent) constitutes a major drawback for design
applications. Based on the newly unveileg independence of the compression-bending combination”

1%Results obtained using the factor proposed by Bamtiaah(1998) to account for the stiffener stress gradient.
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Table 6 PFW beam-columnb,£& 120 mm,b= 60, b= 15,b=30,t=1.5, 8 = 90°)

[-axis beam-columnse) [I-axis beam-columnsg()
Exact GBT-based Exact Tereg al. (2003) GBT-based

€ Pb.ex Pb.min Pb.min/Pb.ex Pb.ex Pb.min Pb.min/Pb.ex Pb.min Pb.min/Pb.ex
0 78.0 77.5 0.99 78.0 77.8 1.00 77.5 0.99
1 77.9 77.8 1.00 75.3 75.2 1.00 74.9 0.99
2 77.8 78.0 1.00 72.9 72.7 1.00 72.5 0.99
5 77.0 77.8 1.01 66.5 66.2 1.00 66.1 0.99
10 74.3 75.3 1.01 57.9 57.6 0.99 57.6 0.99
15 70.7 71.8 1.02 51.2 51.0 1.00 511 1.00
20 66.9 68.0 1.02 45.9 45.7 1.00 45.9 1.00
25 63.2 64.3 1.02 41.6 41.4 1.00 41.6 1.00
30 59.8 60.8 1.02 38.0 37.9 1.00 38.1 1.00
40 53.8 54.8 1.02 324 32.3 1.00 325 1.00
60 44.5 45.4 1.02 25.0 25.0 1.00 25.2 1.01
90 35.2 36.0 1.02 18.8 18.6 0.99 189 1.01
130 275 28.1 1.02 13.9 14.0 1.01 14.1 1.01
180 21.6 22.1 1.02 10.5 10.6 1.01 10.7 1.02

Mean 1.01 Mean 1.00 1.00

Sd.dev. 0.01 Sd.dev. 0.01 0.01

(see sectiol.), the authors found that Teng’s formulae can be used wilh.tkalue yielded by
Lau & Hancock (1987jack-sectioncolumn formulai.e.,

b .25
L, = 4.8(%1%%? (45)

wherel,. is a geometrical property of the “flange-stiffener assembly”. By eliminating the incremental-
iterative procedure, with no loss of accuracy, the use of Eq. (45) makes Teng’s formulae much
more appealing.

Table 6 deals with PFVideam-columngi) having cross-section dimensiobg=120 mm,b; = 60,
b=15,b=30,t=1.5,0= 9C° and (ii) acted by an eccentric compressive ldah{ll-axis eccentricities
g ande, - see Fig. 5(b)). The tabulated results show that the GBT-based estimates (i) are quite accurate
in all cases and, for tHeaxis beam-columns, (ii) match perfectly the high accuracy of Teng’s formulae
(using Eg. (45) to obtaih., proved again to be very beneficial).

Finally, Tables 7 (columns) and Baxis beams) concern FWP members with several cross-section
geometries and the GBT-based estimates are compared only with exact GBT values (no other
distortional buckling formulae available). For validation purposes, all the columns selected have been
taken from Lau (1988), who analysed them using the spline finite strip netfibe estimates are
minimum values, obtained after applying the GBT-based formulas=fbr 2, 3,... (the minimisingn
values are also indicated). One notes that:

(i) The GBT-based formulae continue to provide quite accurate estimates in all gasbe:dj/

“The GBT estimates and exact values were obtained after “replacing” the web-flange and flange-stiffener corners
by larger width values (corner radius values added to the width values). Although Lau assumed “fictftious” 45
inclined corner finite strips, the exact GBT values virtually coincide with the spline finite strip results.
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Table 7 FWP columns

Dimensions (mm) Exact GBT-based

L by by bs by t 6 n Ob.ex O O/ Op.ex
800 79 35.3 16.2 26.8 1.652 90° 2 479 499 0.96

1300 3 410 409 1.00

1500 3 391 385 1.02

1700 4 385 379 1.02

1900 4 374 368 1.02

800 78.6 35.3 16.4 27.05 1.982 90° 2 570 581 0.98

1300 3 490 483 1.01
1500 4 487 481 1.01
1900 5 465 459 1.01
800 82.4 31.4 14.9 29.25 2.395 90° 2 672 660 1.02
1100 3 620 608 1.02
1500 4 587 576 1.02
1700 5 580 569 1.02
800 78.6 35.3 16.4 27.05 1.982 45° 2 292 299 0.98
1300 4 264 270 0.98
1500 4 260 264 0.98
800 82.4 31.4 14.9 29.25 2.395 45° 3 372 386 0.96
1100 4 345 356 0.97
1500 5 330 339 0.97
Mean 1.00
Sd.dev. 0.02

Op.exaverage and standard deviation read now 1.00 and 0.02 (columns) and 0.97 arax03 (
beams) and §) the error never exceeds 4% (columns) and [7&ki§ beams).

(i) Clearly, the less accurateaxis beam estimates concern the shorter beam lengths (two or three
half-wave DM). Exact GBT analyses show that this is due to web and/or flange flexural
deformation (local-plate) effects, which are not fully accounted for by the formulae.

9. Conclusions

GBT-based analytical formulae to estimate distortional critical lengths and buckling stress resultants
in rack-section cold-formed steel members were derived. Since the formulae incoiqideteplate
theoryconcepts, they automatically account for cross-section (i) distortion and (ii) flexural deformation
effects (partially). They apply to members with the following characteristics:

(i) Arbitrarily inclined mid-stiffeners.

(i) Subjected to any combination of uniform compression and uni or biaxial bending.

(iii) Four end support conditions: )i PFW, (i) FWP, (i) FWP-PFW and (i§) FWP-SWP.

Following a very brief overview of the second-order GBT formulation, the paper described and
discussed the various steps involved in deriving distortional buckling formulae for rack-section beam-
columns (columns and beams are special cases). These formulae are expressed in terms of (i) cros
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Table 8 FWH-axis beams

Dimensions (mm) Exact GBT-based

L by by bs b t 6 n Ob.ex Op Ob /Op ex
800 79 35.3 16.2 26.8 1.652 90° 2 707 750 0.94

1300 3 714 729 0.98

1500 4 712 719 0.99

1700 4 711 710 1.00

1900 5 710 708 1.00

800 78.6 35.3 16.4 27.05 1.982 90° 2 893 941 0.95

1300 4 906 953 0.95
1500 4 884 907 0.97
1900 5 885 880 1.01
800 82.4 314 14.9 29.25 2.395 90° 3 1090 1121 0.97
1100 3 1073 1115 0.96
1500 5 1045 1065 0.98
1700 5 1047 1040 1.01
800 78.6 35.3 16.4 27.05 1.982 45° 3 413 433 0.95
1300 4 405 431 0.94
1500 5 402 424 0.95
800 82.4 314 14.9 29.25 2.395 45° 3 500 536 0.93
1100 4 500 532 0.94
1500 6 501 527 0.95
Mean 0.97
Sd.dev. 0.03

section distortional mechanical and geometrical properties, (ii) two parameters depending only on the
end support conditions and (iii) tmember length. A key issue was the determination of “quasi-
analytical” expressions to obtain the above distortional properties, which are written exclusively in
terms of (i) the cross-section dimensions and material properties and (iijtigaayielded by the
numerical solution of an analytically defined auxiliary eigenvalue problem. It is worth noting that these
GBT-based distortional buckling formulae are particularly well suited for design purposes. Indeed, (i)
they are easy to program (including the solution of the auxiliary eigenvalue problem) and (ii) their use
requires no specific knowledge about distortional buckling.

The paper also included a few remarks concerning (i) qualitative comparisons between the derived
formulae and other available distortional buckling formulae and also (ii) novel aspects related to the
distortional buckling behaviour of rack-section beam-columns, which were unveiled by the GBT-based
approach employed in this work.

The application of the GBT-based formulae was illustrated in considerable detail, as all the
intermediate steps and values involved in the analysis of several columns, beams and beam-column
were reported and physically interpreted. Finally, the accuracy and range of validity of the distortional
buckling formulae were assessed by means of an extensive parametric study, in which the GBT-base
estimates wre compared with (i) exact GBT s and, when possibi@FW members only), also
with (ii) values yielded by the distortional buckling formulae previously developed by Lau & Hancock,
Hancock and Tengt al Columns, beams and beam-columns with several cross-section dimensions
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and shapes (orthogonal and sloping mid-stiffeners) were considered and it was possible to reach thi
following main conclusions:

() The GBT-based formulae consistently yield accurate estimates in all the cases dealt with
(numerous applied stress diagrams and four support conditions). Indeed, the majority of the
estimate errors fell inside the 2% range and only very few of them exceeded 5%.

(i) Whenever the formulae due to Lau & Hancock, Hancock and &ealgwere applicable (some PWF
members), the GBT-based formulae were shown to yield, at least, equally accurate estimates. Moreove
note that none of the previous formulae is valid fgr gdlumns with very slender webs ang) (iaxis
beam-columns (all these cases are routinely covered by the derived distortional buckling formulae).

References

Bambach, M., Merrick, J. and Hancock G.J. (1998), “Distortional buckling formulae for thin-walled channel and
Z-sections with return lips’Proc. of 14 Int. Specialty Conf. on Cold-Formed Steel Strucfugs Louis,
October 15-16, 21-37.

Bradford, M. and Azhari, M. (1995), “Buckling of plates with different end conditions using the finite strip
method”,Comput. Struct.56(1), 75-83.

Davies, J.M., Leach, P. and Heinz, D. (1994), “Second-order generalised beam the@gfistructional Steel
Research31(2-3), 221-241.

Davies, J.M. and Jiang, C. (1998), “Design for distortional buckliigGonstructional Steel Reseayets(1-3),

174. (®>-Rom paper #104)

Hancock, G.J. (1985), “Distortional buckling of steel storage rack columdn$truct. Eng(ASCE), 111(12),
2770-2783.

Hancock, G.J. (1997), “Design for distortional buckling of flexural membeétsiti-Walled Structure27(1), 3-12.

Lau, S. and Hancock, G.J. (1987), “Distortional buckling formulae for channel coludn$iruct. Eng.
(ASCE),1135), 1063-1078.

Lau, S. (1988), “Distortional buckling of thin-walled columns”, Ph.D. Thesis, School of Civil and Mining
Engineering, University of Sydney.

Schafer, B. (1997), “Cold-formed steel behavior and design: analytical and numerical modelling of elements and
members with longitudinal stiffeners”, Ph.D. Thesis, Cornell University.

Schardt, R. (1989)erallgemeinerte Technische BiegetheaBpringer Verlag, Berlin. (German)

Schardt, R. (1994a), “Generalized beam theory - an adequate method for coupled stability prdtiems”,
Walled Structuresi9(2-4), 161-180.

Schardt, R. (1994b), “Lateral torsional and distortional buckling of channel and hat-seciddshstructional
Steel Researcl31(2-3), 243-265.

Silvestre, N., Nagahama, K., Camotim, D. and Batista, E. (2002), “GBT-based distortional buckling formulae for
thin-walled rack-section columns and beandglyances in Steel Structures (ICASS'@)an, S.L., Teng, J.G.
and Chung, K.F. (eds.), Elsevier, Hong Kong, December 9-11, 341-350 (vol. 1).

Silvestre, N. and Camotim, D. (2002a), “First order generalised beam theory for arbitrary orthotropic materials”,
Thin-Walled Structurest(9), 755-789.

Silvestre, N. and Camotim, D. (2002b), “Second order generalised beam theory for arbitrary orthotropic
materials”, Thin-Walled Structure<iQ(9), 791-820.

Silvestre, N. and Camotim, D. (2003). “Distortional buckling formulae for cold-formed steel C and Z-section
members”, submitted for publication.

Standards Association of Australia (1996he Australian/New Zealand Cold-Formed Steel Structures Stgndard
AS/NZS 4600.

Teng, J.G., Yao, J. and Zhao, Y. (2003), “Distortional buckling of channel beam-coldrhims¥Valled Structures
41(7), 595-617.

Van der Maas, C.J. (1954), “Charts for the calculation of the critical compressive stress for local instability of



Distortional buckling formulae for cold-formed steel rack-section members 75

columns with hat sectionsJ, the Aeronautical Scienge&l(6), 399-403.
Waterloo Maple Software (2001).A4LE V (release 7), University of Waterloo, Canada.

Annex - Analytical definition of the auxiliary eigenvalue problem

To define the auxiliary eigenvalue problem (Eg. 27), one needs expressionsron-tgl components
of matricesF, vand C. Noticing thatF andC aresymmetri¢ one has:

1
Fll = F22 = F77 = F88 =1 F33 = F66 = 3_|<bw(af+ aS)

1 1 1
Fae=Fss = 3_wa(af+ 1) Fas=Fs = 6_waaf Fus= 6_wa
1 1 1
C1y = Cgg=2C, = 2Cs5 = éalbwt Cp=Csy= é(as"' adbyt  Cy=Cer = éasbwt
_ 1 _ 1 _ 1 1
Cg3= Cge = é(af"' agbyt  Cyy=Css= é(af"' byt Cg=Cs= éaf byt  Cys= ébwt
1 1 M ip 1
Wa = Wog= —mm— W, = Wy = —m—m8m8m i W, = Weo = —m——————
BT gabising 0 apisingtr ol TR T g g b2sing
11 2 0 1 1 1 0
Waa = Wge = — + - Wiy = Wee = Wya= Wee= + + -
BT g petagtang T agsingd) Tt T TS T ST T 2 %L a;tand  a, singd
1 2 1 1 g
Wae = Wey= Wpg= Wes= —— Wi = Wy = —— Wy = Wee = — +
35 64 46 53 o 3\[ 45 54 o 3\[ 44 55 afbsv %2 a; tangl)
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