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Abstract. The inelastic lateral-distortional buckling of doubly-symmetric hot-rolled I-section beam-
columns subjected to a concentric axial force and uniform bending with elastic restraint which produce single
curvature is investigated in this paper. The numerical model adopted in this paper is an energy-based method
which leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions
being obtained. The elastic restraint considered in this paper is full restraint against translation, but torsional
restraint is permitted at the tension flange. Hitherto, a numerical method to analyse the elastic and inelastic
lateral-distortional buckling of restrained or unrestrained beam-columns is unavailable. The prediction of the
inelastic lateral-distortional buckling load obtained in this study is compared with the inelastic lateral-
distortional buckling of restrained beams and the inelastic lateral-torsional buckling solution, by suppressing
the out-of-plane web distortion, is published elsewhere and they agree reasonable well. The method is then
extended to the lateral-distortional buckling of continuously restrained doubly symmetric I-sections to
illustrate the effect of web distortion.
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1. Introduction

The aim of this study is to investigate the inelastic lateral-distortional buckling behaviour of continuously
restrained beam-columns subjected to uniform bending and concentric axial compression, which
produces single curvature deformations. For an unrestrained doubly-symmetric I-section member, the
effect of web distortion in the lateral-torsional buckling behaviour of a beam does not normally arise.
However, the lateral-torsional buckling behaviour of the beam is questionable when a beam is
continuously restrained along the tension flange, particularly against torsion (Bradford 1988). Typical
examples are the hogging region of continuous concrete-steel composite beams and roof sheeting of
portal frames where the cladding combined with purlins or girts that forms a diaphragm restraint and
continuous restraint along the beam may increase the buckling resistance of the I-section. The in-plane
analysis of a beam-column is somewhat different to a beam subjected to uniform bending because
additional moment is caused by the axial force (N - δ effect). The major axis flexural rigidity is not
constant due to yielding of the cross-section caused by the combination of residual stresses and applied
load. The inelastic in-plane analysis of a beam-column to determine the stress resultants is therefore
more complicated than an elastic in-plane analysis. Newmark (1943) has presented an integration
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technique to determine the end moment, and this study adopts such a method.
Research on the elastic lateral-torsional buckling of beam-columns is also plentiful. Over the years, a

number of researchers have investigated the inelastic lateral-torsional buckling behaviour of beam-
columns subjected to a moment gradient and axial force. Miranda and Ojalvo (1965) presented
differential equations which included the prebuckling displacement to analyse the unrestrained lateral-
torsional buckling of beam-columns without residual stress. The inelastic buckling of beam-columns
subjected to an axial force and moment applied at one end of member was considered by Fukumoto and
Galambos (1966) with simplified residual stresses and used the finite difference method to solve the
differential equations for bending and torsion. Abdel-Sayed and Aglan (1973) studied the inelastic
buckling of beam-columns using a finite difference approximation with simplified residual stresses.
The monosymmetric effect due to residual stress and applied load was included in their buckling
analysis with the tangent modulus theory based on the assumption that Et was equal to zero and used for
yielded regions, and furthermore the Saint Venant torsional rigidity was used for the elastic and yielded
regions of the cross-section based on an assumption that the torsional rigidity was not affected by the
yielding of the cross-section.

The inelastic lateral-torsional buckling of unrestrained beam-columns was considered by Bradford
et al. (1984) who developed a finite element method based on the tangent modulus theory. The finite
element method developed by Bradford et al. was extended by Bradford and Trahair (1985) to
investigate the buckling behaviour of beam-columns with a parabolic distribution of the residual stress
in the flange and a quartic distribution in the web. From the numerical results they proposed a simple
method to predict buckling loads of beams and beam-columns. Bradford and Trahair (1986) modified
the finite element method developed by Bradford et al. (1984) which was augmented to include elastic
translational, rotational, torsional and warping restraints to compare with the experimental results
obtained by Cuk et al. (1986) for restrained three-span continuous beam-columns, and they found that
they were in good agreement with experimental results.

Despite extensive research work on the elastic lateral-distortional buckling behaviour of the I-section
member, the inelastic range of structural response is rather limited. The energy-based method has been
employed to study the inelastic lateral-distortional buckling of I-section beams that incorporate residual
stress models is extended here to include the N−δ effect in non-sway members. This study validates the
accuracy of this method with an independent study, and considers the effect of restraining the tension
flange fully against translation and lateral rotation, but elastically against twist rotation, which models the
diaphragm restraint provided by cladding combined with purlins or girts in an industrial frame building.

2. Theory

2.1. General

The concept of an arbitrary axis located at mid-height of the web is adopted in this study to
investigate the inelastic buckling behaviour of the beam-column as was done by Broadford and Cuk
(1988) as shown in Fig. 1(a). Fig. 1(b) shows a simply supported beam doubly-symmetric beam-column
subjected to equal end moments M and axial compressive force N. The stress-strain curve model used
in this study is a trilinear idealisation with a constant strain hardening modulus Est = E / h' is shown in
Fig. 2. The simplified pattern of residual stress, which has been used by a number of researchers
assumes the distribution of residual stress in the flange to be bilinear and a constant tensile stress in the
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web as shown in Fig. 3.

(1)

and 

(2)

where B and T are the flange width and thickness respectively, D is the overall depth of the I-
section and tw is the thickness of the web. The residual stresses should be satistied with equilibrium
conditions as

(3)

The energy-based method is employed in this study to analyse I-section beam-columns with equal
and opposite end moments and a constant concentric axial compressive force. A full description of
the out-of-plane buckling analysis using the energy method is presented by Lee and Bradford (2002)
and Lee (2001) but the in-plane analysis is different to that of uniform bending due to the N−δ
effect as given in Lee and Bradford (2002) and Lee (2001).
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Fig. 1 Beam-column axes and loading

Fig. 2 The trilinear idealisation of stress-strain curve
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2.2. In-plane analysis

When the beam-column of length L is subjected to end moment M and an axial compressive force N,
the applied strain εa(x, y) at any point of the cross section can be expressed as

(4)

where y is assumed neutral axes, ε0 is strain due to axial force, ρ is curvature, and the residual
strain is given by εr(x, y) = σr(x, y) / E.

The stress distribution of the cross-section is 

(5)

For a given compressive force N and an assumed curvature ρ, Eqs. (4) and (5) are solved iteratively
for the position of the neutral axis by satisfying the equilibrium condition of axial force and is given as

(6)

The maximum moment Mmax at midspan can be determined using the assumed curvature and the
new neutral axis as determined from Eq. (6) and Mmax is given as

(7)
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Fig. 3 Simplified residual stresses
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2.3. Determination of end moment

The end-moment M is obtained from the midspan moment Mmax iteratively by employing the
Newmark (1943) integration technique. The flexural rigidity about the major axis is

 (8)

where (EI)s is the secant flexural modulus of rigidity.
The procedure to determine the end-moment is
1. Assume an end moment M
2. Assume the defected shape, and the elastic deflection by Trahair and Bradford (1998) is used for a

first approximation.
3. Compute values of curvature at four equally spaced stations using , where ν  is

deflection.
4. Correct the assumed deflections based on the curvature calculated in step 3.
5. Repeat steps 1 to 4 until the assumed deflection at the mid span is equal to the deflection

determined in step 4.
6. Calculated the end moment, 

2.4. Out-of-plane analysis

Fig. 4 shows the out-of-plane buckling deformation of the cross-section. The buckling deformation of
the flange is assumed to be half sine curves with n harmonics while a cubic polynomial is used for the
web. The flanges are treated as rigid bars and the well-known beam theory (Timoshenko and Gere
1961) is used conjunction with tangent modulus theory that assumes the elastic modulus for the elastic
regions and the strain hardening modulus for the yielded and strain hardened region. Isotropic
(Timoshenko and Woinowsky-Krieger 1959) and orthotropic plate theory (Dawe and Kulak 1984, and
Haaijer 1957) is used for elastic and inelastic regions of the web respectively. The stiffness matrices [kf]
for the flange and [kw] for the web can be developed from the tangent modulus theory for the flanges
and the isotropic and orthotropic plate theory for the web respectively as was done by Bradford (1986),
and Lee and Bradford (2002), and Lee (2001). The pattern of residual stresses used in this study is
simplified model. The simplified residual stress does not satisfy the torsional equilibrium condition and
therefore the torsional rigidity should be changed to ( ) for the flange and the
web as was done by Trahair (1993).

The strain energy due to the continuous elastic restraint, as was done by Lee and Bradford (2002) and
Lee (2001), is also included in this study and the elastic restraint matrix can be expressed as [kr]. FigU 5
shows the types of restraint considered in this study with the restraining action. The out-of-plane
analysis assumes that the member is sensibly “prismatic”, in that the extent of yielding along the member is
uniform. Owning to the N−δ effect, this is not true, and the member is both sensibly monosymmetric
and tapered. The effects of the tapering are handled by use of the theory described in Lee and Bradford
(2002) and Lee (2001), but with the moment assumed conservatively to equal Mmax throughout. While
the N−δ effect has a fairly profound effect on the in-plane response, there appears to be some evidence
(Bradford et al. 1984) that the effect on the buckling is less significant. Tapering caused by the moment
gradient is, of course, a major consideration in inelastic buckling.
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2.5. Stiffness and stability matrices

The stiffness matrices of the flange [kf], the web [kw] and restraint [kr] can be assembled into global
stiffness matrix [K], while the stability matrix may be assembled into the global matrix [G]. The total
change in potential may be expressed as

 (9)

The buckling solution of the beam-column can be obtained from minimising Eq. (9) with respect to
{q} and may be written as

Π 1
2
--- q{ }T K[ ] λ G[ ]–{ } q{ }=

Fig. 4 Buckling deformations in the plane of the cross-section

Fig. 5 Beam restraints
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(10)

This is an iterative procedure, the global stiffness and stability matrices are adjusted at the value of
applied curvature ρ until the eigenvalue (λ) equals 1.

3. Verification

Since tabulated or finite element solutions for inelastic lateral-torsional and lateral-distortional
buckling of restrained beam-columns is not generally available, the accuracy of the current method is
compared with inelastic lateral-distortional buckling of a restrained beam under uniform bending. Such
results has been obtained by Lee and Bradford (2002), and inelastic lateral-torsional buckling results
obtained by Abdel-Sayed and Aglan (1973) for a doubly-symmetric unrestrained beam-column
subjected to axial compressive force N and equal end moment M. The cross-section considered in Lee
and Bradford’s (2002) study was 610UB101 (BHP Hot-Rolled Products 1998) and the material
properties can be found in their paper. The beam-column considered in Abdel-Sayed and Aglan’s
(1973) study was the North American 8WF31 and assumed pattern of residual stress was simplified
pattern. Details of the material properties used can be found in their paper and is also shown in Fig. 6. In
order to compare the current method with the results of Abdel-Sayed and Aglan (1973) inelastic lateral-
torsional buckling solution, the out-of-plane flexure of the web has been suppressed as was done by
(Bradford and Trahair 1982)

 (11)
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Fig. 6 Inelastic lateral-torsional buckling of beam-column with simplified residual stress
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where Uwp is the strain energy due to out-of-plane plate flexure of the web, and Dw is the plate
rigidity factor and γr is set to a large value (say 108)

Table 1 shows a comparison between this study and the inelastic buckling results of Lee and Bradford
(2002) with the normalised torsional restraint value of αz equal to 1000. αz is given as

(12)

where G is the torsional rigidity, L is length of the beam and kz is the torsional restraint.
The inelastic lateral-distortional buckling results of a restrained beam under uniform bending using

the current method is obtained with a very small value of strain due to the axial force (εo). It can be seen
in Table 1 that the buckling results obtained from the current method and Lee and Bradford (2002) are
in good agreement. FigU 6 shows the comparison between this study and the results of Abdel-Sayed and
Aglan (1973), where the end buckling moment is normalised with respect to the yield moment My and
the axial force is constant at 0.6 Ns, where Ns is the squash load. The slenderness ratio for which the
inelastic buckling moments are obtained is the major axis slenderness ratio L / rx, where rx is the radius
of gyration about the x-axis. Abdel-Sayed and Aglan (1973) used the tangent modulus theory with Et in
the yielded region of the cross-section equal to zero. This study has adopted the same approach as
Abdel-Sayed and Aglan for the tangent modulus in the yielded region and they are agreed reasonably
well. Fig. 6 also shows the buckling results obtained with tangent modulus theory that is equal to Est in
the yielded and strain hardened region. The inelastic buckling results obtained with Et = Est for the
yielded and strain hardened region shows that the onset of strain hardening buckling occurs at a higher
slenderness ratio than that using the more conservative assumption of Et = 0 in the yielded regions.
Abdel-Sayed and Aglan’s solution is somewhat unconservative compared to the present model for
higher values of L/rx. Using the approximate magnifier of 1/(1−N/Nox) (Trahair and Bradford 1998) at
L/rx =50, where Nox is the elastic major axis buckling load, indicates that the independent solution is
about 20% unconservative, and incorporation of this effect renders the independent solution very close
to that of the present method.

4. Elastic torsional restraint

The inelastic lateral-distortional buckling behaviour of the cross-sections 610UB101, 180UB18.1 and
310UC158 manufactured in Australian (BHP Hot-Rolled Products 1998) and the North American
8WF31 are investigated herein, where the tension flange is fully restrained against translation and
lateral rotation, but where the restraint against twist rotation during buckling is elastic with a stiffness

αz

kz

π2GJ L2⁄
----------------------=

Table 1 Inelastic lateral-distortional l buckling of beam under uniform bending with αz = 1000

Length (m) Lee and Bradford (2002) (KNm) This study (KNm)

25 622.654 622.653
20 625.173 625.172
15 626.700 626.700
10 627.848 627.847
5 628.563 628.562
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value of kz. The dimension of these cross-sections is shown in Table 2. The normalised torsional
restraint (az) is used in this section to investigate the inelastic lateral-distortional buckling behaviour as
was the previous sub-section in the comparison study. The relevant material properties are E (elastic
modulus) = 200 GPa, σy (yield stress) = 250 MPa, εst (strain hardening) = 10εy (yield strain), h' (E/Est)
= 33 and v (elastic Poisson’s ratio) = 0.3. The torsional and translational restraint is obtained by Eqs.
(12) and (13) respectively.

(13)

where kt = translational restraint, kry = the minor axis rotational restraints and n is number of
harmonics.

The completed restrained translation can be obtained by an infinite value of minor axis rotation (say
1006). Figs. 7 and 8 show the normalised buckling moments when the 610UB101 beam-columns are
subjected to a constant axial force 0.2Ns and 0.6Ns respectively, while Figs. 9 and 10 are for 180UB18.1
beam-columns subjected to a constant axial force 0.2Ns and 0.6Ns respectively. These inelastic lateral-
torsional and lateral-distortional results are plotted, and as expected the lateral-torsional buckling

kt

kryπ2n2

L
2

-----------------=

Table 2 Geometric dimensions of the I-sections

Designation Flange width 
(bf) (mm)

Flange thickness 
(tf) (mm)

Web height 
(h) (mm)

Web thickness 
(tw) (mm) h / tw bf / h

610UB101 228.0 17.3 589.7 11.2 52.652 0.387
180UB18.1 90.0 8.0 167 5.0 33.4 0.539
310UC158 311.0 25.0 302 15.7 19.236 1.029

8WF31 203.2 10.998 192.202 7.315 26.275 1.057

Fig. 7 Inelastic buckling of beam-column 610UB101 with elastic twist rotational restraint
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moments overestimate the true (distortional) buckling moments as the degree of torsional restraint αz

increases. In design, the member strength determined in accordance with AS4100 (SA 1988) would be
based on the inelastic lateral-torsional buckling curves (which are modified empirically (Trahair and
Bradford 1998), but clearly these strengths are unconservative.

The buckling mode of a beam-column is lateral-torsional and buckles in one harmonic (n=1) when

Fig. 8 Inelastic buckling of beam-column 610UB101 with elastic twist rotational restraint

Fig. 9 Inelastic buckling of beam-column 180UB18.1 with elastic twist rotational restraint
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fully restrained with translation applied at the tension flange only. As the torsional restraint αz

increases, the beam-column buckles in a distortional mode. The results for the 180UB18.1 show that
there are up to 6 buckling harmonics (n = 1,….,6) in the buckling mode. The results for the 610UB101
show that for αz = 100, there are four harmonics represented in the solution (ie. the analysis must be
performed for increasing numbers of harmonics (n) and minimum solution adopted, ie. n=4 in this
case). Compared with the elastic solution (Bradford 1997) which is again dependent on the number of
harmonics, the transition in the solution between adjoining harmonics is much smoother for inelastic
buckling than for elastic buckling, where the curves are of the characteristic local buckling ‘garland’
form. Finally, it is worth noting that increasing the degree of torsional restraint increases the strength of
the beam-column subjected to a constant axial compression. In Figs. 8 and 10, it is clear that the beam-
column has no reserve of bending capacity for L / h > 11 and L / h > 22 respectively in the absence of
torsional restraint, but for large values of αz the beam-column has a considerable reserve of bending
capacity for large member lengths, while it buckles into a number of harmonics.

The results of the compact section 310UC158 and 8WF31 are shown in Figs. 11 and 12 respectively
with a constant axial force of 0.4Ns. The torsional parameters considered in this study were 0 and 1
because the inelastic buckling moment of compacted I-section (310UC158 and 8WF31) reaches its
plastic moment as the torsional parameter is increased. It can be seen that the buckling mode of these
members is flexural-torsional rather than lateral-distortional. The number of harmonics for buckling of
the 310UC158 member was one, but the 8WF31 shows that there are up to three buckling harmonics
(n=1,2,3) in the buckling mode.

The effect of web distortion in the lateral-torsional buckling of I-sections can be influence by the web
slenderness (h / tw) and the flange width to web depth ratio (bf / h), and top and bottom flange width
ratio (BT /BB). This study is restricted to doubly-symmetric I-section members and therefore top and
bottom flange width ratio (BT /BB) is ruled out. Table 2 shows the dimension of the cross-section
considered in this study with web slenderness (h / tw) and flange width to web depth ratio (bf / h). It has
been shown that the cross-section distortion has profound effect on the inelastic distortional buckling of
the slender beam-columns (610UB101 and 180UB18.1) which have the web slenderness (h / tw) of 52

Fig. 10 Inelastic buckling of beam-column 180UB18.1 with elastic twist rotational restraint
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and 33, and the flange width to web depth ratio (bf / h) is less than 1. The web slenderness of compact I-
section (310UC158 and 8WF31) is 19 and 26 and the flange width to web depth ratio (bf / h) is greater
than 1. It can be noted that there is not much difference in web slenderness of the slender I-section
180UB18.1 and compact I-section 8WF31, but the flange width to web depth ratio of 180UB18.1 is
much smaller than 8WF31. It is premature to draw conclusion on distortional buckling behaviour of the

Fig. 11 Inelastic buckling of beam-column 310UC158 with elastic twist rotational restraint

Fig. 12 Inelastic buckling of beam-column 8WF31 with elastic twist rotational restraint
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beam-columns without further study on more realistic loading conditions such as unequal end moment,
transverse loading and axial compressive force, but this study found that the effect of web distortion is
strongly influenced by the flange width to web depth ratio rather than those of the web slenderness for
hot-rolled I-sections.

5. Conclusions

An energy-based method has been employed in this paper to study the inelastic lateral-distortional
buckling of doubly-symmetric hot-rolled I-section beam-columns. These beam-columns are subjected
to concentric axial compression and equal end moments with continuous elastic restraints that inhibits
buckling. The method assumes that the top and bottom flange/web junctions deflect and twist as a sine
curve with n harmonics while the web displaces as a cubic curve. Residual stresses are inherent in hot-
rolled I-sections during manufacturing and these residual stresses cause a reduction of the buckling
strength with their combination of applied load. The buckling load depends on the pattern of residual
stress, and therefore the energy method incorporates the so called the simplified pattern of residual
stress. The verifications and the accuracy of the method were made with inelastic lateral-distortional
buckling results for restrained beams and inelastic lateral-torsional buckling results for unrestrained
beam-columns obtained by an independent study and are shown to agree very well.

The effect of the web distortion is important in diaphragm-type restraint of the tension flange in a
beam-column, where the flexural rigidity of the diaphragm provides torsional restraint to the beam-
column, but in which the shear and translational stiffness of the diaphragm prevent translational and
lateral rotation of the tension flange. Four different cross-sections have been used to investigate lateral-
distortional buckling behaviour of the beam-column. As would be expected, the beam-column buckles
in a lateral-torsional mode when beam-column is completely restrained against translation applied at
the tension flange only. The significance of web distortion for compact sections is less important but
buckling results for slender I-sections showed that the buckling mode becomes distortional and the web
distortion is accentuated as the torsional restraint is increased. 

This study considers continuously restrained beam-columns under uniform bending and constant
axial force. The pattern of residual stress used in this study is a simplified pattern that suited the North
American I-sections but the polynomial pattern of residual stress that suited the British and Australian
I-sections has not been considered. To be able to make possible recommendations on the current steel
structure standard the further study is required on the inelastic lateral-torsional and lateral-distortional
buckling of restrained and unrestrained beam-columns subjected to an unequal end moment, transverse
loading and axial compressive force. Thus further study is undertaken for hot-rolled and welded I-
section beam-columns subjected to an unequal end moment, transverse loading and axial compressive
force using a line type finite element method that incorporates tangent modulus theory and residual
stress.
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