
Steel and Composite Structures, Vol. 38, No. 4 (2021) 415-430 

DOI: https://doi.org/10.12989/scs.2021.38.4.415                                                                  415 

Copyright © 2021 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=8                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 
 

Steel-concrete composite beams have been widely used 

in structural engineering applications in recent years due to 

their high bearing capacity, light weight and convenient 

construction. With a wide concrete flange, the shear lag 

effect will be obviously observed, and the longitudinal 

displacement along the slab width will not be uniformly 

distributed (Ma et al. 2017). This shear lag effect will 

significantly affect the bearing capacity and stiffness of 

structures (Luo et al. 2019), which is a key problem that 

cannot be ignored in structural analysis. 

The numerical models involved in the calculation of the 

shear lag effect of composite beams are mainly refined 

models and frame models (Vojnić-Purčar et al. 2019). In 

refined models, two-dimensional shell or three-dimensional  
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solid elements can be used to simulate the non-uniform  

transverse deformation of concrete slabs. However, these 

models are not practical in practice due to their complex 

modeling process and low computational efficiency. Frame 

models based on one-dimensional beam elements are the 

preferred and more widely used option. At present, some 

studies have focused on frame models, for which the 

modeling idea is to introduce the intensity function and 

shape function along the transverse of the shear lag effect 

on the basis of Euler beams. Dezi et al. (2003, 2006), Ranzi 

and Bradford (2006, 2009) and Gara et al. (2009, 2011) 

carried out representative research in this field. On the basis 

of one-dimensional Euler beam theory, they proposed one-

dimensional models of composite beams considering shear 

lag and interfacial slip by adding the longitudinal 

displacements of steel and concrete and the shear lag 

strength function of concrete slabs. The proposed one-

dimensional models were suitable for the design analysis of 

the composite decks of long-span bridges with complex 

geometry, such as cable stayed bridges. Lezgy-Nazargah 

and Kafi (2015) proposed a finite element model for the 

analysis of steel-concrete composite beams based on a 

refined high-order theory. Lezgy-Nazargah et al. (2019) 

proposed a sinus shear deformation model for static analysis 

of steel-concrete concrete beams and twin-girder decks 

including shear lag and interfacial slip effects. Furthermore, 

the shrinkage and creep constitutive function of concrete 

was also introduced into the one-dimensional model to 

consider the time-dependent behavior of composite beams. 
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Zhu and Su (2017) established analytical solutions of 

composite beams considering shear lag and interfacial slip. 

Moreover, a new one-dimensional model calculation 

method for time-dependent behavior was proposed based on 

the step-by-step calculation method. However, these models 

can only be applied to the elastic analysis of composite 

beams and cannot be used to analyze plastic behavior, such 

as concrete cracking, concrete crushing and steel girder 

yielding. Lin and Zhao (2012) analyzed the elastoplastic 

behavior by reducing the elastic modulus on the basis of the 

one-dimensional beam theory. However, this method was 

only an approximate treatment, which cannot be used to 

analyze the evolution of the shear lag effect of composite 

beams over the whole elastoplastic loading process. Yoon et 

al. (2017) proposed an efficient warping model for 

elastoplastic torsional analysis of steel-concrete composite 

beams. However, the shear lag effect of composite beams 

was not included in the warping model. Therefore, a one-

dimensional beam element model considering shear lag and 

interfacial slip for composite beams under elastic-plastic 

loading is needed to be developed. 

Effective flange width has been introduced into design 

codes to simplify the consideration of the shear lag effect. It 

is generally believed that due to the shear lag effect, the 

cross-sectional stress is not uniform along the transverse 

direction. Based on the peak stress along the transverse 

direction, the actual plate width should be reduced in the 

calculation of the Euler beam, and this reduced flange width 

is called the effective width. Amadio and Fragiacomo 

(2002) carried out experiments of composite beams under 

positive and negative moments to study the effective width 

of concrete flanges, which contributed to the provisions of 

the EC4 code (2004). Chiewanichakorn et al. (2004) and 

Chen et al. (2007) proposed a simplified formula for 

calculating the effective width by considering the effect of 

the concrete slab thickness, and they determined that the 

effective width was close to the actual width. Zhu et al. 

(2015) systematically studied the effective width of 

concrete slabs and steel bottom slabs of composite beams. 

In their study, effective width formulas were proposed for 

composite beams under vertical and axial loads, and a 

simplified method was also developed to consider the shear 

lag effect. Nie et al. (2008) studied the effective width of 

composite beams under ultimate positive bending through a 

combination of experiments and numerical analysis and 

concluded that the effective width was close to the actual 

width under ultimate states. Based on these studies, it can 

be concluded that the effective width of composite beams is 

generally smaller than the actual width in the elastic stage 

and increases with plastic development until the limit state. 

At the ultimate capacity state, the effective width is equal to 

the actual width. However, current research on the effective 

width evolution during the whole elastoplastic process is 

still insufficient. Moreover, concrete cracking under a 

negative moment, which should receive attention, occurs 

even in normal service. After cracking, concrete quickly 

loses its strength, and the reinforcement stress is not evenly 

distributed. Some design codes neglect the role of concrete 

slabs after cracking, and only steel beams and 

reinforcements in the effective width range are considered. 

This assumption is applicable only for the ultimate capacity 

state under a negative moment. For other states, this 

assumption will overestimate the reinforcement stress and 

crack width of the concrete slab, seriously affecting the 

design scheme. Therefore, it is of great significance to study 

the effective width of composite beams under elastic-plastic 

loading states, especially for cases under negative moments. 

In this paper, a 10-degree-of-freedom (DOF) fiber beam 

element considering the shear lag and interfacial slip of a 

composite beam over the whole elastoplastic loading 

process is proposed and implemented on the OpenSees 

software framework. Furthermore, the accuracy and 

applicability of the proposed model are verified by 

comparing with the experiments of composite beams under 

positive and negative bending moments. Then, the model is 

employed to analyze the features and development of the 

effective width under a negative moment in the normal 

service stage. The key influencing factors of effective width 

are refined and discussed through a parameter sensitivity 

analysis. Finally, a simplified calculation method is 

proposed for the effective flange width under a negative 

moment in the normal service stage. 

 

 

2. Fiber beam element considering interfacial slip 
and shear lag effects 

 

The fiber beam element proposed in this paper is 

applicable to composite beams with open cross-sections, as 

shown in Fig. 1. Interfacial slip, shear lag effects and 

material nonlinear behavior are all considered in the model. 

The coordinate system and the symbol annotation are 

shown in Fig. 1. Fig. 2 shows the fiber divisions of the 

composite cross-section. 

 

2.1 Kinematics 
 
The proposed beam element model is a two-dimensional 

model without considering transverse bending and torsion 

of composite beams
 

 

 

Fig. 1 Cross-section and coordinate system for the 

composite beam: (a) three-dimensional view and (b) 

cross-sectional view 
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Fig. 2 Fiber divisions for the composite cross-section 

 

 

This beam element model uses the kinematics of composite 

I-shape beams proposed by Dezi et al. (2003, 2006), Ranzi 

and Bradford (2006, 2009) and Gara et al. (2009, 2011). 

The steel girder and concrete slab cannot be separated 

vertically, but longitudinal slip occurs at the slab-girder 

interface of the composite beam. The concrete slab and steel 

girder have the same curvature. The steel girder is modeled 

with the Euler-Bernoulli beam theory consistent with the 

plane section assumption. The shear lag warping function is 

introduced into the concrete model to consider the non-

uniform distribution of longitudinal displacement in the 

transverse direction. Referring to the coordinate system 

shown in Fig. 1, the displacement field function of the 

composite beams can be expressed as 

         

     
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where v0(z) and v0'(z) are the vertical displacement and 

rotation of the composite cross-section, uc(z) denotes the 

axial displacement of the concrete slab at any position, uc0 

denotes the whole longitudinal displacement of the concrete 

slab at its centroid position, us(z) denotes the axial 

displacement of the steel girder at any position, us0(z) 

denotes the whole longitudinal displacement of the steel 

girder at its centroid position, and f(z)and (x) represent the 

warping intensity and shape function of concrete slab, 

respectively. 

The warping function (x) describing the shear lag 

effect should satisfy =0 at the intersection of the concrete 

slab and the steel beam web and ,x=0 on the edge of 

concrete slab. Thus, (x) in this paper is adopted as follows.
 

For I-steel composite beams 

 
2

c
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 (2) 

According to the geometric equation, the strain tensor of 

composite beams can be expressed as, 

c c0 0

s s0 0

c ,

( , , ) +

( , , )

( , , )

z

z

xz x

x y z u yv f

x y z u yv

x y z f

 



 

    

   
 


 (3) 

 

Furthermore, the interfacial slip between the steel beam 

and the concrete slab is 

   s c( )z u z u z    (4) 

 
2.2 Constitutive relationship 
 

The constitutive equations of four commonly adopted 

materials are considered in this study: elastic material, 

concrete material, steel material, and reinforcement material. 

The uniaxial constitutive relation of materials is a 

physical nonlinear description of fiber level, which is the 

basis of the section stiffness matrix and the element 

stiffness matrix. According to the requirements of this study, 

the following constitutive functions are adopted for 

modeling the concrete, steel girder, reinforcement and 

interfacial slip. 

(1) Concrete 

Fig. 3(a) shows the uniaxial stress-strain curve of the 

concrete. The compressive stress-strain relationship is 

assumed in the parabolic-ascending linear-descending form 

proposed by Hognestad et al. (1955), as stated in Eq. (5). In 

Eq. (5), εc0 is the peak compressive strain and the peak 

compressive stress σc0 is equal to the cylinder concrete 

compressive strength fc. The concrete softening stiffness is 

determined by the data point (cu, 0). To mitigate mesh 

sensitivity problems, cu is set as a mesh-adjusted strain, 

which is specified by the characteristic length of the 

respective finite element (FE) integration point and volume-

specific localized crushing energy (Wendner et al. 2015). 

The initial tangent modulus of concrete Ec=2c0/c0. 

The tensile stress-strain relationship is shown in Eq. (6), 

and the curve is shown in Fig. 3(a). The peak tensile stress 

t0=ft, in which ft is the concrete tensile strength and the 

peak tensile strain t0=ft /Ec. The smeared crack model is 

employed to simulate the tension softening behavior of 

concrete after cracking. According to the crack band theory, 

the ultimate tensile strain εtu can be determined with the 

concrete fracture energy Gf, which is provided in CEB-FIP 

(2010). The tension softening stiffness Ets can be expressed 

as Ets=t0/(tut0). 
2
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The shear constitutive model in concrete is assumed to 

be a linear elastic constitutive relation because a sufficient 

number of stirrups are usually arranged in practice to 

prevent shear failure. The shear modulus Gc was calculated 

as Gc=Ec/2/(1+c), in which c is the Poisson's ratio of 

concrete, which is generally 0.2. 

(2) Steel girder and reinforcement 

The trilinear model with a yield plateau is adopted for  
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the steel material, as shown in Fig. 3(b), in which Es is the 

initial tangent modulus, the hardening modulus is 0.005Es, 

and h denotes the hardening strain, which is generally 

0.025. The elastic-perfectly plastic model is adopted for the 

reinforcement material, as shown in Fig. 3(c). The 

reinforcement fiber shear stiffness does not contribute to the 

section stiffness; thus, the shear modulus of the 

reinforcement material is 0. 

(3) Beam-slab interfacial slip 

The slip constitutive relationships for stud connections 

proposed by Ollgaard et al. (1971) are adopted to model the 

interfacial slip between the steel girder and concrete slab 

 in u 1
m

nV V e    (7) 

where Vin is the shear force on the interface; n and m are 

constant values, which are generally m=0.558 and n=1 mm-1; 

and Vu is the ultimate capacity of a single stud, which can 

be determined with Eq. (8); Γ=us0-uc0 and is the interfacial 

slip between the steel girder and the concrete slab. 

u us c c us u0.43 0.7V A E f A f   (8) 

where fu denotes the ultimate tensile strength of the shear 

stud and Aus is the cross-sectional area of the shear stud. 

 
2.3 Balance conditions 
 

According to the virtual work principle, an equilibrium 

equation can be established as 

 ˆ ˆ ˆ ˆ         0
V V V

        S d b d s d d  (9) 

where S is the Cauchy symmetric stress tensor,  is the 

gradient operator, d̂  is the variation in the displacement 

field, b is the body force, s is the surface force applied to  

 

 

composite beams, V denotes the body integration domain, 

and V denotes the surface integration domain. 

For the I-steel composite beams in this study, the 

generalized displacement vector can be defined as 

 
T

c0 s0 0u u v fd  (10) 

The generalized displacement increment can be 

expressed as 

 
T

c0 s0 0u u v f     d  (11) 

For an incremental displacement, the virtual work 

principle is considered, which is expressed as 
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where 
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By defining the different fibers, the proposed model can 

be applied to structures with different types of cross-

sections. The fiber stiffness can be updated with respect to 

changes in the stress states during the elastoplastic iterative 

process. This approach is different from other approaches 

found in existing research, which are insufficient for the 

application of different types of cross-sections and plastic 

loading stages. Based on the idea of fiber discretization, the 

integral calculation of the section stiffness matrix and 

resistance vector is carried out by the algebraic summation 

of discrete fibers, as shown in Eqs. (15) and (16). 

 

 

Fig. 3 Uniaxial constitutive relationships for the materials: (a) concrete, (b) steel, (c) reinforcement and (d) beam-slab 

interface 
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where  denotes the tangent stiffness of the shear-slip relationship in Eq. (7), Nc denotes the number of concrete fibers, Nr 

denotes the number of steel fibers, and Ns denotes the number of reinforcement fibers.
 

The resistance vector can be expressed as  
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The external load p is 

  c s cz z y xz q q q m    p  (17a) 
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where , c and s denote the volume integral domains of 

the whole structure, concrete and steel girder, respectively, 

and , c and s are the corresponding surface integral 

domains. 

 
2.4 Numerical procedures 
 

The FE method is adopted to solve the equations. A 10-

DOF beam element is proposed in this paper, and the nodal 

displacement e and the resistance vector Re can be 

expressed as 
T

e c s c si i i i i j j j j ju u v f u u v f    δ
 

T

e c s c si i i i i j j j j jN N V M W N N V M W   R  

The deformation field inside the element can be 

interpolated with the Hermite polynomial interpolation 

method. For the vertical deflection v and the rotation , the 

second-order Hermite displacement difference is used. For 

uc, us and f, the first-order linear interpolation is used. The 

shape function matrix Ne can be expressed as 
T e ed N δ  (18) 

where 
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
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 
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 

 
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 
 
 

  
 
 

N  

Note that =/Le, in which  is the local coordinate of 

the beam element and Le is the length of the element. 

Substituting Eq. (18) into Eq. (12) yields 

  e e pK F  (19) 

where 

    
e T

0
+ d

L

  e e c r s ρ eK N K K K K ND D  (20a) 

 
e T

0
d

L

 p eF N pH  (20b) 

   
e

0
+ d

L T
  e e c r s ρR N R R R RD  (20c) 

Note that Ke denotes the element stiffness matrix, Fp is 

the equivalent external load vector, and Re is the element 
resistance vector, which can all be obtained through Gauss-

Lobatto numerical integration along the length direction of 

the beam. 

 

2.5 Element implementation 
 

The full Newton iterative method is adopted to solve the 

structural elastoplastic analysis problem. In each calculation 

step, the stiffness and stress of the fibers are updated 

according to the stress states, and the stiffness matrix and 

resistance vector are sequentially updated in the cross-

section level, element level and structure level. 

For flexibility, extensibility, and portability, we 

developed the proposed model on the computational 

framework of OpenSees software as a newly derived 

element class (Gandelli et al. 2019). The interpreter codes 

for the corresponding Tcl command were also developed. 

OpenSees is an open source elastic-plastic calculation 

software for structural engineering applications. OpenSees 

provides abundant material and element libraries and is a 

widely used computing platform for nonlinear structural 

analysis. However, the shear lag and interfacial slip effects 

are not considered in current version of OpenSees. The 

research and element development work in this paper 

provides this extended functionality. Notably, the proposed 

beam element model can be used to predict the elastoplastic 

behavior of composite beams which have an ultimate 

flexural failure mode. 

Amadio et al. (2004) carried out experiments with 4 

simply supported composite beams. The structural 

dimensions of specimen B-4 are shown in Fig. 6, and studs 

were set as connections between the steel beam and the 

concrete slab. A concentrated load was applied at the mid-

span to test the mechanical behavior of the specimen under 

a positive bending moment up to collapse. Comparisons of 

the analytical and experimental results for the load-

deflection at mid-span are shown in Fig. 7. 

 

 
3. Case study and comparisons 
 

3.1 Experiments of composite beams under positive 
moments 

 

Li (2011) carried out an experiment on the composite 

girder segment of a cable-stayed bridge. The twin I-steel 

composite beam CSBCD-1 was selected as an analysis case,  

   
T

in0 0 0 0 0z VρR
 

(16d) 

         z z z z z   c r s ρR R R R R
 

(16e) 
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Fig. 4 Dimensions of CSBCD-1 specimens from the tests conducted by Li (2011) (unit: mm): (a) cross-section and (b) 

elevation 

 

Fig. 5 Comparisons of the experimental and analytical results from the tests conducted by Li (2011): (a) load-displaceme

nt response and (b) strain of concrete slab 

 

Fig. 6 Dimensions of the B-4 specimen from the tests conducted by Amadio et al (2004) (unit: mm): (a) cross-section and 

(b) elevation 
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and the dimensions of this beam are shown in Fig.4. A 

concentrated load was applied at the mid-span, where two-

point symmetrical loading was located at the intersection of 

both webs and the concrete slab. The deflection and strain 

were measured under different loading levels up to collapse.  

Fig. 5 shows the load-deflection curves at the mid-span and 

the strain of reinforcing bars under different loading states. 

The comparisons show good agreement between the test 

results and analytical results. 

 

3.2 Experiments of composite beams under negative 
moments 

 
The experiment of a composite beam under a negative 

moment was also tested by Amadio et al. (2004), which is 

named B-1. The span and cross-section dimensions were 

the same as those of B-4, as shown in Fig. 8. The difference 

existed in their loading pattern. Specimen B-1 was reverse 

loaded, and a concentrated load was imposed on the steel 

beam in the mid-span to simulate a negative bending 

moment at the support. Fig. 9 shows comparisons of the 

experimental and analytical results for specimen B-1. Both  

 

 

 

 

the load-deflection curves and the stress distribution of the 

reinforcements are in good agreement between the 

experimental and analytical results. 

Lin and Yoda (2013) performed experiments of two 

simply supported composite beams, in which specimen 

CBS was loaded under a negative moment. The structural 

dimensions of specimen CBS are shown in Fig. 10, and the 

loading pattern was the same as that of specimen B-1 in 

reference (Amadio et al. 2004). Comparisons of the results 

from the tests and those from the proposed model are shown 

in Fig. 11. 

The accuracy and applicability of the proposed model 

were verified through comparisons with experimental 

results of composite beams under positive and negative 

moment loads. 

 

 

4. Effective width under negative moment loading 
 

In the normal service stage, under positive moment 

loading states, the concrete slab and steel girder are in the 

elastic loading range, and the effective width in this case 

 

Fig. 7 Load-deflection curves of the B-4 specimen from the tests conducted by Amadio et al (2004) 

 

Fig. 8 Dimensions of specimen B-1 of the test conducted by Amadio et al (2004) (unit: mm): (a) cross-section and (b) 

elevation 
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has been widely studied. When under negative moment 

loading states, even in the normal service stage, the 

nonlinear behavior of concrete cracking will occur, and 

further research is needed; this phenomenon is also a focus 

of this paper. Additionally, a full shear connection is 

generally applied in actual composite bridges. The 

corresponding design guidance for the composite bridges 

with a full shear connection is given in design codes.  

 

 

 

 

 

Therefore, an extremely large shear connection stiffness is 

applied to the proposed fiber beam element model to 

simulate complete interaction at the interface for the actual 

composite bridges in the following parametric analysis. 

Before the parametric analysis, a mesh sensitivity test 

was performed. The results showed that the convergence 

sensitivities of the FE simulation results on the 

displacement and the stress are within 1% when 20 and 32 

 

Fig. 9 Comparisons of the experimental and analytical results for specimen B-1 from the tests conducted by Amadio et al. 

(2004): (a) load-deflection curves at mid-span and (b) stress to yield strength of reinforcing bars 

 

Fig. 10 Dimensions of specimen CBS from the tests by Lin and Yoda (2013) (unit: mm) : (a) cross-section and (b) 

elevation 

 

Fig. 11 Comparisons of the experimental and analytical results for specimen CBS from the tests by Lin and Yoda (2013): 

(a) load-displacement response and (b) strain of reinforcing bars 
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beam elements are used to mesh the composite beam, 

respectively. In order to ensure accuracy, a total of 50 

elements and 51 nodes were used in the mesh. 

 

4.1 Effective width based on the reinforcement stress 
 

A reverse-loaded simply supported composite I-shape 

beam is used as a basic model to simulate the negative 

moment zone of continuous beams. The geometric 

dimensions and material properties of the basic model are 

shown in Table 1. 

According to engineering experience, the longitudinal 

reinforcement ratio generally accounts for 1.5~2%, which is 

taken as 2% in the analysis. The concrete flange width is 

500 mm, the effective span is 2500 mm and the width-span 

ratio is set to 0.2. For the calculation of the effective width 

of the negative moment zone, the design code does not 

consider the tensile strength of concrete, and such an 

assumption is applicable only under the ultimate states. Fig. 

12 shows the transverse distribution of rebar stress at 

different cross-sections. The results show that there is an 

obvious shear lag effect at the mid-span section. The 

maximum stress in the rebar is reached at the intersection of 

the steel web and the concrete slab and decreases 

continuously from the center to the two sides. Therefore, it 

is of great significance to calculate the stress in the 

reinforcements above the steel girder by using a more 

accurate effective flange width. The following formula (Eq. 

(21)) is adopted in this paper to calculate the effective 

flange width of concrete slabs in the negative moment 

region. 

bar
bar max

tx

My

I
   (21) 

 

 

Table 1 Parameters of the FE model 

Structure Span L (mm) 2500 

Cross-

section 

Concrete slab 
Slab width bc (mm) 500 

Slab thickness tc (mm) 50 

Reinforcement Ratio 2% 

Steel girder 

Flange width bst (mm) 170 

Flange thickness tst 

(mm) 
15 

Web thickness tw (mm) 9.5 

Web height hs (mm) 470 

Material 

Concrete 

Elastic modulus Ec 

(MPa) 
3.35×104 

Grade C50 

Steel 

Elastic modulus Es 

(MPa) 
2.0×105 

Yield strength fs (MPa) 345 

Reinforcement 

Elastic modulus Es 

(MPa) 
2.0×105 

Yield strength fyr (MPa) 350 

 

 

 

 

Fig. 12 Transverse distribution of rebar stress at different 

cross-sections: (a) uniformly distributed load; (b) 

concentrated load at mid-span 

 

 

 

Fig. 13 Schematic diagram for effective flange width 

calculation 

 

 

where bar max is the maximum stress in the reinforcements, 

which generally exists in the reinforcements adjoining the 

steel girder; M is the moment at the mid-span section; ybar is 

the distance from the longitudinal steel bar to the neutral 

axis in the effective cross-section; and Itx is the effective 

inertial moment of the composite beam, as shown in Fig. 13. 

The reinforcement layer is located in the center of the 

concrete slab, and the thickness of this layer is calculated 

according to the principle of area equivalence of the 

longitudinal reinforcing steel bar in the cross-section. The 

values of bar max and M can be obtained from the analytical 

results from the proposed model. The parameters ybar and Itx 

can be deduced as two expressions with respect to the  
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effective flange width bce, and the specified derivation can 

be found in the Appendix. 

Substituting ybar, Itx, bar max and M into Eq. (21), a cubic 

equation of bce can be established, and the value of the 

effective flange width bce can be obtained with the solution 

of the equation. A dimensionless scalar named as effective 

width coefficient, which is herein defined as the ratio of 

effective width to physical width (bce/bc), is adopted in the 

study. 

 

4.2 Parametric analysis 
 

According to the practice experiment, the reinforcement 

stress will not exceed 50% yield stress but may be less than 

30% yield stress in the normal service stage. The effective 

 

 

 

 

flange width is larger with a smaller reinforcement stress 

than with a larger reinforcement stress. For security reasons, 

the authors choose the stages of 20~50% longitudinal 

reinforcement yield stress as the basis of determining 

effective width in the normal service stage. 

The effects of the concrete slab thickness, longitudinal 

reinforcement ratio, steel girder height, concrete strength 

grade and width-span ratio on the effective width are fully 

analyzed and discussed. In every case, the effective width at 

the mid-span section was calculated at the stage when the 

longitudinal reinforcement stress reached 20%, 30%, 40% 

and 50% yield stress. Two loading patterns, including 

uniform loading and centralized loading at the mid-span, 

are considered. The interfacial slip effect is neglected 

during this analysis work because the slip in actual 

 

Fig. 14 Sensitivity analysis of the effective flange width coefficient: (a) thickness of concrete slab, (b) ratio of longit

udinal reinforcement, (c) height of steel girder, (d) concrete strength grade and (e) slab width/span length 

 

Fig. 15 Effective width comparisons of the proposed formula results and the numerical results: (a) uniformly distributed 

load and (b) concentrated load at mid-span 
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composite bridges is very small for composite beams. In 

this section, the detailed analysis process is written for the 

stage of 50% longitudinal reinforcement yield stress; the 

results in the other stages are similar. The effects of 

different parameters are discussed hereafter. 

(1) Concrete slab thickness: In these cases, the concrete 

slab thickness varies from 50~120 mm, whereas the other 

parameters remain unchanged. With the variation in slab 

thickness, the location of the reinforcement layer varies 

accordingly to keep in the middle layer of the concrete slab. 

The analysis results are shown in Fig. 14(a). 

(2) Longitudinal reinforcement ratio: In these cases, 10 

different longitudinal reinforcement ratios varying from 

0.5~2.5% are discussed, and the other parameters remain 

unchanged, as shown in Table 1. The variation in the 

effective width is shown in Fig. 14(b). 

(3) Height of steel girder: Seven cases with different 

steel girder heights (from 170 mm to 470 mm) are 

considered to study the corresponding effects on effective 

width, as shown in Fig. 14(c). 

(4) Concrete strength grade: The effects of the concrete 

strength grade on the effective width are discussed with the 

interval of 30~60 MPa (compressive strength of a 150 

mm×150 mm×150 mm cube), as shown in Fig. 14(d). 

(5) Width-span ratio: The computed span (2500 mm) is 

held constant, and the effects of the width-span ratio on the 

effective width are discussed. The analytical results are 

shown in Fig. 14 (e). 

Based on the results of the parametric analysis, some 

regularity can be observed and concluded. The effective 

width coefficient decreases with increasing concrete slab 

thickness and longitudinal reinforcement ratio, but the 

effects are not significant. With increasing web height and 

concrete strength grade, the effective width coefficient 

increases slightly. The width-span ratio has a notable effect 

on the effective width, and the effective width coefficient 

decreases with increasing width-span ratio. Moreover, the 

loading pattern is the other important factor for the effective 

width. The effective width coefficient under uniform load is 

larger than that under concentrated load, whereas the trend 

is the same. 

 

4.3 Simplified formula for effective width 
 

According to the results of the parametric analysis, the 

width-span ratio and loading pattern are considered the 

main factors on the effective width. Therefore, the other 

parameters are not considered in this section due to their 

weak influence. The numerical results of the effective width 

coefficient at the stages of 20~50% longitudinal 

reinforcement yield stress are shown in Fig. 15. The 

effective width coefficient decreases with increasing 

reinforcement stress under both loading patterns. The 

reason for this behavior is that the cracking area of the 

concrete slab increases gradually with increasing 

reinforcement stress, leading to a decreasing effective width. 

In addition, the results show that the effective width 

coefficients are quite different under the four stress stages 

for the cases with a small width-span ratio. The maximum 

difference in the effective width coefficients is 

approximately 0.2 when the width-span ratio is 0.1. As the 

width-span ratio increases, the difference in the effect width 

coefficients decreases gradually, and the maximum 

difference in the effective width coefficients is 0.1 when the 

width-span ratio is 1.0. According to the physical 

significance, the effective width should be close to the 

actual concrete slab width when the width-span ratio 

approaches zero. 

Based on the numerical analysis results from the 

proposed model, the effective flange width coefficients of 

the concrete slabs at different stages are calculated. Then, 

the simplified formulas for the effective width coefficients 

at different stages are proposed by fitting with the least-

squares method. The formulas are proposed hereafter. 

(1) Uniformly distributed load 

Stage of 20% yield 

stress: 

 
1.589

c0.186ce

c

1
b Lb

e
b




   (24a) 

Stage of 30% yield 

stress: 

 
1.402

c0.156ce

c

1
b Lb

e
b




   (24b) 

Stage of 40% yield 

stress: 

 
1.276

c0.138ce

c

1
b Lb

e
b




   (24c) 

Stage of 50% yield 

stress: 

 
1.115

c0.133ce

c

1
b Lb

e
b




   (24d) 

(2) Concentrated load at mid-span 

Stage of 20% yield 

stress: 

 
1.451

c0.146ce

c

1
b Lb

e
b




   (25a) 

Stage of 30% yield 

stress: 

 
1.256

c0.130ce

c

1
b Lb

e
b




   (25b) 

Stage of 40% yield 

stress: 

 
1.068

c0.126ce

c

1
b Lb

e
b




   (25c) 

Stage of 50% yield 

stress: 

 
0.972

c0.116ce

c

1
b Lb

e
b




   (25d) 

In the equations above, the range of the width-span ratio 

bc/L is 0.1~1.0. 

The fitting results under different load types and stress 

stages show a good correlation, wherein the coefficient of 

determination R2 is close to 1. Therefore, these simplified 

formulas can be used to calculate the effective flange width. 

 
4.4 Simplified design method 
 

In the negative moment region of composite beams, the 

effective width of the concrete slabs is determined by the 

longitudinal reinforcement stress, while the effective width 

calculation is also needed to obtain the reinforcement stress. 

Therefore, a simplified iteration method for calculating the 

maximum longitudinal reinforcement stress based on the 

effective flange width is proposed. The maximum bending 

moment of the span in the normal service stage is obtained 

through the most unfavorable load cases of actual 

composite bridges. Then, the reasonable effective width and 

the longitudinal reinforcement stress can be obtained by 

using the cyclic iteration method. The calculation flowchart 

is shown in Fig. 16. 
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Fig. 16 Flowchart of the simplified reinforcement stress 

calculation method 

 

 

Hereafter, some tips are mentioned for the reinforcement 

stress calculation process. For the cases in which the 

longitudinal reinforcement stress is less than 20% yield 

stress, the structure is basically in the elastic stage, and the 

effective width formula in Eq. (24) or Eq. (25(a)) can be 

used. Based on practical experience, the longitudinal 

reinforcement stress is generally not greater than 50% in the 

normal use stage. Thus, the formula in Eq. (24) or Eq. 

(25(d)) can be used for cases greater than 50%. For cases of 

20~50%, the interpolation method can be used to calculate 

the effective flange width. 

 

4.5 Comparisons of the crack width between the 
proposed formulas and the design code 

 

In the Chinese design code, the concrete tensile strength 

is not considered in the design of the negative moment 

region, which causes an overestimation of longitudinal 

reinforcement stress. Therefore, the crack width in the 

concrete slab is also overestimated because the crack width 

specified in the design code is positively correlated with the 

reinforcement stress. Based on the simplified formulas and 

design method proposed in this paper, the crack width in the 

concrete is calculated, and the results are compared with 

those from the Chinese design code method (JTG 3362-

2018). 

The structural parameters of the analysis case are shown 

in Table 1, for which the width-span ratio is 0.2 and a 405 

kN·m negative moment occurs at the mid-span. 

Comparisons of the longitudinal reinforcement stress and 

concrete crack width in the simplified formulas and the 

design code are shown in Table 2. 

 

 

 

Table 2 Comparison of the results from the simplified 

formulas and the design code 

 

Longitudinal 

reinforcement 

stress (MPa) 

Concrete 

crack width 

(mm) 

Uniformly 

distributed 

load 

Simplified 

method 
154.55 0.12 

Design code 253.13 0.19 

Concentrated 

load at mid-

span 

Simplified 

method 
181.62 0.14 

Design code 253.13 0.19 

 

 

The results clearly show that the stress calculated by the 

simplified method in this paper is approximately half of the 

reinforcement yield stress, which indicates that the 

composite beam is still in the normal service stage. In 

contrast, the stress obtained by the design code, which 

neglects the contribution of concrete, reaches 70% of the 

yield stress. With respect to the concrete crack width, the 

results calculated by the design code method are close to 

0.2 mm when neglecting the contribution of concrete. With 

the same loading states, the results of the concrete crack 

width obtained by the simplified method in this paper are 

only 0.12 mm and 0.14 mm. Therefore, the concrete crack 

width obtained by the design code is at most 60% larger 

than that obtained by the proposed method. The crack width 

calculated by the design code method is close to the 

maximum crack width limit specified in code (for a type-I 

environment), which is obviously not reasonable. 

 

 

5. Conclusions 
 

In this paper, the effective flange width of steel-concrete 

composite beams in the normal service stage is 

systematically studied, and the specific work is concluded 

as follows: 

 A fiber beam element model for composite beams 

considering the shear lag effect and interfacial slip 

effect is proposed, and the accuracy and applicability 

of the model are fully verified by comparisons with 

experiments of composite beams under positive and 

negative moment loading states. 

 The calculation method of effective width in the 

negative moment region is proposed on the basis of 

longitudinal reinforcement stress. Based on the 

proposed model, the effects of different parameters, 

including the width-span ratio, concrete slab 

thickness, longitudinal reinforcement ratio, steel 

girder web height and concrete strength grade, on the 

effective flange width in the negative moment region 

in the normal service stage are analyzed and 

discussed. A simplified formula for calculating the 

effective width is proposed for the negative moment 

region at the stages of 20~50% reinforcement yield 

stress. 

 Based on the simplified effective width formula, a 

simplified calculation method is proposed for the 
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reinforcement stress in the negative moment region of 

composite beams in the normal service stage. The 

corresponding reinforcement stress and concrete 

crack width are obtained and compared with those 

calculated by the formula recommended in the code. 

This comparison shows that the design code method 

completely neglects the stiffness contribution of the 

concrete, which makes the results calculated by the 

design code significantly larger than those calculated 

by the proposed method. The concrete crack width 

obtained by the proposed simplified analysis method 

is approximately 61% and 73% of those obtained by 

the design code for the uniformly distributed load 

case and the concentrated load case at mid-span, 

respectively. 
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Appendix 

 

The thickness of reinforcement layer tr = Ar/bc, in which 

Ar is the total area of reinforcements. 

Equivalent sectional area moment 

    
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 (26) 

Equivalent sectional area: 
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Distance between the lower flange bottom edge of the 

steel girder and the neutral axis of the equivalent cross-

section 

t t t/y S A  (28) 

Distance between the rebar layer and the neutral axis in 

the equivalent cross-section 

bar c s t/ 2y t h y    (29) 

Inertia moment of equivalent cross-section 
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Maximum longitudinal reinforcement stress 
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