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1. Introduction 

 

Nowadays, composite structures are widely used in 

various industries due to their unique properties. These 

materials are usually subjected to mixed I/II loading during 

their lifetime (Altunisik et al. 2017). Therefore, before 

utilizing composite materials in any industry, we need to 

know their failure behavior. One of the main factors in 

increasing the rate of failure in orthotropic materials is the 

creation of different defeats in their structure (Fakoor and 

Ghoreishi 2018). As a result, it is necessary to achieve an 

efficient failure criterion that can predict crack initiation 

and propagation in these materials (Wu 1967). For this 

purpose, numerous studies have been conducted 

theoretically and experimentally, and several criteria have 

been proposed. Fakoor and Shahsavar (2020) conducted a 

comprehensive review of the proposed models and criteria. 

A succinct review has been conducted on local approaches 

for the failure assessment of quasi-brittle and brittle 

materials (Berto 2014). Mixed mode I/II fracture criteria for 

cracked orthotropic materials, can be classified as shown in 

Fig. 1. 

Preliminary studies on fracture of composite materials 

have been done experimentally based on curve-fitting on 

experimental data of different wood species. For the first 

time, experimental results of balsa wood and glass-fiber 

reinforced composites have been utilized to provide a mixed  
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mode I/II failure criterion for orthotropic materials (Wu 

1967). Mc Kinney (1972) proposed an experimental 

criterion by performing some tests on single-directional 

graphite-epoxy composites, utilizing the least squares curve 

fitting method. In another research, a new empirical 

criterion based on curve fitting has been proposed using test 

results of Baltic red wood with cracks in RL direction (Hunt 

and Croager 1982). Mall et al. (1983) used central and edge 

cracked specimens of Eastern red spruce wood to 

investigate fracture behavior of orthotropic materials under 

mixed mode loading and finally, they introduced the 

appropriate mixed mode I/II experimental criterion. 

Leicester (2006) employed pine wood in his study and 

proposed a conservative criterion. Reynolds et al. (2019) 

studied experimentally on fracture of bamboo wood with 

LR, RL and TL crack under pure mode I and II loading. 

Chen et al. (2011) also experimentally studied on the shear-

bond failure mechanism of composite deck slabs. 

Empirical criteria have two or three constants that 

should be evaluated for any specific kinds of materials and 

this issue is a drawback for them. Therefore, it can be said 

that these types of criteria, despite accuracy, are very costly 

and time-consuming (Al-Fasih et al. 2018). Fernandino et 

al. (2020) using tensile tests and the specimen's surface 

observation with SEM, studied on damage evolution at the 

microstructural scale of a ductile iron partially austenitized. 

They show that at the onset of fracture, cracks initiate and 

propagate at the matrix‐nodule interface, and then by 

increasing the load, the initiation and propagation in the 

metallic matrix take place inside the ausferritic areas. 

D'Angela et al. (2020) also investigated the damaging 

micro-mechanisms in a pearlitic ductile cast iron specimen  
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using SEM analysis and acoustic emission testing. 

In another study, Di Cocco et al. (2014, 2010) 

investigated the damaging micro-mechanisms in a ferritic 

ductile cast iron using SEM with a micro tensile holder in 

which these tests were performed according to a step by 

step experimental procedure. Fernandino et al. (2020a) also 

using digital image correlation technique and tensile 

loading, studied on the damage analysis of the same 

material. They claimed that cracks initiate in the metallic 

matrix at the boundary between ausferrite sheaves and 

propagate at the direction of the ausferrite plates. They also 

obtained the relation between microstructural 

heterogeneities and damage mechanisms of a ferritic 

spheroidal graphite cast iron during tensile loading and 

examined the crack initiation and propagation of the 

mentioned specimen (Fernandino et al. 2020b, c). Ataabadi 

et al. (2012) studied on the failure models and fiber-kinking 

of laminated composites under mode I and mode II loading 

conditions. In another research, some failure criteria have 

been investigated to predict damage in glass/polyester 

composite beams under low-velocity impact conditions 

(Aghaie et al. 2015). Rizov (2017) studied the delamination 

of an end-loaded split functionally graded beam under mode 

II loading considering material non-linearity by theoretical 

approach. 

Some researches have been done for improving fracture 

properties of civil and construction materials under a 

different type of loading (Golewski 2017a, b, c), using 

microscopic approaches and fracture behavior of composite 

material, the fracture toughness’s of mode I and II have 

been obtained (Golewski 2018, Golewski et al. 2019a, b,  

 

 

 

Golewski 2019) of composite structures. He also utilized 

low calcium fly ash in concrete composite and investigated 

the influence of the curing time on its fracture toughness 

(Golewski 2020). The behavior of ternary concretes after 

incorporating Fly Ash and Silica Fume has been 

investigated (Golewski et al. 2021). Also, Golewski (2021) 

subjected the dynamic load on concrete composite with the 

addition of fly ash (FA) in the amounts of 0%, 20%, and 

30% to investigate the micro-cracks of concrete. 

In another study, a model for investigating the non-linear 

behavior of steel-concrete composite beams has also been 

proposed (Dall'Asta et al. 2002). 

In the field of fracture of orthotropic materials, 

theoretical criteria have been presented with acceptable 

accuracy based on the extension of well-known isotropic 

failure criteria such as maximum tangential stress (MTS), 

maximum principal stress (MPS), maximum shear stress 

(MSS), strain energy density (SED) and strain energy 

release rate (SER). For example, MTS and SED criteria 

have been extended to orthotropic materials to obtain 

fracture limit curves (FLC’s) for predicting crack initiation 

and propagation (Saouma et al. 1987, Nobile et al. 2004). 

Fakoor and Rafiee (2013) using the maximum shear stress 

criterion which is applicable for failure investigation of 

isotropic materials, proposed a new mixed mode I/II 

criterion for fracture assessment of orthotropic materials.  
Based on the other well-known isotropic failure theories 

(MPS, SED, and SER), new mixed mode I/II failure criteria 

have been introduced by (Jernkvist 2001a). The 

applicability of these criteria was evaluated by testing on 

SENT and DCB test specimens made from Norway spruce 

wood species (Jernkvist 2001b). 

 

Fig. 1 Mixed mode I/II fracture criteria for cracked orthotropic materials 
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He concluded that these extended criteria are acceptable just 

for dominant mode I conditions, i.e. IK and energy-based 

criteria (i.e., SER and SED) were conservative due to the 

assumption of linear elastic fracture mechanics (Jernkvist 

2001b). Numerical analysis of center cracked orthotropic 

FGM plate has been conducted and the mode I stress 

intensity factors at the crack tips has been calculated using 

the Displacement Correlation Method (Kaman and Cetisli 

2012). 
Another approach based on the non-local stress criterion 

was adopted to investigate the fracture of orthotropic 

materials for the case of cracks oriented with arbitrary 

angles with respect to the fibers (Romanowicz and Seweryn 

2008). This approach was compared with the MTS criterion 

and concluded that the non-local stress concept is more 

accurate than MTS (Romanowicz 2019). Considering non-

singular T-stress term and FPZ effects, a new mixed mode 

fracture criterion for composite materials has been 

presented (Anaraki and Fakoor 2010, 2011). Also, 

introducing a representative circle element (RCE) model 

and effective elastic properties of a damage zone around the 

crack tip has been obtained (Fakoor and Khansari 2016).  

 

 

Using the Van der Put’s theory (Van der Put 2007), a 

new concept which was named the “reinforcement isotropic 

solid” (RIS) model for fracture investigation of orthotropic 

materials was proposed by Fakoor et al. (Fakoor 2017, 

Fakoor and Khansari 2018, Fakoor et al. 2019). RIS 

assumes orthotropic materials as an isotropic solid media 

which is reinforced with the fibers. Employing the RIS 

concept, well-known isotropic fracture criteria such as SED, 

MTS, and SER were extended to orthotropic materials. 

They also verified their proposed concept with different 

failure theories and experimental test results (Khansari et al. 

2019, Farid et al. 2019, Fakoor and Farid 2019, Farid et al. 

2020, Shahsavar et al. 2020). 

As a conclusion, the most famous theoretical mixed 

mode I/II fracture criteria are summarized in Table 1. 

The purpose of the present research is to find a mixed 

mode I/II fracture criterion for fracture assessment of highly 

orthotropic materials. As discussed in the literature, several 

theories have been proposed for predicting mixed mode 

fracture in orthotropic materials with quasi-brittle behavior 

based on well-known isotropic fracture criteria (i.e., MTS, 

MPS, SED, SER, and so on). In nearly all proposed criteria, 

crack propagation direction is assumed to be along the  

Table 1 Some famous theoretical mixed mode I/II loading criteria for orthotropic material 
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fibers with a self-similar assumption. 

Although this assumption may be acceptable from a 

microscopic point of view, detail microscopic observations 

of the crack tip at the crack propagation moment, reveals a 

crack kinking phenomenon between the fibers. In the 

presentation of the new mixed mode fracture criterion, this 

kinking phenomenon is taken into account utilizing the 

reinforcement isotropic solid (RIS) concept. In the RIS 

concept, the effect of fibers on the matrix in orthotropic 

materials is modeled via reinforcement or stress reduction 

coefficients. Then the well-known maximum shear stress 

(MSS) theory is employed to anticipate the kink angle and 

onset of in-plane crack propagation. The superiority of the 

present work is proven with the comparison of the derived 

fracture limit curves by available experimental data. 

 

 

2. Theoretical background and problem statement 
 

2.1 Materials and assumptions 
 

In this research, wood as a natural highly orthotropic 

material is utilized for the case study. It has been shown that 

due to the complex structure of wood components and the 

inherent defects, any fracture criterion that can interpret the 

behavior of wood failure is certainly able to predict the 

failure in man-made composite materials (Fakoor and 

Shahsavar 2020, Wang et al. 2019). Wood has special 

mechanical properties in different directions wherein its 

three principal directions are longitudinal (L), tangential (T) 

and radial (R). These three principal directions and the six 

possible crack growth systems are shown in Fig. 2. In this  

 

 

 

 

paper, the behavior of most probable crack systems (i.e., RL 

and TL) in which cracks are oriented along the fibers is 

investigated. Mixed mode I/II loading and plane strain 

conditions are assumed in the theoretical analysis. Elastic 

properties and fracture toughness of the wood species 

studied in this paper are also summarized in Table 2. 

 

2.2 Stress field in the vicinity of the crack tip in 
orthotropic material 

 

The stress state near the crack tip of an orthotropic body 

is illustrated in Fig. 3. 

The corresponding stress components are defined as 

follows 

    ; , 1,2
2 2

I II
ij ij ij

K K
f g i j

r r
  

 
    (1) 

 

 

Fig. 3 Crack tip stress state 

 

 

Fig. 2 Six possible crack growth systems in wood species 

Table 2 Elastic modulus and fracture properties of wood specimens employed in this study (GPa) 

TL

II cK

 

TL

I cK

 

RL

cIIK

 

RL

cIK

 
TR  

LT  
LR  RLG

 
LE  TE  RE  Wood Species Name 

- - 1.52 0.58 0.34 0.56 0.38 0.63 11.84 0.64 0.81 
Norway spruce (Picea abies) 

 (Jernkvist 2001b, Edlund et al. 2006) 

2.05 0.44 1.32 0.49 0.31 0.45 0.47 1.74 16.3 0.57 1.10 
Scots pine (Pinus sylvestris)  

(Kollmann et al. 2006) 

2.19 0.42 1.66 0.42 0.30 0.42 0.37 0.80 12.7 0.63 098 Red spruce (Picea rubens) (Ross 2010) 
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In the above equation  ijf  and  ijg  are the material-

dependent angular functions. For orthotropic materials, 

these parameters are as follows (Sih et al. 1965) 

 
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Fig. 4 Dependency of
ijf and ijg to crack growth path in Scots pine sample 
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Where,
1 and

2 are defined as follows 
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(3) 

1 and
2 are the roots of the following characteristic 

equation (Su and Sun 2003) 
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In the above equation 'ijC  are the components of the 

below compliance matrix 
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(5) 

For plane strain conditions, the following equation is 

used for components of the compliance matrix 

3 3 33/ ( , 1 , 2)ij ij i jC C C C C i j     (6) 

( )ijf   and ( )ijg   can lead us to a possible fracture 

plane at crack tip vicinity. Fig. 4 reveals the dependency of 

ijf  and ijg  to crack growth path in Scots pine wood 

species. 

The cracking tendency to grow along the maximum 

shear stress plane in isotropic matrix among the fibers has 

been investigated in Appendix A. 

 

 

3. Deriving the mixed mode I / II fracture criteria 
 

3.1 Augmented maximum shear stress fracture 
criterion (AMSS) 

 

Considering the orthotropic stress field, the well-known 

and practical MSS theory is used to study the fracture 

behavior of orthotropic materials under mixed-mode I/II 

loading (Fakoor and Rafiee 2013). Tresca stress theory 

which is applicable for failure assessment of isotropic 

materials is defined as follows 
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According to the stress state at the crack tip of 

orthotropic material (Eq. (1)), the following relations can be 

defined 
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Through substituting Eq. (8) into Eq. (7), we have the 

following from for MSS 
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ijA  coefficients are defined as follows 

2 2
2 211 22 11 22

11 12

11 11 22 22 11 22 11 22
12 12 12

2 2
2 211 22 11 22

22 12

1

2 4 4 2

( )1
2

2 2 2 2

1

2 4 4 2

I

II I

II

f f f f
A f K

r

f g f g f g f g
A f g K K

r

q g g g
A g K

r







 
    

 

 
    

 

 
    

 

 

(10) 

Crack propagation is assumed to be when max cr  , 

considering crack propagation along the fibers (i.e. 0IIK  ,

I IcK K ), the critical value of maximum shear stress (
cr ) 

for crack propagation can be obtained as follows 

11 22
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Ic
cr

K f f

r
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  

 
 (11) 

Now for self-similar crack propagation, the final form of 

AMSS fracture criterion for cracks along the fibers ( 0  ) 

is (Shahsavar et al. 2020) 

2 2 2

1

1
I II IcK K K


   (12) 

 

 

 

Fig. 5 Dependency of the damage factor (
1 ) to crack 

growth path in Scots pine sample 
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Where,    
2

11 22

1
2

f f 


 
  
 

, and defines as a damage 

parameter. Eq. (12) was derived by (Fakoor and Rafiee 

2013) by another alternative approach wherein 
1  was 

equal to  
2

/Ic IIcK K , which depends on almost inaccessible 

mode II fracture toughness of the material. 

Fig. 5 depicts the variation of 
1  in Scots pine wood 

for different angles around the crack tip. 

As observed in Fig. 5, the maximum value of the 

damage factor is in the direction of the fibers (i.e. 0  ) and 

it is in accordance with the self-propagation assumption of 

AMSS. Obviously, this curve has different amplitudes for 

other orthotropic materials, but the overall behavior is the 

same. 

 

 

 

 

 

 

3.2 Reinforcement isotropic solid (RIS) model 
 

According to various experimental observations, crack 

with any arbitrary direction with respect to the fibers in 

orthotropic materials kinks immediately after the onset of 

fracture and propagates along the fibers in the isotropic 

matrix (See Fig. 6). 

For the case of Fig. 7(a), fibers and matrix tolerate the 

applied load simultaneously, in which the fibers increase the 

strength of the material in their direction. But, in the case of 

Fig. 7(c), the fibers do not contribute to load-bearing and 

therefore do not have significant effects in stress reduction 

of the matrix media; thus, the RIS-factors of this case are 

equal to one. As a result, the RIS-factors can be defined as 

follows (Fakoor and Farid 2019) 

1
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 (13) 

 

 

Fig. 6 Crack kinking in an orthotropic material 

 

 

Fig. 7 Selected RVE for extraction of RIS coefficients under (a) tension along the fibers (b) shear loading and (c) 

tension across the fibers 

771



 

Sadra Shahsavar, Mahdi Fakoor and Filippo Berto 

 

The stress state at the crack tip of the isotropic matrix is 

as follows 

   
2 2

I II
ij ij ij

K K
p q

r r
  

 
   , (i,j=1,2) (14) 

Therefore, using RIS-factors, an orthotropic stress state 

can be converted to a reinforced isotropic stress state 

employing the following relations 

In the RIS model, orthotropic material is assumed as an 

equivalent isotropic media which is reinforced with fibers 

as reinforcing elements. The fibers are more potent than the 

matrix and tolerate most of the subjected load. Therefore, 

the crack cannot tear the fibers and propagates in the weak 

plane of the isotropic matrix. In the RIS concept, isotropic 

and orthotropic stress fields are related to each other with 

some coefficients named as “stress reduction” or “RIS” 

factors (Fakoor and Farid 2019, Daneshjoo et al. 2018). The 

significant superiority of this manner is considering the 

effect of the volume fraction of fibers in a stress state. They 

selected a suitable RVE as shown in Fig. 7 to obtain RIS-

factors with FEA software. 

   11 11 11

1 12 2

I IIK K
p q

r r
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   
    (15) 
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   12 12 12

3 32 2

I IIK K
p q

r r
  

   
    

Where,
ij  is the stress state at the crack tip in the 

reinforced matrix and also
ijp and

ijq represent the angular 

functions of isotropic stress state which are defined as 

follows (Williams 1961) 
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(16) 

 

3.3 Generalized maximum shear stress fracture 
criterion in combination with RIS concept (RIS-GMSS) 

 

On the contrary to previous studies, experimental tests 

on wooden materials demonstrate that at the onset of 

fracture, in microscopic point of view, oriented crack along 

the fibers in the matrix of orthotropic lamina starts to  

 

Fig. 8 Crack propagation direction at the onset of 

fracture in microscopic point of view 

 

 

deflect and grows in a different direction (i.e.,
c ) (Farid et 

al. 2020). This phenomenon is schematically shown in Fig. 

8. In this section to establish the RIS-GMSS criterion, crack 

growth will be examined in the direction in which shear 

stress has the highest value based on the MSS criterion. 

According to RIS concept and Eq. (15), the following 

relations where included RIS-factors are defined 

2 2 2 2
2 11 11 11 11

11 2

1

21

2

I II I IIp K q K p q K K

r


 

  
   

 

 

2 2 2 2
2 22 22 22 22

22 2

2

21

2

I II I IIp K q K p q K K

r


 

  
   

 

 

2 2 2 2
2 12 12 12 12

12 2

3

21

2

I II I IIp K q K p q K K

r


 

  
   

 

 

 2 2

11 22 11 22 11 22 22 11

11 22

1 2

1

2

I II I IIp p K q q K p q p q K K

r
 

  

   
     

 

 

(17) 

Therefore, according to Tresca theory, the new form of

max including reinforcement factors is defined as follows 

1
2 2 2

max 11 12 22

RIS RIS RIS
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In which
RIS

ijA  factors are defined as follows 
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(19) 

In order to obtain RIS-GMSS criterion, the following 

assumptions are considered: 

 The crack grows in the isotropic matrix of 

orthotropic material. 

 Crack tip stresses are considered with RIS 

coefficients in the isotropic matrix stress field. 

 Crack propagates in the direction that the 
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maximum shear stress reaches its critical value. 

 Crack direction changes after contact with the 

fibers (crack kinking phenomenon) and propagates 

along the fibers 

Considering the above assumptions, Eqs. (17) to (19) are 

employed to establish the RIS-GMSS criterion. According 

to the MSS criterion, the crack propagates when the critical 

shear stress reaches its maximum value at a critical 

distance; thus, the following three conditions must be met 

simultaneously to obtain the desired criterion 

 max max cr
    ,  max 0









   ,  

2

max

2
0









 (20) 

The first condition is to get the maximum critical shear 

stress  max cr
 . As mentioned, this value is part of the 

properties of the material. The pure mode I loading 

conditions (i.e. 0C  , 0IIK  ,
I IcK K ),  are employed to 

express the  max cr
 as a function of the mode I fracture 

toughness. 

The first condition is to get the maximum critical shear 

stress  max cr
 . As mentioned, this value is part of the 

properties of the material. The pure mode I loading 

conditions (i.e. 0C  , 0IIK  ,
I IcK K ), are employed to 

express the  max cr
 as a function of the mode I fracture 

toughness. 

The second and third conditions specify the crack 

growth path, which is calculated as follows 
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(22) 

 

Regarding the third condition, the below relations are 

obtained 
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(24) 

In this way, utilizing Eqs. (21) to (24), the criterion 

related to the state of (  c c MSS
  ) can be obtained as 

follows 

       2 2 2

11 12 22 11 0RIS RIS RIS RIS

c I c I II c II IcA K A K K A K A K      (25) 

here, the damage parameter of RIS-GMSS criterion ( 2 ) is 

defined as follows 

 

 
22

2

11 0

RIS

c

RIS

A

A


 

 
(26) 

Fig. 9 depicts the variation of 
2  around the crack tip 

for Scots pine wood as a sample. The maximum damage 

factor occurs at an angle of 45 which is in accordance 

with the angle of the maximum shear stress plane (See 

Appendix A). 

 

 

4. Result and discussion 
 

In order to validate the criteria, experimental data of 

three types of wood species have been utilized from the 

literature. Figs. 10(a)-10(c) depicts the fracture limit curves 

of the proposed criteria in comparison with Scots pine, 

Norway spruce, and Eastern red spruce experimental data, 

respectively. 
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As observed in Fig. 10 more accurate coincidence with 

experimental data can be found in FLC’s of RIS-GMSS 

criterion. Precise physics-based assumptions such as 

cracking propagation tendency along with maximum shear 

stress and employing the reinforcement isotropic model are 

the main reasons for this accurate estimation. Embedded 

damage factor in RIS-GMSS criterion (
2 ), has absolute 

maximum along the maximum shear stress planes (See Fig. 

8 and Appendix A). The aforementioned damage factor 

includes significant effects of shear stress which is reduced 

with 
3 . It could be concluded that the maximum shear 

stress theory is in accordance with the nature of fracture of 

fibrous composites such as wood. 
 
 
5. Conclusions 

 
The processes of manufacturing, machining, and 

forming materials can lead to defects in engineering 

components, especially composite parts. Neglecting these 

defects in the designing process, leads to catastrophic 

failures in the structures. The effects of these cracks and 

defects can be considered with a suitable failure criterion. In 

this paper, the RIS-GMSS fracture criterion was derived 

based on the well-known maximum shear stress failure 

theory for cracked orthotropic materials wherein crack was 

oriented along the fibers. Mixed mode I/II loading was 

considered in this research as general in-plane loading 

condition. The reinforcement isotropic solid concept (RIS) 

as a new superior material model was utilized to investigate 

the fracture of orthotropic materials. In the RIS concept, 

fibers are assumed as reinforcing elements, which reduce 

the stress state subjected to the matrix by three defined 

factors. These factors depend on the elastic properties and 

the fiber volume fraction of the material. Unlike self-similar 

crack propagation assumption in available mixed mode 

fracture criteria, in RIS-GMSS criterion cracking 

propagation tendency was considered along maximum shear  

 

 

stress. From a microscopic point of view at the onset of 

fracture, RIS-GMSS assumes that the crack makes a small 

kink along the MSS in the isotropic matrix medium. Crack 

propagation was also considered to happen when maximum 

shear stress reaches its critical value at a critical distance 

from the crack tip. Accuracy of RIS-GMSS fracture limit 

curves in the prediction of mixed mode experimental 

fracture data related to three kinds of wood species proved 

the superiority of the proposed criterion.  

 
 
References 

 
Aghaei, M., Forouzan, M.R., Nikforouz, M. and Shahabi, E. 

(2015), “A study on different failure criteria to predict damage 

in glass/polyester composite beams under low velocity impact”, 

Steel Compos. Struct., 18(5), 1291-1303. 
https://doi.org/10.12989/scs.2015.18.5.1291. 

Akbaş, Ş.D. (2019), “Nonlinear behavior of fiber reinforced 

cracked composite beams”, Steel Compos. Struct., 30(4), 327-

336. https://doi.org/10.12989/scs.2019.30.4.327. 

Al-Fasih, M.Y., Kueh, A.B.H., Abo Sabah, S.H. and Yahya, M.Y. 

(2018), “Tow waviness and anisotropy effects on Mode II 

fracture of triaxially woven composite”, Steel Compos. Struct., 

26(2), 241-253. https://doi.org/10.12989/scs.2018.26.2.241. 

Altunisik, A.C., Gunaydin, M., Sevim, B. and Adanur, S. (2017), 

“System identification of arch dam model strengthened with 

CFRP composite materials”, Steel Compos. Struct., 25(2), 231-

244. https://doi.org/10.12989/scs.2017.25.2.231. 

Anaraki, A.G. and Fakoor, M. (2010), “General mixed mode I/II 

fracture criterion for wood considering T-stress effects”, Mater. 

Design, 31(9), 4461-4469. 

https://doi.org/10.1016/j.matdes.2010.04.055. 

Anaraki, A.G. and Fakoor, M. (2011), “A new mixed-mode 

fracture criterion for orthotropic materials, based on strength 

properties”, J. Strain Anal. Eng., 46(1), 33-44. 

https://doi.org/10.1243/03093247JSA667. 

Ataabadi, K., Ziaei-Rad, S. and Hosseini-Toudeshky, H. (2012), 

“Compression failure and fiber-kinking modeling of laminated 

composites”, Steel Compos. Struct., 12(1), 53-72. 

http://dx.doi.org/10.12989/scs.2011.12.1.053. 

 

 

Fig. 9 Dependency of the damage factor (
2 ) to crack growth path in Scots pine sample 

774

https://doi.org/10.12989/scs.2015.18.5.1291
https://doi.org/10.12989/scs.2019.30.4.327
https://doi.org/10.12989/scs.2018.26.2.241
https://doi.org/10.12989/scs.2017.25.2.231
https://doi.org/10.1016/j.matdes.2010.04.055
http://dx.doi.org/10.12989/scs.2011.12.1.053


 
Mixed mode I/II fracture criterion to anticipate cracked composite materials… 

 

 
 
Berto, F. (2014), “A brief review of some local approaches for the 

failure assessment of brittle and quasi-brittle materials”, Adv. 

Mater. Sci. Eng., (2014). https://doi.org/10.1155/2014/930679. 

Chen, S., Shi, X. and Qiu, Z. (2011), “Shear bond failure in 

composite slabs—a detailed experimental study”, Steel Compos. 

Struct., 11(3), 233-250. 

http://dx.doi.org/10.12989/scs.2011.11.3.233. 

D'Angela, D., Ercolino, M., Bellini, C., Di Cocco, V. and 

Iacoviello, F. (2020), “Characterisation of the damaging 

micromechanisms in a pearlitic ductile cast iron and damage 

assessment by acoustic emission testing”, Fatigue Fract. Eng. 

M., 43(5), 1038-1050. https://doi.org/10.1111/ffe.13214. 

Dall'Asta, A., Dezi, L. and Leoni, G. (2002), “Failure mechanisms 

of externally prestressed composite beams with partial shear 

connection”, Steel Compos. Struct., 2(5), 315-330. 

https://doi.org/10.12989/scs.2002.2.5.315. 

Daneshjoo, Z., Shokrieh, M.M. and Fakoor, M. (2018), “A 

micromechanical model for prediction of mixed mode I/II 

delamination of laminated composites considering fiber 

bridging effects”, Theor. Appl. Fract. Mech., 94, 46-56. 

https://doi.org/10.1016/j.tafmec.2017.12.002. 

 

 

Di Cocco, V., Iacoviello, F. and Cavallini, M. (2010), “Damaging 

micromechanisms characterization of a ferritic ductile cast 

iron”, Eng. Fract. Mech., 77(11), 2016-2023. 

https://doi.org/10.1016/j.engfracmech.2010.03.037. 

Di Cocco, V., Iacoviello, F., Rossi, A. and Iacoviello, D. (2014), 

“Macro and microscopical approach to the damaging 

micromechanisms analysis in a ferritic ductile cast iron”, Theor. 

Appl. Fract. Mech., 69, 26-33. 

https://doi.org/10.1016/j.tafmec.2013.11.003. 

Edlund, J., Lindström, H., Nilsson, F. and Reale, M. (2006), 

“Modulus of elasticity of Norway spruce saw logs vs. structural 

lumber grade”, Holz als Roh-und Werkstoff, 64(4), 273-279. 

https://doi.org/10.1007/s00107-005-0091-7. 

Fakoor, M. (2017), “Augmented Strain Energy Release Rate 

(ASER): a novel approach for investigation of mixed-mode I/II 

fracture of composite materials”, Eng. Fract. Mech., 179, 177-

189. https://doi.org/10.1016/j.engfracmech.2017.04.049. 

Fakoor, M. and Farid, H.M. (2019), “Mixed-mode I/II fracture 

criterion for crack initiation assessment of composite materials”, 

Acta Mechanica, 230(1), 281-301. 

https://doi.org/10.1007/s00707-018-2308-y. 

Fakoor, M. and Ghoreishi, S.M.N. (2018), “Experimental and 

  

(a) (b) 

 
(c) 

Fig. 10 FLC’s of RIS-GMSS and AMSS criteria in comparison with: (a) Scots pine experimental data (Hunt and 

Croager 1982), (b) Norway spruce experimental data (Jernkvist 2001) and (c) Eastern red spruce experimental data 

(Mall et al. 1983) 

775

https://doi.org/10.1155/2014/930679
http://dx.doi.org/10.12989/scs.2011.11.3.233
https://doi.org/10.1111/ffe.13214
https://doi.org/10.12989/scs.2002.2.5.315
https://doi.org/10.1016/j.tafmec.2017.12.002
https://doi.org/10.1016/j.engfracmech.2010.03.037
https://doi.org/10.1016/j.tafmec.2013.11.003
https://doi.org/10.1007/s00107-005-0091-7
https://doi.org/10.1016/j.engfracmech.2017.04.049
https://doi.org/10.1007/s00707-018-2308-y


 

Sadra Shahsavar, Mahdi Fakoor and Filippo Berto 

 

numerical investigation of progressive damage in composite 

laminates based on continuum damage mechanics”, Polymer 

Testing, 70, 533-543. 

https://doi.org/10.1016/j.polymertesting.2018.08.013. 

Fakoor, M. and Khansari, N.M. (2016), “Mixed mode I/II fracture 

criterion for orthotropic materials based on damage zone 

properties”, Eng. Fract. Mech., 153, 407-420. 

https://doi.org/10.1016/j.engfracmech.2015.11.018. 

Fakoor, M. and Khansari, N.M. (2018), “General mixed mode I/II 

failure criterion for composite materials based on matrix 

fracture properties”, Theor. Appl. Fract. Mech., 96, 428-442. 

  https://doi.org/10.1016/j.tafmec.2018.06.004. 

Fakoor, M. and Khezri, M.S. (2020), “A micromechanical 

approach for mixed mode I/II failure assessment of cracked 

highly orthotropic materials such as wood”, Theor. Appl. Fract. 

Mech., 109, 102740. 

https://doi.org/10.1016/j.tafmec.2020.102740. 

Fakoor, M. and Rafiee, R. (2013), “Fracture investigation of wood 

under mixed mode I/II loading based on the maximum shear 

stress criterion”, Strength Mater., 45(3), 378-385. 

https://doi.org/10.1007/s11223-013-9468-8. 

Fakoor, M., Rafiee, R. and Zare, S. (2019), “Equivalent 

reinforcement isotropic model for fracture investigation of 

orthotropic materials”, Steel Compos. Struct., 30(1), 1-12. 

https://doi.org/10.12989/scs.2019.30.1.001. 

Fakoor, M. and Shahsavar, S. (2020), “Fracture assessment of 

cracked composite materials: Progress in models and criteria”, 

Theoretical and Applied Fracture Mech., 105, 102430. 

https://doi.org/10.1016/j.tafmec.2019.102430. 

Farid, H.M. and Fakoor, M. (2019), “Mixed mode I/II fracture 

criterion for arbitrary cracks in orthotropic materials 

considering T-stress effects”, Theor. Appl. Fract. Mech., 99, 

147-160. https://doi.org/10.1016/j.tafmec.2018.11.015. 

Farid, H.M. and Fakoor, M. (2020), “Mixed mode I/II fracture 

criterion to anticipate behavior of the orthotropic materials”, 

Steel Compos. Struct., 34(5), 671-679. 

https://doi.org/10.12989/scs.2020.34.5.671. 

Fernandino, D.O., Boeri, R.E., Di Cocco, V., Bellini, C. and 

Iacoviello, F. (2020a), “Damage evolution during tensile test of 

austempered ductile iron partially austenized”, Mater. Design 

Process. Commun., 2(4), e157. 

https://doi.org/10.1002/mdp2.157. 

Fernandino, D.O., Di Cocco, V., Boeri, R.E. and Iacoviello, F. 

(2020b), “Microstrain measurements and damage analysis 

during tensile loading of intercritical austempered ductile iron”, 

Fatigue Fract. Eng. M., 43(11), 2744-2755. 

https://doi.org/10.1111/ffe.13346. 

Fernandino, D.O., Tenaglia, N., Di Cocco, V., Boeri, R.E. and 

Iacoviello, F. (2020c), “Relation between microstructural 

heterogeneities and damage mechanisms of a ferritic spheroidal 

graphite cast iron during tensile loading”, Fatigue Fract. Eng. 

M., 43(6), 1262-1273. https://doi.org/10.1111/ffe.13221. 

Golewski, G.L. (2017a), “Effect of fly ash addition on the fracture 

toughness of plain concrete at third model of fracture”, J. Civil 

Eng. Management, 23(5), 613-620. 

https://doi.org/10.3846/13923730.2016.1217923. 

Golewski, G.L. (2017b), “Determination of fracture toughness in 

concretes containing siliceous fly ash during mode III loading”, 

Struct. Eng. Mech., 62(1), 1-9. 

https://doi.org/10.12989/sem.2017.62.1.001. 

Golewski, G.L. (2017c), “Improvement of fracture toughness of 

green concrete as a result of addition of coal fly ash. 

Characterization of fly ash microstructure”, Mater. 

Characterization, 134, 335-346. 

https://doi.org/10.1016/j.matchar.2017.11.008. 

Golewski, G.L. (2018), “An assessment of microcracks in the 

Interfacial Transition Zone of durable concrete composites with 

fly ash additives”, Compos. Struct., 200, 515-520. 

https://doi.org/10.1016/j.compstruct.2018.05.144. 

Golewski, G.L. (2019a), “The influence of microcrack width on 

the mechanical parameters in concrete with the addition of fly 

ash: Consideration of technological and ecological benefits”, 

Constr. Build. Mater., 197, 849-861. 

https://doi.org/10.1016/j.conbuildmat.2018.08.157. 

Golewski, G.L. (2019b), “Physical characteristics of concrete, 

essential in design of fracture‐resistant, dynamically loaded 

reinforced concrete structures”, Mater. Design Process. 

Commun., 1(5), e82. https://doi.org/10.1002/mdp2.82 

Golewski, G.L. (2020), “Changes in the fracture toughness under 

mode II loading of low calcium fly ash (LCFA) concrete 

depending on ages”, Materials, 13(22), 5241. 

https://doi.org/10.3390/ma13225241. 

Golewski, G.L. (2021), “The Beneficial Effect of the 

Addition of Fly Ash on Reduction of the Size of 

Microcracks in the ITZ of Concrete Composites under 

Dynamic Loading”, Energies, 14(3), 668. 
https://doi.org/10.3390/en14030668. 

Golewski, G.L. and Gil, D.M. (2021), “Studies of Fracture 

Toughness in Concretes Containing Fly Ash and Silica Fume in 

the First 28 Days of Curing”, Materials, 14(2), 319. 

https://doi.org/10.3390/ma14020319.  

Hunt, D.G. and Croager, W.P. (1982), “Mode II fracture 

toughness of wood measured by a mixed-mode test 

method”, J. Mater. Sci. Lett., 1(2), 77-79. 

https://doi.org/10.1007/BF00731031. 

Jernkvist, L.O. (2001a), “Fracture of wood under mixed mode 

loading: I. Derivation of fracture criteria”, Eng. Fracture Mech., 

68(5), 549-563. https://doi.org/10.1016/S0013-7944(00)00127-

2. 

Jernkvist, L.O. (2001b), “Fracture of wood under mixed mode 

loading: II. Experimental investigation of Picea abies”, Eng. 

Fracture Mech., 68(5), 565-576. https://doi.org/10.1016/S0013-

7944(00)00128-4. 

Kaman, M.O. and Cetisli, F. (2012), “Numerical analysis of center 

cracked orthotropic fgm plate: Crack and material axes differ by 

θ”, Steel Compos. Struct., 13(2), 187-206. 

https://doi.org/10.12989/scs.2012.13.2.187. 

Khansari, N.M., Fakoor, M. and Berto, F. (2019), “Probabilistic 

micromechanical damage model for mixed mode I/II fracture 

investigation of composite materials”, Theor. Appl. Fract. 

Mech., 99, 177-193. 

https://doi.org/10.1016/j.tafmec.2018.12.003. 

Kollmann, F.F., Kuenzi, E.W. and Stamm, A.J. (2012), Principles 

of Wood Science and Technology: II Wood Based Materials. 

Springer Science & Business Media. 

Leicester, R.H. (2006), “Application of linear fracture mechanics 

to notched timber elements”, Progress Struct. Eng. Mater., 8(1), 

29-37.  https://doi.org/10.1002/pse.210. 

Mall, S., Murphy, J.F. and Shottafer, J.E. (1983), “Criterion for 

mixed mode fracture in wood”, J. Eng. Mech., 109(3), 680-690.  

https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(680). 

Marsavina, L., Pop, I.O. and Linul, E. (2019), “Mechanical and 

fracture properties of particleboard”, Frattura Ed., Integrità 

Strutturale, 13(47), 266-276. https://doi.org/10.3221/IGF-

ESIS.47.20. 

McKinney, J.M. (1972), “Mixed-mode fracture of unidirectional 

graphite/epoxy composites”, J. Compos. Mater., 6(1), 164-166. 

https://doi.org/10.1177%2F002199837200600115. 

Mirsayar, M.M., Razmi, A. and Berto, F. (2018), “Tangential 

strain‐based criteria for mixed‐mode I/II fracture toughness of 

cement concrete”, Fatigue Fract. Eng. M., 41(1), 129-137. 

https://doi.org/10.1111/ffe.12665. 

Nobile, L., Piva, A. and Viola, E. (2004), “On the inclined crack 

problem in an orthotropic medium under biaxial loading”, Eng. 

776

https://doi.org/10.1016/j.polymertesting.2018.08.013
https://doi.org/10.1016/j.engfracmech.2015.11.018
https://doi.org/10.1016/j.tafmec.2018.06.004
https://doi.org/10.1016/j.tafmec.2020.102740
https://doi.org/10.1007/s11223-013-9468-8
https://doi.org/10.12989/scs.2019.30.1.001
https://doi.org/10.1016/j.tafmec.2019.102430
https://doi.org/10.1016/j.tafmec.2018.11.015
https://doi.org/10.12989/scs.2020.34.5.671
https://doi.org/10.1002/mdp2.157
https://doi.org/10.1111/ffe.13346
https://doi.org/10.1111/ffe.13221
https://doi.org/10.12989/sem.2017.62.1.001
https://doi.org/10.1016/j.matchar.2017.11.008
https://doi.org/10.1016/j.compstruct.2018.05.144
https://doi.org/10.1016/j.conbuildmat.2018.08.157
https://doi.org/10.1002/mdp2.82
https://doi.org/10.3390/ma13225241
https://doi.org/10.3390/en14030668
https://doi.org/10.3390/ma14020319
https://doi.org/10.1007/BF00731031
https://doi.org/10.1016/S0013-7944(00)00127-2
https://doi.org/10.1016/S0013-7944(00)00127-2
https://doi.org/10.1016/S0013-7944(00)00128-4
https://doi.org/10.1016/S0013-7944(00)00128-4
https://doi.org/10.12989/scs.2012.13.2.187
https://doi.org/10.1016/j.tafmec.2018.12.003
https://doi.org/10.1002/pse.210
https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(680)
https://doi.org/10.3221/IGF-ESIS.47.20
https://doi.org/10.3221/IGF-ESIS.47.20
https://doi.org/10.1177%2F002199837200600115
https://doi.org/10.1111/ffe.12665


 
Mixed mode I/II fracture criterion to anticipate cracked composite materials… 

 

Fract. Mech., 71(4-6), 529-546. https://doi.org/10.1016/S0013-

7944(03)00051-1. 

Razavi, S.M.J. and Berto, F. (2019), “A new fixture for fracture 

tests under mixed mode I/II/III loading”, Fatigue Fract. Eng. 

M., 42(9), 1874-1888. https://doi.org/10.1111/ffe.13033, 

Reynolds, T.P., Sharma, B., Serrano, E., Gustafsson, P.J. and 

Ramage, M.H. (2019), “Fracture of laminated bamboo and the 

influence of preservative treatments”, Compos. Part B: Eng., 

174, 107017. 

https://doi.org/10.1016/j.compositesb.2019.107017. 

Rizov, V.I. (2017), “Non-linear study of mode II delamination 

fracture in functionally graded beams”, Steel Compos. Struct., 

23(3), 263-271. https://doi.org/10.12989/scs.2017.23.3.263. 

Romanowicz, M. (2019), “A non-local stress fracture criterion 

accounting for the anisotropy of the fracture toughness”, Eng. 

Fract. Mech., 214, 544-557. 

https://doi.org/10.1016/j.engfracmech.2019.04.033. 

Romanowicz, M. and Seweryn, A. (2008), “Verification of a non-

local stress criterion for mixed mode fracture in wood”, Eng. 

Fract. Mech., 75(10), 3141-3160. 

https://doi.org/10.1016/j.engfracmech.2007.12.006. 

Ross, R.J. (2010), Wood handbook: wood as an engineering 

material. USDA Forest Service, Forest Products Laboratory. 

General Technical Report FPL-GTR-190, 509(5). 

Scorza, D., et al. (2019), “Size-effect independence of 

particleboard fracture toughness”, Compos. Struct., 229, 

111374. https://doi.org/10.1016/j.compstruct.2019.111374. 

Saouma, V.E., Ayari, M.L. and Leavell, D.A. (1987), “Mixed 

mode crack propagation in homogeneous anisotropic solids”, 

Eng. Fract. Mech., 27(2), 171-184. 

https://doi.org/10.1016/0013-7944(87)90166-4. 

Shahsavar, S., Fakoor, M. and Berto, F. (2020), “Verification of 

reinforcement isotropic solid model in conjunction with 

maximum shear stress criterion to anticipate mixed mode I/II 

fracture of composite materials”, Acta Mechanica, 1-20. 

https://doi.org/10.1007/s00707-020-02810-8. 

Sih, G.C., Paris, P.C. and Irwin, G.R. (1965), “On cracks in 

rectilinearly anisotropic bodies”, Int. J. Fract. Mech., 1(3), 189-

203. https://doi.org/10.1007/BF00186854. 

Su, R.K.L. and Sun, H.Y. (2003), “Numerical solutions of two-

dimensional anisotropic crack problems”, Int. J. Solids Struct., 

40(18), 4615-4635. https://doi.org/10.1016/S0020-

7683(03)00310-X. 

Toribio, J. and Ayaso, F.J. (2003), “A fracture criterion for high-

strength steel structural members containing notch-shape 

defects”, Steel Compos. Struct., 3(4), 231-242. 

https://doi.org/10.12989/scs.2003.3.4.231. 

Van der Put, T.A.C.M. (2007), “A new fracture mechanics theory 

for orthotropic materials like wood”, Eng. Fract. Mech., 74(5), 

771-781. https://doi.org/10.1016/j.engfracmech.2006.06.015. 

Wang, D., Lin, L., Fu, F. and Fan, M. (2019), “The softwood 

fracture mechanisms at the scales of the growth ring and cell 

wall under bend loading”, Wood Sci. Technol., 53(6), 1295-

1310. https://doi.org/10.1007/s00226-019-01132-w. 

Williams, M.L. (1961), The bending stress distribution at the base 

of a stationary crack. https://doi.org/10.1115/1.3640470 

Wu, E.M. (1967), Application of fracture mechanics to anisotropic 

plates. https://doi.org/10.1115/1.3607864 

 

 
CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

777

https://doi.org/10.1016/S0013-7944(03)00051-1
https://doi.org/10.1016/S0013-7944(03)00051-1
https://doi.org/10.1111/ffe.13033
https://doi.org/10.1016/j.compositesb.2019.107017
https://doi.org/10.12989/scs.2017.23.3.263
https://doi.org/10.1016/j.engfracmech.2019.04.033
https://doi.org/10.1016/j.engfracmech.2007.12.006
https://doi.org/10.1016/j.compstruct.2019.111374
https://doi.org/10.1016/0013-7944(87)90166-4
https://doi.org/10.1007/s00707-020-02810-8
https://doi.org/10.1007/BF00186854
https://doi.org/10.1016/S0020-7683(03)00310-X
https://doi.org/10.1016/S0020-7683(03)00310-X
https://doi.org/10.12989/scs.2003.3.4.231
https://doi.org/10.1016/j.engfracmech.2006.06.015
https://doi.org/10.1007/s00226-019-01132-w
https://doi.org/10.1115/1.3607864


 

Sadra Shahsavar, Mahdi Fakoor and Filippo Berto 

 

Appendix A 

 

The plane of maximum shear stress is shown in Fig. A1 

and can be obtained as follows 

 
sin 2 cos 2

2

x y

xy

 
   


   

 cos 2 2 sin 2 0x y xy

d

d


    


     

 tan 2 / 2x y xy       

(A1) 

 

Considering RIS concept, we have 
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Now, for pure mode I loading condition we have 
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Fig. A1 Plane of maximum shear stress at the crack tip of 

an orthotropic material 

 

 

Fig. A2 Critical stress intensity factors for mixed mode case 
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For stress state along the fibers ( 0  ), we have 
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And for pure mode II loading condition, we have 
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For stress state along the fibers ( 0  ), we have 

tan 2 0 0,c c      (A6) 

 

For a mixed mode case, using Scots pine experimental 

data (Fig. A2), 
c  can be found as follows 
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Where, 0.33 & 0.84Ic IIcK K  . 
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