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1. Introduction 

 

Heat exchange keeps on being a field of real enthusiasm 

for building and logical analysts, just as originators, 

designers, and producers. Impressive exertion has been 

given to explore in customary applications, for example, 

substance preparation, general assembling, and vitality 

gadgets, including general power frameworks, heat 

exchangers, and superior gas turbines (Goldstein et al. 

2005).  

Many authors have formulated new theories of 

thermoelasticity to replace the coupled theory introduced by 

Biot (1956). The heat equations associated with these 

theories are hyperbolic and hence automatically eliminate 

the paradox of infinite speeds of propagation inherent in 

both the uncoupled and the coupled theories of 

thermoelasticity. 

Two generalizations introduced to the coupled theory. 

The first generalization to coupled thermoelasticity is due to 

Lord and Shulman (1967), who introduced the theory of 

generalized thermoelasticity with one relaxation time. The 

second generalization to the coupled theory of 

thermoelasticity is what is known as the theory of 

thermoelasticity with two relaxation times proposed by Green 

and Lindsay (1972). One can refer to Chandrashekhariah 

(1998) and Hetnarski and Ignaczak (2000) for a review, 

presentation of generalized theories. Within the theoretical 

contributions to the subject are the proofs of uniqueness 
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theorems under different conditions by Sherief (1986) and 

Ezzat and El-Karamany (2002). Among the contributions to 

the subject of generalized thermoelasticity are the works of 

Marin (1995) and Sharma and Marin (2014). A couple of 

examinations subject to these generalized theories were 

researched in Refs. Othman et al. (2002), Ezzat (2006), 

Mukhopadhyay and Kumar (2009), Lata et al. (2016), Lata 

and Kaur (2019), Lata and Singh (2019), Zenkour (2017), 

Zenkour and Abouelregal (2019), Daikh et al. (2020), 

Kumar et al. (2016; 2017), Zenkour and Alghanmi et al. 

(2019) and Sobhy and Zenkour (2020).   

Direct conversion between electricity and heat by using 

thermoelectric materials has attracted much attention 

because of their potential applications in Peltier coolers and 

thermoelectric power generators (See Ref. Rowe, 1995). 

Thermoelectric gadgets have numerous alluring highlights 

contrasted and the customary liquid based coolers and 

power age innovations, for example, long life, no moving 

part, any commotion, and simple support also, high 

unwavering quality. Nevertheless, their utilization has been 

constrained by the moderately low execution of present 

thermoelectric materials. The productivity of a 

thermoelectric material is identified with the supposed 

dimensionless thermoelectric figure-of-merit ZT by Tritt 

(2000). The expansion in ZT drives specifically to change in 

the vitality transformation productivity of thermoelectric 

generators and in the cooling proficiency of Peltier modules 

(See Ref. Tritt 2000). Much exertion has been made to raise 

the ZT of thermoelectric bulk materials for vitality 

transformation productivity, so there have been a few 

changes in ZT. The thermoelectric figure of legitimacy 

gives a measure of the nature of such materials for 
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applications and is characterized by Hiroshige et al. (2007), 
2( / )oZT S k T  with a specific end goal to accomplish 

a high figure of legitimacy; one requires a high 

thermopower S. Among the commitments in continuum 

mechanics of thermoelectric materials are crafted by 

Shercliff (1979) and Ezzat and Youssef (2010). 

Over the latest couple of years, fractional examination 

was associated viably in various areas to modify many 

existing models of physical methodology, e.g., science, 

demonstrating and ID, and ID, equipment, wave expansion 

and viscoelasticity (Bagley and Torvik, 1986). Povstenko 

(2009) investigated new thermoelasticity models that use 

fractional derivative. The fractional order theory of 

thermoelasticity was derived by Sherief et al. (2010). As of 

late, Ezzat (2011) set up another model of fractional heat 

conduction equation utilizing the Taylor-Riemann series 

expansion of time- fractional order. Kothari and 

Mukhopadhyay (2011), Sherief and Abd El-Latief (2013), 

and Ezzat and El-Bary (2016) solved some problems in the 

context of this theory. Bo et al. (2015) displayed a 

conservative numerical strategy for tackling the two-

dimensional non-straight fractional reaction-sub diffusion 

equations, while Zhang et al. (2018) presented a period 

space ghastly technique for the time-space fragmentary 

Fokker-Planck condition and its contrary issue. Yu et al. 

(2013, 2020) and Mashat and Zenkour (2020) solved some 

problems in fractional order generalized thermoelasticity.  

The memory-dependent derivative is defined in an 

integral form of a common derivative with a Kernel 

function on a slipping interval. Thus, this kind of definition 

is better than the fractional one for reflecting the memory 

effect (instantaneous change rate depends on the past state). 

Its definition is more intuitionistic for understanding the 

physical meaning and the corresponding memory dependent 

differential equation has more expressive force (Yu et al. 

2014). One can allude to Ezzat and El-Bary (2017), Lotfy 

and Sarkar (2017), Tiwari and Mukhopadhyay (2018), Xue 

et al. (2018) and Biswas (2019) for an overview of 

utilizations of memory-dependent derivative analytics. 

It is well known that, for the weakly nonlinear systems, 

the internal resonances can be investigated by the 

perturbation method (See Refs. Hu et al. 2013, 2020a). But 

the perturbation method will show some limitations in the 

investigation of the internal resonance phenomena for the 

strongly nonlinear systems. Thus, several approaches those 

are expected to replace the perturbation method, including 

the geometric method, the numerical approximation method 

and the improved analytical approximation method, were 

proposed to investigate the internal resonance phenomena 

for the strongly nonlinear systems. Among which, the 

method of multiple scales (Hu et al. 2020 b,c,d,e) is one of 

relatively developed approaches for the strongly nonlinear 

systems.  

The reason for this work is that tackle an issue with 

regards to MDD thermoelasticity hypothesis for a 

practically reviewed thermoelectric half space in which 

Lamé's modulii and attractive porousness are taken as 

elements of the vertical separation from the outside of the 

half-space, while the thermal conductivity is taken as a 

component of temperature. The Laplace change system is 

utilized to take care of the issue. The reversal of the Laplace 

changes is completed utilizing a numerical methodology 

proposed by Honig and Hirdes (1984). The game plans are 

addressed graphically for various estimations of the 

thermoelectric power, MDD parameters and the magnetic 

number on all considered fields. 

 

 
2. Mathematical model 

 

The governing equations represent entire device of 

generalized thermoelasticity with memory-dependent 

derivative heat transfer of thermoelectric material in the 

presence of a constant magnetic field consists of: 

1. The figure-of-merit 
oZT at some reference 

temperature oT (Hiroshige et al. 2007) 

2

o o
o o

s
ZT T

k


  (1) 

where os is Seebeck coefficient at To. 

2- The first Thomson relation at oT (Morelli 1997) 

o o os T   (2) 

where o is the Peltier coefficient at To . 

3-The the displacement equation 

 
2

, 2

i
ij j i

u

t
 


  


J B  (3) 

where B is the magnetic induction vector given by 

= oB H  

4-Modified Ohm's law is defined as (Ezzat and Youssef 

2010) 

 , .i o i k j o iJ E u B s T     (4) 

5- The constitutive equations  

2 (3 2 ) .ij kk ij ij Te e            (5) 

6-Heat equation with memory-dependent derivative heat 

transfer (Ezzat et al. 2016) 

  ,

22
,
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                            ( ) (3 2 ) ,
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
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 
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

, 

(6) 

where  is the time delay and ( )K t  is the kernel 

function in which can be picked unreservedly as 

2 2

2

2

1 0

( )
1 0, 1/ 2

2 ( )
( ) 1 ( )

1 ( ) 0 / 2

(1 ) 1,
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t
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K t t
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t
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

 
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
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
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 
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7-Kinematic relations 
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, ,

1
( ),

2
ij i j j iu u    (7) 

where 
oT T    and 1

oT


 . 

In the above equations a dot denotes differentiation with 

respect to time while a comma denotes material derivatives. 

The summation convention is used.  

 
 
3. One dimensional physical problem 
 

Now, we shall consider thermoelectric solid of finite 

conductivity σo occupying the region x ≥ 0 composed of a 

material whose Lamé's parameters depend on the vertical 

distance x from the surface while the thermal conductivity 

is taken as a function of temperature. The surface of the 

half-space is taken to be traction free and is subjected to 

both a thermal shock that is a function of time and a 

constant magnetic field with components (0, Ho, 0) in the 

absence of an external electric field. Now for the one-

dimensional problems, all the viewed facets will depend 

only on the space variables x and time t. 

The displacement vector has aspects 

( , ), 0, 0x y zu u x t u u    (8) 

The strain-displacement relation 

u
e

x





 (9) 

The components of the electromagnetic induction vector are  

0,     x z y oB B B H B     , while the 

components of the Lorentz force appearing in Eq. (3) are 

given by 

2 ,   0.x o o y z

u
F B F F

t



   


, (10) 

The components of current density vector are 

.x o oJ s
x





 


 (11) 

The constitutive relation 

( 2 ) (3 2 )xx T

u

x
       


    


 (12) 

The equation of motion 

 
2 2

2

2 2
2 (3 2 )

                        + 2 (3 2 ) .

o o T

T

u u u
B

t t x x

u

x x x x x


      
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 
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   
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(13) 

The generalized energy equation with memory-

dependent derivative (Ezzat et al. 2016) 

2 2

2
(3 2 )o o o E o T

u
k s C T

x x x t t x
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     
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2 3

2 2
                 ( ) (3 2 ) .

t

E o T

t

u
K t C T d

x



     

 


  
    

   


 
(14) 

We expect that the thermal conductivity k and the 

specific heat 
EC are elements of in some scope of the 

temperature with the end goal that 

1

1( ) (1 ),o Ek k k K C k         (15) 

where
1, oK k and   are a constants such that when 

1 0K  we get a material with constant thermal 

conductivity .ok  
1K is small quantity and  is called the 

thermal diffusivity. 

We consider the mapping (similar to Kirchhoff’s 

transformation) (Sherief and Abd El-Latief 2013) 

21
1

0 0

1
( ) d (1 ) d

2o

K
k K

k

 

             (16) 

Using Eqs. (15) and (16) neglecting small quantities of 

the second order and higher, Eqs. (11)-(14) yield 

u
e

x





 (17) 

( 2 ) (3 2 ) ,T

u

x
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
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  
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T
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   
    

   

   
     
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(19) 
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1
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

     



    
 

  


     
     

      
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      
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 (20) 

From now on, we shall take and  in the form 

ax

o e    ,     
ax

o e  
 

(21) 

where 
o , o and   are constants. Thus Eqs. (18)-(20) 

take the form 

( 2 ) (3 2 )ax ax

o o o o T

u
e e

x
       
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   
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(24) 

After acquiring , the temperature increase   can be 

gotten by illuminating Eq. (16) to give 

1

1

1 1 2k

k




  
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(25) 

We will utilize the accompanying non-dimensional 

factors 
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Utilizing the above non-dimensional factors, Eqs. (22)-

(24) take the form 

e ax u
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2 2/M B c    is magnetic number and

2 2(3 2 ) / ( 2 )o o o T o o oT k         . 

We assume that the initial conditions take the form 

( ,0) ( ,0) ( ,0) ( ,0) ( ,0) ( ,0) 0u x u x x x x x        

 
(29) 

while the boundary conditions consist of: 

(1) A thermal shock is applied to the boundary plane x = 0 

in the form 

(0, ) ( )t f t  ,  ( , ) 0t   ,  0t   
 

(30) 

where ( )f t is a known function of t. 

(2) Mechanical boundary condition 

The bounding plane x = 0 is taken to be traction-free 

(0, ) 0t  ,  ( , ) 0t   ,   0t  . 
 

(31) 

From now on, the kernel function form ( )K t  can 

be chosen freely as 
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(32) 

where m and n are constants. 

 

 
4. The analytical solutions in the Laplace-transform 
domain 

 

Performing the Laplace transform with parameter s 

defined by the relation 
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and 
2

( ) {( )} ( )ax axu
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The boundary conditions (30) and (31) become 

(0, ) ( )s f s 
 

(37) 

(0, ) 0s 
 

(38) 

We shall use the perturbation method to solve the above 

equations (Nayfeh 1973). By expanding the temperature, 

displacement and stress functions as follows: 

 
(0) (1) 2 (2)a a       , 
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(0) (1) 2 (2)u u au a u    , 
(0) (1) 2 (2)a a       , 

where 
( )i and 

( )iu , 1,2i  are functions to be 

determined. 

Eqs. (33) and (34) gives, upon equating the coefficients 

of in both sides up to order 1 

2 (0) (0) (0)( )u s s M u  D D  (39) 

2 (1) (1) (1) (0) (0) (0)( ) ( )u s s M u x s M u u       D D D
 

(40) 

 2 (0) (0) (0)s u    D D
 

(41) 

 2 (1) (1) (1) (0)s u x s u        D D D  (42) 

Utilizing development of condition (35), we acquire 

(0) (0) (0)u  D
 

(43) 

(1) (1) (1) (0)u x    D
 

(44) 

Dispensing 
(0) with between conditions (39) and (41), 

we get 

  4 2 2 (0)( ) ( 1) ( ) 0s s M s s s M u        D D
 

(45) 

The general solution of Eq. (45) which is bounded for x 
≥ 0 has the form 

2
(0)

1

( , ) ,ik x

i i

i

u x s A k e 



 
 

(46) 

where , 1,2ik i  are the roots of the characteristic 

equation with positive real parts of  

 4 2 2( ) ( 1) ( ) 0k s s M s k s s M         ,       

satisfying the relations 

2 2

1 2

2 2 2

1 2

( ) ( 1),

( ),

k k s s M s

k k s s M

 



    

   
(47) 

and , 1,2iA i  are parameters depending on s to be 

determined from the boundary conditions of the problem. 

Substitution from Eq. (46) into Eq. (41), we get 

2
(0) 2

1

( , ) ( ) ,ik x

i i

i

x s A k s s M e 



    
 

(48) 

The boundary conditions (37) and (39) become 

(0)(0, ) ( )s g s   (49a) 

(1)(0, ) 0s 
 

(49b) 

(0)
(0) (0)(0, ) 0, 0

u
s x

x
 


   

  

(49c) 

(1)
(1) (1)(0, ) 0, 0

u
s x

x
 


   


 (49d) 

where 
2

1( ) ( ) ( / 2) ( )g s f s k f s  . 

In order to determine , 1,2iA i  we shall use the 

boundary conditions (49a) and (40c) to obtain 

1 2 2 2

1 2

( )

( )

g s
A A

k k
  


. 

Conditions (46) and (48) become 

 1 2

1 2(0)

2 2

1 1

( , ) ( )

k x k xk e k e
u x s g s

k k

 
 

  

(50) 

 1 22 2

1 2(0)

2 2

1 2

( ) ( )
( , ) ( )

k x k xk s s M e k s s M e
x s g s

k k


           


  
(51) 

Dispensing 
(1)u with between conditions (40) and (41), 

we get non homogenous differential equation 

  

 

4 2 2 (1)

(0) 2 (0)

( ) ( 1) ( )

                            2 [2 ( ) ] ,

s s M s s s M

s x s s M u

   

  

     

    

D D

D D D  (52) 

which has a general solution in the form 

   1 2(1) 2 2

1 1 1 2 2 2

k x k xB x x e B x x e   
     

 
(53) 

where  

1 2
1 22 2 2 2

1 1 2 2 1 2

, ,
4 ( ) 4 ( )

a a

k k k k k k
  

 
 

2 2 2 2

1 2 1 2
1 1 1 2 2 22 2 2 2 2 2 2 2

1 1 2 1 1 2 1 1 2 1 1 2

1 5 1 5
,

2 ( ) 2 ( ) 2 ( ) 2 ( )

k k k k
b a b a

k k k k k k k k k k k k
 

    
       

      

, 

2 2 2 2

1 1 1 1 2 2 2 1[2 ( ) ] , [2 ( ) ]a s k s s M k A a s k s s M k A        , 

2 2

1 1 1 1 2 2 2 12 [ ( )] , 2 [ ( )]b s k k s s M A b s k k s s M A         

In the same manner the displacement distribution 
(1)u

satisfies the differential equation 

      1 22 2 2 2 (1)

1 2 1 2 3 4

k x k xk k u m x m e m x m e 
     D D

 
(54) 

and has the general solution in the form 
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   1 2(1) 2 2

3 1 2 4 3 4

k x k x
u B M x M x e B M x M x e

 
     

 
(55) 

where 

2 2

1 1 1 1 2 1 1( )( 1) ) , ( )(3 1) ,m s M s k sk A m s M k sA               
 

2 2

3 2 2 1 4 2 1( )( 1) ) , ( )(3 1) ,m s M s k sk A m s M k sA               
 

2 2

1 1 2
1 2 2 12 2 2 2 2 2

1 1 2 1 1 2 1 1 2

51
, ,

4 ( ) 2 ( ) 2 ( )

m k k
M M m m

k k k k k k k k k

  
   

   
2 2

3 1 2
3 4 4 32 2 2 2 2 2

2 1 2 1 1 2 1 1 2

51
, .

4 ( ) 2 ( ) 2 ( )

m k k
M M m m

k k k k k k k k k

 
   

   

Substituting structure Eqs. (44), (53) and (55) into Eq. (42), 

looking at the coefficient of the exponentials in the 

subsequent condition, we get  

2

3 2 1 1 2

1

1
( )B s M s k B

k s
  

 
     

 
(56a) 

2

4 4 2 2 4

2

1
( )B s M s k B

k s
  

 
     

 
(56b) 

By using the boundary conditions (49b) and (49d) into 

Eqs. (53) and (55), we have 

1 2B B 
 

(56c) 

1 3 2 4 2 4k B k B M M  
 

(56d) 

Solving the above system, we have 

1 2
1 2 2

1 2

B
k k

 
 


. 

The other constants can be easily obtained from Eqs. (56(a)-

56(c)). 

This completes the solution in the Laplace transform 

domain. 

 

 
5. Numerical inversion of the Laplace transforms 
 

We shall now outline the method used to invert the 

Laplace transforms in the above equations. Let ( )f s  be 

the Laplace transform of a function f (t). The inversion 

formula for Laplace transforms can be written as Honig and 

Hirdes (1984) 

( ) ( ) d
2

dt
itye

f t e f d iy y






  , 

where d  is an arbitrary real number greater than all the 

real parts of the singularities of ( )f s . 

Expanding the function ( ) exp( ) ( )h t dt f t   in a 

Fourier series in the interval [0, 2L], we obtain the 

approximate formula 

0

1

1
( ) ( )

2

N

N k

k

f t f t c c


   ,  for 0 2t L 
 

(57) 

where 

 /Re /
dt

ik t L

k

e
c e f d ik L

L

    
 

(58) 

Two methods are used to reduce the total error. First, the 

‘Korrektur’ method is used to reduce the discretization error. 

Next, the ε-algorithm is used to reduce the truncation error 

and therefore to accelerate convergence.  

The Korrektur-method uses the following formula to 

evaluate the function ( )f t  

2( ) ( ) ( ) (2 )dL

NK N Nf t f t f t e f L t

   
 

(59) 

We shall now describe the ε-algorithm that is used to 

accelerate the convergence of the series in (57). Let N be an 

odd natural number and let
1

m

m k

k

s c


 , be the sequence of 

partial sums of (57).We define the ε-sequence by 

0, 1,0, , 1,2,3,...m m ms m     

and 

 1, 1, 1 , 1 ,1/ , , 1,2,3,....n m n m n m n m n m           

It can be shown from Honig and Hirdes (1984) and 

Durbin (1973) that the sequence 1,1 3,1 ,1, , ..., ,...N    

converges to 
0( ) / 2f t c faster than the sequence of 

partial sums. 

 

 

6. Numerical results 
 

The technique dependent on a Fourier arrangement 

extension proposed by Honig and Hirdes (1984) is received 

to alter the Laplace change in the previous section. The 

numerical code has been readied utilizing Fortran 77 

programming language. The amount of calculation (and 

hence the execution time) depends on several parameters 

within the program. First, there is a parameter “nsig” which 

is the number of significant digits defining the relative error 

as (10)-nsig. We usually take nsig=5. Near points of 

discontinuity of the function, the program might fail to 

converge, and we have to decrease nsig. Another parameter 

is the maximum number of terms in the Fourier series to be 

added within one saw-tooth of the -algorithm. This is taken 

as 10000. The last parameter is the number of saw-teeth of 

the -algorithm to be considered. This is taken as 50. All in 

all; the program evaluates the value of any function at 50 

points in less than 2 minutes (Sherief and Hussein 2018). 

The function ( )f t can be picked as 

sin 0  
( ) .

0 otherwise

t
t

f t






  
   

   


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Hence 

 
2 2 2

1
( )

se
f s

s



 





, 

 
 

2

2

2 2 2

2 1
( )

4

se
f s

s s

 

 





 and 

2

1( ) ( ) ( / 2) ( )g s f s k f s  . 

So as to translate the numerical calculations, we 

consider material properties of copper-like material, whose 

physical information is given in Table 1: 

The numerical system laid out above was utilized to get 

the temperature , displacement u , stress and current 

density J in various cases. The outcomes are appeared in 

Figs. 1(a)-1(e) for temperature distribution and in Figs. 

2(a)-2(d) for displacement distribution, while in Figs. 3(a)-

3(d) for stress distribution are represented to graphically at 

various places of x. In the present area, we have endeavored 

to demonstrate the impact of the kernel function and 

additionally the time-delay among the idea of different 

physical fields. 

In order to study the effect of different values of time-

delay on the physical quantities of thermoelectric materials, 

Figs. 1(a), 2(a) and 3(a) are plotted.  

Fig. 1(a) shows the space assortment of the temperature 

spread. In this figure, solid line addresses the course of 

action procured in the packaging of dynamic coupled theory 

(Biot theory, 0  ) and various lines address the game 

plans got for the circumstance 0.0009,0.009,0.09  . 

We saw that the temperature fields have been affected when 

postponement , where the growing of the estimation of 

the parameter causes decreasing in temperature fields. The 

thermal waves are steady limits, smooth and reach to 

resolute state dependent upon the estimation of time-delay

 , which suggests that the particles transport the glow to 

various particles viably and this makes the lessening rate of 

the temperature more important than various ones. 

Furthermore, the warm waves cut x-center point even more 

immediately when increases. 

Figs. 2(a) and 3(a) display the displacement and stress 

distributions with distance for two different theories; Biot 

theory, 0  and MDD theory, 0  when the magnetic 

number has two values M ( 0)M  , absent of the 

magnetic field and in the present of the magnetic field, 

0M  ). We find that the attractive field acts to diminish 

the displacement and stress fields. This is generally known 

as attractive damping. 

 

 

 

 

Figs. 1(b), 2(b) and 3(b) show the variety of temperature, 

displacement, stress and current density circulations in 

thermoelectric circular depression with spiral separation x 

for three values of figure-of-merit at room temperature ZTo, 

namely, ZTo = 1, 3 and 5. We noticed that the stress and 

displacement field has been affected by the figure-of-merit 

values, where the expanding of the estimation of figure-of-

merit causes decreasing in the magnitude of the stress and 

displacement field while causes increasing in the 

temperature and current density. From these figures, we 

learn that the efficiency of thermoelectric figure-of-merit is 

inversely proportional to the temperature of the solid 

particles (Nolas et al. 2001). These results agree with the 

expectation by the relation  2 / .oZT S k T   

Figs. 1(c), 2(c) and 3(c) depict the space variation of the 

temperature, displacement and stress distributions. In these 

figures the effect of the Lamé’s moduli on these 

distributions are studied. We note that changing of Lamé’s 

modulii has very small effect on the temperature profile, an 

increase in the values of Lamé’s modulii results in an 

increase in the magnitude values of displacement and stress 

fields.  

Figs. 1(d), 2(d) and 3(d) individually, demonstrate the 

temperature, removal and stress conveyances for

1 0, 0.25k   . These figures demonstrate the contrasts 

between the speculations of memory-subordinate 

subsidiaries practically reviewed thermoelectric materials 

with consistent thermal conductivity and those of variable 

conductivity. It was discovered that the difference in the 

thermal conductivity significantly affects the every single 

thought about capacity. Its impact on increase in the 

conductivity will in general increment the outright 

estimation all things considered. 

The impact of various types of portion work K(t − ξ) on 

the temperature conveyance, Fig. 2(b) has been plotted. 

This figure addresses the dimensionless estimation of 

temperature for wide extent of extended partition x  

( 0 1x  ) and for various types of piece work. We gained 

from this assumes indispensable miracle found in these 

expect that the game plan of any of the considered limit in 

the new model is kept in a restricted region. Past this 

region, the assortments of these assignments do whatever it 

takes not to happen. This infers to the game plans agreeing 

the new summed up theory demonstrate the direct of 

constrained rates of wave spread. 

 

 

 

Table 1 Values of the constants (Ezzat et al. 2016, Shereif and Abd El-Latief, 2016) 

38954kg / m   
4 21 13 (10). m / s   

7 2525 10E x N / m  

(1 )38EC J / kg.K  10 27 76 (10) ( )o . kg / ms     
5 11 78 10T . K
   

10 23 86 (10) ( )o . kg / ms    
28886 73se m. c/   293oT K  

0.0168   10 3a . m   1 0o C / mH c. .se  
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Fig. 1(a) The variation of temperature for different values of time-delay ω 

 
Fig. 1(b) The variation of temperature for different values of figure-of-merit ZTo 
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Fig. 1(c) The variation of temperature for different cases of Lamé’s moduli 

 
Fig. 1(d) The variation of temperature for different values of thermal conductivity 
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Fig. 1(e) The variation of temperature for different forms of kernal function K(t, ξ) 

 
Fig. 2(a) The variation of temperature for different values of magnetic number M for different theories 
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Fig. 2(b) The variation of displacement for different values of figur-of-miret at room temperature ZTo 

 
Fig. 2(c) The variation of displacement for different cases of Lamé’s moduli 
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Fig. 2(d) The variation of displacement for different values thermal conductivity 

 
Fig. 3(a) The variation of temperature for different values of magnetic number M for different theories 
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Fig. 3(b) The variation of stress vs. distance for different values of figur-of-miret at room temperature ZTo 

 
Fig. 3(c) The variation of stress for different cases of Lamé’s moduli 
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7. Conclusions 
 

 The primary objective of this work is to present a 

scientific model in MDD electro-thermoelasticity 

when the Lamé's modulii is taken as elements of 

the vertical separation from the outside of 

thermoelectric materials with variable thermal 

conductivity within the sight of a uniform 

attractive field. 

 This model enables us to improve the efficiency 

of a thermoelectric material figure-of-merit 

 2 / .oZT S k T , where S is the 

thermoelectric power or Seebeck coefficient 

(Hicks 1993, Hiroshige et al. 2007). It is known 

that in order to achieve a high thermoelectric 

material figure-of-merit, one requires low thermal 

conductivity. This can occur according to the 

choice of suitable values of time-delay .  

 It is necessary to take into account that the 

coefficient of thermal conductivity has to be 

dependent on the absolute temperature because 

most real materials with increased conductivity 

tend to increase the absolute value of all the 

functions considered (Sherief et al. 2016). This 

situation is usually ignored by most researchers 

who consider a constant thermal conductivity. 

 T h e  c h a n g e s  o f  ma g n e t i c  p a r a me t e r s
2 2/M B c    , where  is the electric 

conductivity caused by different technological 

 

 

 

 

 

processes have been tested in more 

laboratories, which led to effects on stress and 

deformation for the thermoelastic materials 

(Tumanski 1999). The nearness of an 

attractive field impacts to decrease the extents 

of the profiles of the thermophysical amounts. 

 The memory-dependent derivative is defined 

in an integral form of a common derivative 

with a kernel function on a slipping interval. 

So this kind of definition is better than the 

fractional one for reflecting the memory 

effect (instantaneous change rate depends on 

the past state). Its definition is more 

intuitionistic for understanding the physical 

meaning and the corresponding memory 

dependent differential equation has more 

expressive force 

 As per this new hypothesis, we need to build 

another arrangement for FGMs materials as 

indicated by their time-postpone where this 

parameter turns into another marker of its 

capacity to lead heat in directing medium. 
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