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1. Introduction 
 

Nowadays, structural material topology optimization 

problems are significant and demanding in many 

engineering fields as an innovative numerical and design 

approach for effectively finding the optimal structural 

layout under a reasonable material quantity. In detail, 

topology optimization has been widely used for designing 

mechanical components and other engineering applications 

such as macrostructures (Liu et al. 2016), heat dissipating 

device (Yi and Liu 2018), truss (Yang et al. 2018), cracked 

structure (Shobeiri 2015), plate-like structures (Banh and 

Lee 2019, Nguyen et al. 2018, Banh and Lee 2018b) and 

some other applications (Lee et al. 2010, Zuo et al. 2007, 

Doan and Lee 2019, Qiao et al. 2016). The pioneering study 

by Bendsoe and Kikuchi (1988) is to find an optimal 

material density distribution within a prescribed design 

domain. By using separate material phases, topology 

optimization is extended for multiple materials aiming to 

find the optimal structural layout under a given material 

most effectively. There have been a lot of researches 

exploiting and developing the advantages of multi-material  
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topology optimization such as a topology synthesis of 

multiple materials (Alonso et al. 2014), an alternating 

active-phase algorithm (Cottrell et al. 2009, Tavakoli and 

Mohsenind 2014), viscoelastically damped structures under 

time-dependent loading (Yun and Youn 2017), a generalized 

Cahn-Hilliard (C-H) model (Zhou and Wang 2007) and so 

on. To visualize the distribution of optimal multiple material 

densities, an alternating active-phase algorithm through the 

standard binary phase for topology optimization was 

presented by Tavakoli and Mohsenind (2014). Zhou and 

Wang granted a so-called phase-field method for topology 

optimization using multiple materials based on the Cahn-

Hilliard (C-H) model (2006a, 2006b).   

The previous studies usually considered structures with 

a continuous displacement field through the standard finite 

element method. This study treats the discontinuous 

displacement field created by given cracks via eXtended 

IsoGeometric Analysis to reduce the performance loss of 

discontinued models by using multiple materials. 

Essentially, structures are defined to get a continuous 

displacement field and are assumed not to include regions 

such as explicitly cracks. In other words, when a 

discontinuous displacement field such as crack problems is 

ignored, optimal topology results of the structure may lose 

design performance abilities due to substantially slight 

cracks or errors. It may be the cause of the insufficiency of 

structural performance in industrial applications. 
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Isogeometric analysis (IGA) has bridged the geometric 

division between computer-aided design and the finite 

element method to analyze structures' behavior. 

Isogeometric analysis can present exactly complex 

geometric domains and satisfy the continuous condition of 

solution fields (Khatir and Abdek 2018, Khatir et al. 2017, 

2019, 2019b, 2020). It makes IsoGeometric Analysis 

become a compelling method for simulating structures, 

especially for those related to high order differential 

equations. Due to the accuracy of analytical solutions of X-

IGA is superior to a conventional X-FEM (Khatir and 

Abdek 2019), this method guarantees the reliability of the 

optimal multi-material retrofitting against external cracks 

through using topology optimization. The critical concept of 

IsoGeometric Analysis was first outlined by Hughes et al. 

(2005). With NURBS's primary advantages of eliminating 

the gap between computer-aided design and finite element 

analysis, an analysis model represents exact structural 

geometry. It is widely applied from engineering disciplines 

electromagnetics (Buffa et al. 2010), composite material 

(Nazargah 2014), fracture mechanics (Shojaee and 

Daneshmand 2015) to optimization fields (Qian 2013, Wall 

et al. 2008, Qian 2010). Inspired by the simulation of crack 

propagation problems without remeshing of eXtended 

Finite Element Method (X-FEM), Benson et al. (2010) 

discussed the combination of eXtended Finite Element 

Method and IsoGeometric Analysis as a potential capability 

of a generalized the finite element formulation. Nguyen and 

Bordas (2005) presented the IsoGeometric Analysis applied 

to Finite Element Method and related to computer 

implementation aspects. Moes et al. (2012) proposed a so-

called eXtended IsoGeometric Analysis (X-IGA) to 

simulate of stationary and propagating cracks. 

On a numerical simulation of topological problems 

optimized for cracked structures, Shobeiri (2015) presented 

a bi-directional evolutionary structural optimization method 

(BESO) for a single material. Topology optimization for 

cracked structures using multiple materials and an eXtended 

Finite Element Method was proposed by Banh and Lee 

(2018a). The present study also deals with a numerical 

solution to distributing multiple material densities in a given 

cracked structure. However, efficient mechanical 

descriptions of material discontinuous boundaries are 

produced using an eXtended IsoGeometric Analysis, i.e., an 

interaction of IGA and X-FEM. In this approach, basic 

functions of Non-Uniform Rational B-Splines play the same 

role as shape functions of Finite Element Method for the 

geometrical crack description of structures. At the same 

time, control points and patches are dealt with as nodes and 

elements, respectively. Besides, optimal topology changes 

conforming to various crack information are also 

investigated to show the suggested approach's efficiency 

and feasibility.  

This study contributes to as follows: (1) The accuracy of 

analytical solutions of X-IGA over the crack problem, 

which is superior to the conventional X-FEM, guarantees 

the reliability of the optimal multi-material distribution 

retrofitting against cracks through using topology 

optimization, and (2) The use of different multi-materials 

within a given external cracked structure produces the best 

solution of structural performance, such as stiffness 

resulting from the present topology optimization method 

based on eXtended IsoGeometric Analysis. Thanks to the 

contributions as mentioned above, in the near future, this 

study makes toward 3-dimensional models with constrained 

parameters to gain the optimal computer-aided design 

before uploading on, especially, a 3-dimensional printing 

system.  

The remainder of this study is organized as follows. 

Section 2 introduces a brief on several fundamental 

components and the methodology of constructing a discrete 

approximation to the displacements of X-IGA for linear 

elastostatic structures. In detail, multi-material densities in a 

patch using X-IGA, optimization models, compliance 

formulation, and sensitivity analysis are described in 

Section 3. The computational procedures of the present 

method are described in Section 4. Numerical examples of 

the present method are investigated and discussed in 

Section 5, including comparisons of analytical solutions X-

IGA and X-FEM. And the conclusions are drawn in Section 

6.  

 

 

2. Formulations of eXtended Isogeometric Analysis 
(X-IGA) for crack structures 

 

In this section, some fundamental concepts of eXtended 

IsoGeometric Analysis and its implementation for external 

plane linear crack problems are presented. More details 

could be found in Moes et al. (1999), Nguyen and Bordas 

(2005), and Ghorashi et al. (2012). 

 

2.1 Fundamental formulations of NURBS 
 
NURBS is one of generalization of B-splines which in 

turn are piecewise polynomial curves composed by the B-

spline basis functions. A knot vector 𝜩 =

{𝜉1, 𝜉2, … , 𝜉𝑛+𝑝+1} is defined as a non-decreasing sequence 

of parameter value 𝜉𝑖 ∈ ℝ, where 𝜉𝑖 is called i-th knot in 

the parametric space; p and n are the order and the number 

of basic functions, respectively. The univariate B-spline 

basis functions  ,i pN   are defined by the Cox-De Boor 

recursion formula (Cottrell et al. 2009) on the 

corresponding knot vector given by as follows 

1
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Derivatives of the B-spline basis function can be 

formulated as 
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Fig. 1 describes an example of a B-spline function with 

knot vector  0,0,0,025,075,1,1,1Ξ . Based on two 

parametric dimensions ξ and λ associated with two-knot 

vectors  1 2 1, , , n p    Ξ  and 

 1 2 1, , , m q    Λ , the B-spline surface can be 

written as 

       , , ,

1 1 1

, ,
n m n m

B

i p j q i j I I

i j I

N M N     


  

  S P P  
(4) 

where  ,i pN   and  ,j qM   are univariate B-spline 

basis functions;  ,B

IN    is B-spline shape function 

associated with the node  1I i p j   ; P is a 

bidirectional control net. 

To more accurately describe complex geometries or 

arbitrary shapes, a new parameter 
,

g

i jw  is added, which 

denotes an individual weight to control the geometric 

boundary. Finally, NURBS basis functions for a NURBS 

surface can be expressed as 
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(6) 

 

2.2 Formulations of eXtended Isogeometric Analysis 
 

In eXtended IsoGeometric Analysis, the displacement 

field approximation up at  1 2,X Xx  can be presented 

as 
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(7) 

Sets of enrichment elements around cracks are called 

enriched tip node 
TS  and step enriched nodes 

LS . Iu  

denotes the DOFs vector at the I-th control point of standard 

Finite Element Method. Ja  and Kb  are enrichment 

DOFs vector parts as shown in Fig. 2.  

H denotes Heaviside function which has role as a 

discontinuous function 
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where 
*

x  is a given point. Figure 3 illustrates an 

example of the enrichment function for the elements 

cut by the crack with 𝜩 = {0,0,0,1/3,2/3,1,1,1}. 

Asymptotic crack tip function  ,r   with 

1,4   is used as enrichment functions to improve the 

accuracy of the solution by enhancing the description of 

singular fields close to the crack tip 
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(9) 

with r  and   which are local polar coordinates in 

physical space as follows 
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where  1 2,x x  is local coordinates at the crack tip 

 1 2,T Tx xx  

 

  

(a) 2-dimensional B-splines (b) 3-dimensional B-splines 

Fig. 1 B-spline basis functions within one and two dimensions 
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where ∅ is the crack inclination angle with respect to the 

horizontal line at the tip and the following physical 

coordinates X for a typically point in the parametric 

coordinate. 

   
1
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N
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In this study, a so-called sub-triangle technique from X-

FEM is generated to overcome the reduction of integration 

accuracy, as shown in Fig. 4, whose boundaries match the 

external plane crack's shape. Accordingly, in each element 

loop of a weak form, integration cut by cracks is replaced 

by sub-triangles. 

 

 

3. Multi-material topology optimization formulations 
for crack problems materials based on X-IGA 

 

 

 

 

 
Fig. 5 shows a typical design domain-schema of 

topology optimization problem by using multiple materials, 

where 
m

s  and 
m

v  represent solid and void materials, 

respectively. Being similar to standard Finite Element 

Method, the entire domain is discretized into patches. 

According to Bendsøe and Sigmund (1990), void material is 

also considered the same role of a separate material phase. 

Therefore, modified SIMP version of linear interpolation 

for multi-material is expressed by 

 
1

0

1

n
p

i i

i

E E 




  (13) 

where   and p denote design variables and a penalization 

factor, respectively. 
0

iE  is Young’s modulus 

corresponding to material phase i  and 1ii
  . By 

using alternating active phase algorithm in conjunction with 

the block Gauss-Seidel method, a multiphase topology 

optimization problem with multiple volume fraction 

constraints is generated. Moreover, only two phases ‘a’ and 

‘b’ are activated in each sub-process, the remaining phases  

 

Fig. 2 Enrichment control point nodes of a given crack model 

  
(a) The Heaviside function (b) NURBS function 

Fig. 3 An example illustrates the enrichment function for the elements cut by the crack 
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are fixed. Note that the density of active phase ‘a’ in each 

binary phase topology optimization subproblem acts as the 

only design variable. Finally, the density of phase ‘b’ can be 

easily calculated through the density of corresponding 

phase ‘a’ by the density summation formulation of two 

active phases at each point x  
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1, ,
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a b i

i i a b
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     (14) 

 

3.1 Topology optimization model by using multiple 
materials 

 
By using NURBS basis function of Eq. (5) for a patch p, 

the displacement function  ,p u vu  can be expressed 

as 
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where  , ,k lR    is the rational term with 

    1 1, , ,i i j j      
   . 

The general compliance formulation C in structural 

topology optimization problem by using multiple materials 

can be mathematically stated as 
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where iV  is a volume fraction in each material with 

1: 1i n  , here 1ii
V  . U is a global control point 

displacement by cracks. F is a global load vector, and a 

global stiffness matrix is denoted by K. 

 

Fig.4 Sub-elements and Gauss points is re-selected by the influence of crack 

 

Fig. 5 Typical design domain schema of topology optimization by using multiple materials 
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3.2 Stiffness and sensitivity formulation by using X-

IGA 
 

According to Eqs. (7) and (13) into Eq. (16), by using a 

standard Galerkin method procedure, stiffness matrix of 

cracked structures for a single patch is formulated as 

follows. 
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where t  is thickness. 
0

kD  is material property matrix 

corresponding to phase k-th including Poisson’s ratio ν and 

nominal elastic modulus E. 

 

0
0

2

1 0

1 0
1

0 0 1 / 2

k
k

E

v







 
 

  
  

D  (18) 

J is Jacobian matrix describing the relationship between 

physical coordinate system and NURBS parameter space as 

shown in Fig. 6 
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in which 
1XP  and 

2XP  are compositions of control nets. 

The deformation of matrix B can be written as follows. 
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where 
std

B  and 
enr

B  denote a standard strain-

displacement and enriched parts of matrix B, respectively. 

I  represents Heaviside function ( I H  ) and 

asymptotic basis functions ( I

  ). 

In each patch, a local volume fraction is assumed to 

have a unit volume / 1p

aV    . By differentiating Eq. 

(14), sensitivities of compliance C for topology 

optimization in terms of multiple materials can be expressed 

 
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where 
p

a  and 
p

U  are a density of phase ‘a’ and an 

element displacement vector of patch p-th, respectively. 

Derivative of elemental stiffness in terms of design variable 

‘a’ is written as 
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where , , ,r s  u a b . 

Finally, the filtered sensitivity of compliance / p

aC    

with respect to density of phase ‘a’ can be derived as 
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(24) 

where the convolution operator H is based on the distance 

to neighborhood elements as 

   min mindist , | dist ,eiH r e f N e f r    . 

Furthermore,  dist ,e f  is the distance between the 

center of element e and f. The neighborhood elements are  

 

Fig. 6 Diagrammatic interpretation of mappings from a parametric to a physical space 
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defined within a circle with the filter radius minr  as shown 

in Fig 7. 

 

 

4. Computational procedure algorithm of the present 
method 
 

Topology optimization produces optimal material 

distribution in a given design domain under constraints so 

that the optimal design offers the best structural 

performance for a given physical cracked problem. In this 

section, a briefly summarized algorithm of the present 

method using the combination of X-FEM and IGA, i.e., X-

IGA as an analysis model, is described in Fig. 8. 

A suitable reference domain with given loading 

directions, fixed boundary conditions, and a finite element 

mesh is determined in advance as an initialization step to 

perform eXtended IsoGeometric Analysis steps. From Eqs 

(17) to (22), the sensitivity of compliance regarding multi-

material design variables is calculated. And then, the 

sensitivity filtering is applied to avoid the checkerboard 

phenomena. Finally, multi-material design variables are re-

updated through these continuous iterative processes until 

arriving at the desired optimal convergence. 

 

 

5. Numerical examples and discussion 
 

First, an accurate modeling benchmark test for a specific 

edge crack in a finite tensile plate is executed and compared 

to assess the present method's performance. To verify the 

proposed method's accuracy, numerical results are 

compared with results obtained by the typical eXtended 

Finite Element Method. Domain-based interaction integral 

is used to obtain the individual SIFs-application of path 

independent integral to derive the SIFs results in a 

sufficiently accurate technique. The evaluation of SIFs by 

domain-based integration integral uses only those field 

variables, not in the crack tip close vicinity. This interaction 

integral proves beneficial while obtaining the individual  

 

 

SIFs from a solution only if the auxiliary field is judiciously  

chosen. In this example, the normalized stress intensity 

factor (SIF) can defined as  /I IK K a   

(Mohammadi 2008). Fig. 9 shows the verification of 

eXtended IsoGeometric Analysis 's accuracy and superiority 

compared with the conventional eXtended Finite Element 

Method in cracked structure analysis. As can be seen, the 

analytical value of eXtended IsoGeometric Analysis using a 

second basis function (rather than that of the first-order low 

function) is more accurate with better convergence in 

comparisons with X-FEM. By using p-refinement, 

eXtended IsoGeometric Analysis can achieve high accuracy 

with even coarse meshes by controlling the field 

approximation order. In general, this method allows for 

analyzing the structure and provides a significant reduction 

in computational cost. 

Next, three examples of topologically optimizing a 

cantilever beam structure of a plain stress state with multi-

material and initial external cracks are considered, as shown 

in Figs. 10, 15, and 19. A design domain in which an 

assumed crack such as a natural crack in practice is 

allocated is given, and it is a non-dimensional rectangular 

space with L × H = 30 × 10. The left side of the domain is 

fixed, and the downward force with non-dimensional 

magnitude F = 200 is applied at the bottom point of the free 

end. The penalization factor, radius filter minr  and 

Poisson’s ratio for variable materials are fixed to be 3.0, 8.0 

and 0.3, respectively. In this study's scope, first-order basis 

functions along with 49 × 17 control points are used to 

approximate displacement fields. The mesh of 51 × 19 

patches and the weight value { iw } = 1 are used in all 

examples. The optimal results are investigated for cases of 

single and two materials. Properties of all materials are 

shown in Table 1. Here, Young’s modulus and volume 

fraction of void material are 
210vE   and 

,
1v kk k v

V V


  , respectively, for all examples. 

 

 

Fig. 7 Relationship between parameters in the convolution operator eiH . 
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5.1 Optimal topology generation results under a 
mechanical description of Initial crack’s length 

 

Two lengths of each crack cl  of 2.125 and 4.125 are 

considered, as shown in Fig. 10. During every optimization 

iteration for all examples, the volume fraction is controlled 

to be 40% of the initial total volume. 

Figs. 11 and 12 describe optimal topologies for single 

material and two materials using X-IGA and X-FEM,  

 

 

respectively. As can be seen, the length of one crack  

significantly affects optimal topology and shape 

distributions varying material densities within the design 

domain. Stresses within the design domain tend to increase 

close a tip crack, load and supported area. Therefore, 

material density distribution also tends to concentrate 

around the tip crack to hold structure stability. The results of 

X-IGA are mostly similar to those by X-FEM concerning 

optimal topology, even though converged compliance 

values are somewhat different. According to Fig. 9, Optimal  

 

Fig. 8 Flowchart of extended isogeometric based topology optimization for crack structures by using multiple materials 
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Fig. 9 Accurate modeling results of normalized stress intensity factor with a/L = 0.275 

  
(a) Short external linear crack (b) Long external linear crack 

Fig. 10 Problem definition evaluating the influence of one crack length in a given design domain 

  
(a) Short length crack (X-IGA), C = 82.369 (b) Short length crack (X-FEM), C=63.512 

  
(c) Long length crack (X-IGA), C = 123.651 (d) Long length crack (X-FEM), C = 102.571 

Fig. 11 Optimal single material topologies 

Table 1 Caption 

Material properties 
Number of materials 

(a) One (red) (b) Teo (red, blue) 

Young’s modulus 
0 200 3rE e  

0 0200 3, 400 3r bE e E e   

Poisson’s ratio 0.3v   

Volume fraction 40%rV   15%, 25%r bV V   
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results of X-IGA may be more reliable and exact than those 

of X-FEM in case of crack problems. It demonstrates the 

numerical stability of X-IGA concerning topologies 

optimized with multiple materials. 

 

 

 

 

 

Fig. 13 shows convergence histories of objective 

functions relying on crack’s length with 40% of initial 

volume. In this result, longer cracked structure results in 

less stiff converged compliance. 

 

  
(a) Short length crack (X-IGA), C = 63.023 (b) Short length crack (X-FEM), C=49.520 

  
(c) Long length crack (X-IGA), C = 100.004 (d) Long length crack (X-FEM), C = 82.594 

Fig. 12 Optimal two-materials topologies 

  
(a) Short external linear crack, single material (b) Short external linear crack, two materials 

  
(c) Long external linear crack, single material (d) Long external linear crack, two materials 

Fig. 13 Convergence histories of objective functions dealing with X-IGA and X-FEM in example 1 
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For the purpose of comparing with previous example 1 

results, Fig. 14 describes optimal topologies and converged 

curves in the typical case of non-crack structures for single 

material and two materials. 

 

5.2 Optimal topology generation results under a 
mechanical description of Initial crack’s location 

 
For the purpose of the effect of crack’s location, two 

location cases of one initial crack are considered, such as d 

= 16 and d = 8 with the same crack length 2.125l   as 

shown in Fig. 15.  

Figs. 16 and 17 show optimized topologies considering 

single material and two materials in different crack 

locations. Material density distributions are focused near the 

given crack area to retrofit stiffness reduction due to stress 

concentration occurred by load effects. 

 

 

 

 

 

Fig. 18 shows convergence histories of objective 

function depending on one crack's location under a given 

volume fraction of 40%. As can be seen, converged 

compliance values of the crack’s location close to fixed 

boundaries are more extensive than those far from fixed 

boundaries. Moreover, the long distance of one crack results 

in less stiff converged compliance due to boundary 

conditions in both single and two material cases. As shown 

in Figs 11, 12, and 16, 17, it is common to be confused 

about compliance accuracy. As figured out in Fig. 9, both 

the conventional X-FEM and the X-IGA provide 

displacement results below the exact solution in elastic 

problems. By using the same analysis mesh, higher-order 

elements produce larger displacement results than those of 

lower- order ones. Due to strain energy formulation, 

   1/ 2 1/ 2T TC  U KU U F , the displacement 

vector U is dependent on discretization meshes and element 

 

 

(a) Non-crack (FEM), single material, C = 54.150 (b) Non-crack (FEM), two materials, C=35.519 

 
(c) Converged curves of non-crack (FEM) in case single material and two materials 

Fig. 14 Optimal results of single material and two materials in case non-crack finite element method 

  
(a) External linear crack with long distance (b) External linear crack with short distance 

Fig. 15 Problem definition evaluating the influence of one crack location in a given design domain 
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types used in the analysis, and F is fixed. Therefore, lower 

bound solutions of the strain energy to its exact solution are 

obtained and indicated by Lieu and Lee (2017). In other 

words, topology optimization with X-IGA produces higher 

compliance converged values than with standard X-FEM 

but more accurate outcomes in terms of multi-material 

topology optimization than conventional X-FEM. 

 

5.3 Optimal topology generation results under a 
mechanical description of Initial crack’s angle 

 

Crack angle ( ) cases of 45 ,90 ,135    and 170  

are considered as shown in Fig. 19 using the same crack 

with short distance d = 6 and long length a = 4.125. 

Figs. 20 and 21 show optimized topology results 

considering single material and two materials using four 

types of crack’s angle. As can be seen, the use of multiple 

materials may produce stiffer structures than a single 

material.  

Figu. 22 describes convergence histories of objective 

functions. Converged compliance gradually increases when 

the angle changes from   to 90 .  The largest 

compliance value is 123.779 for a single material and 

99.648 for two materials at the same angle 90   . 

Moreover, assuming that 90     with the same  

 

 

 

magnitude  , compliance values of  < 0 are larger than 

those of   > 0. It shows that compliance values of 

structure rely on the change of crack’s angle. 

 

 

6. Conclusions 
 

This study proposes a novel numerical approach of 

multi-material optimal topology design based on eXtended 

IsoGeometric Analysis for crack problems. Several 

numerical examples are investigated for topologically 

optimal multi-material beam with variable crack 

information such as the length, distance, and angle. This 

study shows that eXtended IsoGeometric Analysis is also a 

suitable analysis model, which produces multi-material 

topology optimization robustness. The mechanical 

description of X-IGA evaluates a numerical interaction 

between cracks and multiple materials for topology 

optimization in comparisons with X-FEM. As a result, 

despite giving the higher values of compliances, the X-IGA 

method may contribute to more accurate outcomes in terms 

of topology optimization than X-FEM. Additionally, it is 

verified that optimal structures may retrofit a higher 

stiffness than single-material structures by using multiple 

materials. 

  
(a) Long distance crack (X-IGA), C = 72.391 (b) Long distance crack (X-FEM), C = 58.235 

  
(c) Short distance crack (X-IGA), C = 79.407 (d) Short distance crack (X-FEM), C = 61.575 

Fig. 16 Optimal single material topologies 

  
(a) Long distance crack (X-IGA), C = 52.517 (b) Long distance crack (X-FEM), C = 43.653 

  
(c) Short distance crack (X-IGA), C = 60.075 (d) Short distance crack (X-FEM), C = 47.986 

Fig. 17 Optimal two materials topologies 
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For the promising possibility of industrial application, 

topology optimization can improve 3-dimensional design 

models with constrained parameters to obtain optimized 

CAD models uploading it on a 3D printing system. 

Therefore, this paper gives intuitive and useful information 

to CAD designers for modeling of X-IGA, structural 

engineers for reinforcement by topology optimization, and 

manufacturers for multi-material products. 

 

 

 

Acknowledgments 
 

This research was supported by a grant (NRF-

2020R1A4A2002855) from NRF (National Research 

Foundation of Korea) funded by MEST (Ministry of 

Education and Science Technology) of Korean government. 

 

 

  
(a) Long distance =16, single material (b) Long distance = 16, two materials 

  
(c) Short distance = 8, single material (d) Short distance = 8, two materials 

Fig. 18 Convergence histories of objective functions dealing with X-IGA and X-FEM in example 2 

 

Fig. 19 Problem definition evaluating the influence of one crack angle in a given design domain 
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(a)  =45  , C = 90.019 (b)  =90  , C = 123.779 

  

(c)  =135  , C = 101.362 (d)  =170  , C = 73.301 

Fig. 20 Optimal single material topologies 

  

(a)  =45  , C = 65.957 (b)  =90  , C = 99.648 

  

(c)  =135  , C = 92.625 (d)  =170  , C = 70.8881 

Fig. 21 Optimal two materials topologies 

  
(a) Crack angle change and single material (b) Crack angle change and two materials 

Fig. 22 Convergence histories of objective function in example 3 
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