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1. Introduction 
 

The linear theory of elasticity is of paramount 

importance in the stress analysis of steel, which is the 

commonest engineering structural material. To a lesser 

extent, linear elasticity describes the mechanical behavior of 

the other common solid materials, e.g., concrete, wood and 

coal. However, the theory does not apply to the behavior of 

many of the new synthetic materials of the polymer type, 

e.g., polymethyl-methacrylate (Perspex), polyethylene and 

polyvinyl chloride. The linear theory of micropolar 

elasticity is adequate to represent the behavior of such 

materials. For ultrasonic waves i.e. for the case of elastic 

vibrations characterized by high frequencies and small 

wavelengths, the influence of the body microstructure 

becomes significant, this influence of microstructure results 

in the development of new type of waves are not in the 

classical theory of elasticity. Metals, polymers, composites, 

solids, rocks, and concrete are typical media with micro-

structures. More generally, most of the natural and 

manmade materials including engineering, geological and 

biological media possess a microstructure. In the classical 

thermoelasticity (CT) theory due to Biot (1956), the 

equation of the heat conduction is a parabolic type. It could 

predict the infinite speed of the heat propagation in elastic 

media, but it was inconsistent  with experimental 

observation. With this motivation, Lord and Shulman  
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(1967) conduction equation, with the heat flux and its time 

derivative is taken into account. The heat equation 

associated with this theory is essential of a hyperbolic type.  

In the Green and Lindsay theory (1972), established the (L-

S) and (G-L) generalized thermoelasticity theories 

respectively. In the (L-S) theory, a relaxation time 

parameter introduced into the Fourier heat constitutive 

equations were modified by introducing two relaxation time 

parameters. Both the equations of motion and heat 

conduction are of the hyperbolic type. The two theories can 

better characterize thermal disturbances with a limited 

speed of the wave propagation and exhibit the so-called 

second sound effect in solids. The other hyperbolic thermo-

elasticity theory was proposed by Tzou (1995a), called the 

dual-phase-lag model, in which Fourier’s law is replaced by 

an approximation to a modification of Fourier’s law with 

two different time translations for the heat flux and the 

temperature gradient. The temperature dependence is an 

important physical property of materials reflecting the 

elastic deformation capacity of the material when subjected 

to an applied external load. Most of the investigations were 

done under the assumption of the temperature-independent 

material properties, which limit the applicability of the 

obtained solutions to certain ranges of temperature. At high 

temperature, the material characteristics such as the 

modulus of elasticity, Poisson's ratio, the coefficient of 

thermal expansion and the thermal conductivity are no 

longer constants as Lomarkin (1976). In recent years due to 

the progress in various fields in science and technology the 

necessity of taking into consideration the real behavior of 

the material characteristics prosperities as the temperature 

dependent measurements. In the classical theory of 

elasticity, the effect of gravity neglected in a general manner. 

Bromwich (1898) in particular on an elastic globe, was the 

first to study the effect of gravity of the problem of 
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propagation of waves in solids. If the temperature 

dependence of material properties is neglected, this is due to 

significant errors as discussed by Noda (1986). The 

analytical solution of thermoelastic interaction in a half-

space by pulsed laser heating was studied by Othman and 

Said (2014); Abbas and Marin (2017). Extensive studies by 

Ezzat and El-Bary (2017), Abd-Elaziz et al. (2019), Lata 

and Singh (2019), Kumar et al. (2019), Othman and Marin 

(2017), Othman (2003), Othman (2011), Othman et al. 

(2013), Marin et al. (2017), Marin (1997), Marin (1999), 

Said and Othman (2016), Lata et al. (2020), Medani et al. 

(2019), Mirzaei et al. (2019), Arefi (2016a,b), Arefi and 

Zenkour (2016, 2019); Arefi et al. (2016, 2017a,b); 

Loghman et al. (2017), Itu et al. (2019) have discussed the 

temperature-dependence of material properties. 

The purpose of the present paper is to obtain the 

displacement, the temperature, the microrotation, normal 

force stress, and tangential couple stress in a microstretch 

thermoelastic medium under the effect of initial stress and 

temperature dependent. The normal mode analysis is used 

to solve this problem. The distribution of the considered 

variables is represented graphically. A comparison is carried 

out between the temperature, stresses, micro-rotation and 

displacements as calculated on the generalized microstretch 

thermoelastic medium for (CT), (L-S) theories, and (DPL) 

model for the propagation of the waves in a semi-infinite 

generalized thermal microstretch elastic solid. 

 

 

2.  Basic equations 
 

 

Following Eringen (1999) and Tzou (1995b) the 

equations of motion and the constitutive relations in a 

homogeneous isotropic microstretch Thermoelastic solid in 

the absence of body forces, and in the presence of body 

couples, stretch force, and heat sources, with a dual-phase-

lag are given by  

, ,ji j i ttu   (1) 

, ,ijr jr ji j i ttm j      (2) 

2 * * *
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And the constitutive relations are 
*

, 1 , ,( ) ( )ij r r o ij i j j iu T u u            
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* *
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Where
 0 0 1, , , , , , , ,k         are material constants 

  is the mass density 1 2 3( , , )u u u u
 

is the displacement 

vector and 1 2 3( , , )    is the microrotation vector, *
 

is 

the scalar microstretch function, 0,T T  are the small 

temperature increment and the reference temperature of the 

body chosen such that 
0 0 1T T T  , *k  is the 

coefficient of the thermal conductivity, EC the specific 

heat at constant strain, 
1

1 (3 2 ) ,tk     
 

2
(3 2 ) ,tk      j

 
expansion thermal  linear of 

coefficients the are 
1
,t 2t


 
is the coefficients of micro-

inertia,
 

,ij ijm
 

are the components of stress and couple 

stress tensors respectively, 
ij  

is the Kronecker delta,   
is the phase-lag of the gradient of temperature, q  

is the 

phase-lag of heat flux where 0 .q    

 

 

3. Formulation of the problem 
 

We consider a homogeneous isotropic microstretch 

generalized thermoelastic half-space. All the field quantities 

will be functions of the time variable t  and of the 

coordinates x and .z  For the two-dimensional problems, 

we take ( , , ) ( ( , , ),0, ( , , )),x z t u x z t w x z tu  2(0, ( , , ),0),x z t  

*( , , ), ( , , ),x z t T x z t  

Then the equations of motion under the influence of 

temperature-dependent investigation Eqs. (1)-(4), and we 

define the following dimensionless, quantities 

**
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*
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m m
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
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(8) 

Where, 
* 2

* 21
1*

2
,

C C k
C

k

  




 
   and *   is the 

characteristic frequency of the medium. From the 

dimensionless quantities in the basic governing equations 

we obtain, (dropping the dashed for convenience), and we 

assume that 
*

0 0 0 02 ( ), ( ), ( ), ( ),f T f T f T f T          
 

0 0 1 1 10( ), ( ), ( ), ( ),k k f T f T f T f T        
 

0 01 1 3 0( ), ( ), ( ).f T f T f T         

Where ( )f T is a non-dimensional function depending on 

temperature, during the case of temperature-independent 

modulus of elasticity ( )f T  can be taken in the form
 

*
0( ) 1 ,f T T  where

*
 
is an empirical material constant 

and we introduce the potential functions ( , , ),q x z t  

( , , )x z t  such that  

, , , , .,x z z xu q w q      (9) 

From (9) in (1)–(4) we get
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The constitutive relations are 

*
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The constants , 1 26ia i    are defined in Appendix A. 

 

 

4.  solution of the problem 

 

The solution of the considered physical variable can be 

decomposed in terms of the normal modes in the following  
*

2{ , , , , , , }( , , )ij ijq T m x z t   

  
          *

2

( )
{ , , , , , , }( ) .ij ij
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(24) 

Where,
 

b  is the wave number and   is the frequency. 

From (24) in Eqs. (10)-(14) we obtained 

2 *
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Eliminating *,q   and T  between Eqs. (25)-(27), we get 
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Equation (29) can be factored as    
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Where 2 ( 1,2,3)nk n   are the roots of the characteristic 

equation of the homogeneous equation of Eqs. (25)-(27). 

The general solution of Eqs. (25)-(27) is given by 
3

1

( , , ) exp( ),n n
n

q x z t M k z t ibx


     (32) 

3
*

1

1

( , , ) exp( ),n n n

n

x z t H M k z t ibx 


   
 

(33) 

3

2

1

( , , ) exp( ).n n n

n

T x z t H M k z t ibx


     (34) 

In a similar manner eliminating 
2,   between Eqs. 

(28) and (29), we obtain the differential equation 

4 2
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Eq. (35) can be factored as 

2 2 2 2
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Where 2 (m 5)4,mk   are the roots of the characteristic 

equation of the homogeneous equation of Eqs. (28) and (29). 

The general solution of Eqs. (28) and (29) is given by   
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To obtain the components of the displacement vector, 

from (32) and (37) in (9) 
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The stress tensor and the couple stress tensor and the 

micro-rotation from (15)-(23), dimensionless quantities are 

given by 
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Where
 

, ( 1,...,9),inH i   are defined in Appendix B. 

 

 

5. Boundary conditions 
  

In order to determine the parameters 

( 1,2,3,4,5),jM j   we consider the boundary conditions 

as follows 

( ) *
1, , 0.t ibx

xx z xz zyp T f e m         (51) 

From (51) in (34), (42), (45), (48), (49) and solving these 

equations for , ( 1,...,5)jM j 
 
 

by using the inverse of the matrix method as follows 
1

21 22 231 1

31 32 33 34 352
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0
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    
    
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    

   
    

 (52) 

 

 

 

6. Special cases of microstretch thermoelastic 
theory and particular cases 
 

(i) Equations of the microstretch thermoelastic with DPL 

theory when 0.q    

(ii) Equations of the microstretch thermoelastic with the L-S 

theory when 0, q      

(iii) Equations of the microstretch thermoelastic with CT 

theory when 0q  
 

 

 

7. Numerical results and discussions 
 

 The analysis is conducted for a magnesium crystal-like 

material. Following Eringen (1984), the values of micro-

polar parameters are, 
10 2 10 2 10 2

3 3 19 2 9

9.4 10 , 4.0 10 , 1.0 10 ,

1.74 10 , 0.2 10 , 0.779 10 , 1.

Nm Nm k Nm

kgm j m N x

 

 

  

   

     

      

Thermal parameters are given by, 
3 1 1 * 6 1 1 1 5 1

1
1.04 10 , 1.7 10 , 2.33 10 ,E tC jkg k k Jm s k k           

5 1
0

2
2.48 10 , 298 .t k T k      

The microstretch parameters are taken as, 
9 10 2 10 2

0 0 10.779 10 , 0.5 10 , 0.5 10 .N Nm Nm           

By using the numerical technique, the distribution of the 

real part of the displacement component ,w  the 

temperature ,T  the scalar microstretch function
 

*
 , the 

stress component
 

,xx
 
the stress component

 
,xz  and the 

microrotation comparisons the 31-2s in Fig given is ,
*

x

have established for the theories CT, DPL, and L-S in two 

cases: 

(i) With and without initial stress [ 0,p   0.001,p   

* 0.001517  ] as shown in the Figs. 2- 7.  

(ii) For two different values of 
*

 ( * *
0, 0.001517   ) 

as shown in the Figs. 8-13. 

Fig. 2 shows that the displacement component w in the 

context of the three theories (CT, DPL, and L-S) at 

0.001p   begins from a negative value and increases to 

the maximum value in the range 0 .82z   . It is clear 

from this figure that, the values of  w at 0p 
 
are greater 

compared to those for the values of w at 0.001p   for 

three theories, while the values are the same in the two 

cases in the range .z   Fig. 3 depicts that the variation 

of the temperature T begins from negative value and 

increases to the maximum value in the range z    , 

then decreases to the minimum value in the range 

z     All the theories have the same behavior, the 

values of are higher than 0.001p 
 
at

 
T  that of 0p  , 

while the values are the same in the two cases in the range 

.z  Fig. 4 explains the distribution of the scalar micro 

stretch function
 

*
  in the context of the three theories. The 

values of  xx  decrease to minimum values in the range 

0.33 z   xx
 
but the values of in 0p  at xx  of 

that than higher are 0.001,p  at
 xx  the range 

0 z    while the values are the same in the two cases 

in the range .z   Fig. 6 depicts the distribution of the 

stress component
 xz in the context of the three theories. 

The values of and  zero from begin xz
 

satisfy the 

boundary condition and all the theories have the same 

behavior. 
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Fig. 1 Geometry of the problem 

 

 

 
 

Fig. 2 Distribution of the displacement component w in 

the presence and absence of initial stress 
 

 

 
 

Fig. 3 Distribution of the temperaturein the presence T   
and absence of initial stress 

 

 
 

Fig. 4 Distribution of the scalar micro-stretch function
*

  
 

in the presence and absence of initial stress 
 

 
 

Fig. 5 Distribution of the stress component xx in the 

presence and absence of initial stress
 

 

 
 

Fig. 6 Distribution of the stress component xz in the 

presence and absence of initial stress 
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Fig. 7 Distribution of the microstress 
*

x  in the 

presence and absence of initial stress 

 

 
 

Fig. 8 Distribution of the displacement component w at 

two values of 
*
.  

 

 
 

Fig. 9 Distribution of the temperature T at two values of 
*
.  

 

 
 

Fig. 10 Distribution of the scalar micro-stretch function 
*
.  at two values of 

*
  

 

 
 

Fig. 12 Distribution of the stress component xz at two 

values of 
*
.  

 

 
 

Fig. 13 Distribution of the microstress 
*

x at two values 

of 
*
.  
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