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Wave propagation of FG polymer composite nanoplates reinforced with GNPs
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Abstract. This study examines the wave propagation of the functionally graded polymer composite (FG-PC) nanoplates
reinforced with graphene nanoplatelets (GNPs) resting on elastic foundations in the framework of the nonlocal strain gradient
theory incorporating both stiffness hardening and softening mechanisms of nanostructures. To this end, the material properties
are based on the Halpin-Tsai model, and the expressions for the classical and higher-order stresses and strains are consistently
derived employing the second-order shear deformation theory. The equations of motion are then consistently derived using
Hamilton's principle of variation. These governing equations are solved with the help of Trial function method. Extensive
numerical discussions are conducted for wave propagation of the nanoplates and the influences of different parameters, such as
the nonlocal parameter, strain gradient parameter, weight fraction of GNPs, uniform and non-uniform distributions of GNPs,

elastic foundation parameters as well as wave number.
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1. Introduction

Due to its excellent mechanical and thermal properties.
Graphene is regarded as a revolutionary material of the
future with broad application prospects in the fields of
micro-nano processing, energy and biomedicine. In recent
years, the buckling/bending (Arefi et al. 2019, Jiao and
Alavi 2018, Yang 2020) and vibration (Aditya 2019, Arefi
2018, Liu et al. 2020, Sahmani et al. 2018) of structures
reinforced by graphene nanoplatelets (GNPs) and graphene
platelets (GPLs) have been systematically analyzed by
some researchers.

However, the researches on the wave propagation
characteristics in macro, micro and nano structures
reinforced by GPNs or GPLs are very limited. Through
literature search, in the existing literature, using classical
mechanical theory, Gao et al. (2020) studied the
propagation characteristics of elastic waves in the square
plate reinforced by porous GPLs, they considered different
porosity and GPL distribution, and Halpin Tsai model is
used to characterize the material properties, according to
different plate theories, the wave equations are derived, and
the dispersion relation of wave in plate is obtained, and the
influences of GPL volume fraction and geometry on
dispersion relation are analyzed. Li ef al. (2020) proposed a
semi analytical method to study the wave propagation
characteristics in the GPLs reinforced plate, based on the
Reissner Mindlin plate theory and Hamilton principle, the
wave equations are derived, and the non-uniform rational
B-spline method is used to transform the equation into the
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eigenvalue problem. Employing the Reddy's high-order
shear deformation theory and classical mechanics theory,
Ebrahimi et al. (2019) analyzed the wave propagation of
porous GPLs reinforced composite shells with the help of
the first-order shear deformation theory. It is worth
mentioning that the above articles about the wave
propagation of plates and shells are all based on the
classical continuum mechanical theory.

In fact, the existing articles about wave propagation of
structures reinforced by GPLs or GPNs based on continuum
mechanics are very limited, and the articles about wave
propagation of structures reinforced by GPLs or GPNs
based on non-classical mechanics are even more limited.
Among these, within the framework of nonlocal theory
(Eringen 1998), Ebrahimi and Dabbagh (2018) discussed
the characteristics of wave propagation in graphene plates
(GPLs) reinforced nanoplates. It is worth mentioning that
the nonlocal theory contains only one size parameter, which
can capture the mechanical characteristics of some
nanostructures. However, this theory can only characterize
the stiffness softening effect, and it cannot account for the
stiffness strengthening effect. Therefore, the mechanical
characteristics of some nanostructures cannot be
characterized. Based on the nonlocal strain gradient (NSG)
theory (Lim et al. 2015). It is worth mentioning that NSG
theory is totally different from traditional classical theory
(Moradi Mansouri 2012, Hadji, et al. 2018) and non-
classical theory, such as non-local theory (Eringen 1998,
Barretta and de Sciarra, 2019, Barretta et al. 2019, Civalek
and Demir 2016, Civalek et al. 2020, Eltaher and Mohamed
2020a, Emam et al. 2018, Eltaher et al. 2020b, Uzun and
Civalek 2019, Taherifar ef al. 2019, Numanoglu et al. 2018,
Heydari 2018, Heydari and Shariati 2018, Malikan et al.
2020b), strain gradient theory (Akgdz and Civalek 2015),
surface elasticity (Almitani et al. 2020, Eltaher et al.
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2020c), doublet mechanics (Eltaher et al. 2020d), nonlocal
couple stress theory (Ebrahimi et al. 2020), modified couple
stress theory (Akgoz and Civalek 2017a, b), NSG theory
(Lim et al. 2015, She et al. 2020, Malikan et al. 2020a) can
characterize both the stiffness strengthening effect and the
stiffness softening effect at the same time (Apuzzo et al.
2018, Barretta and Marotti de Sciarra 2018, Faleh 2018,
Ghayesh and Farajpour 2018, Ghayesh et al. 2019, Jalaei
and Civalek 2019, Lu ef al. 2018, Malikan et al. 2020a,
Pinnola et al. 2020, Gao et al. 2019), and this theory has
been verified by molecular dynamics and experiments,
which has made an important contribution to the
development of nanomechanics theory.

In this paper, for the first time, the nonlocal strain
gradient theory is wused to study the propagation
characteristics of elastic waves in polymer composite
nanoplates reinforced with GNPs. Besides, the small-scale
effect and a new second-order displacement field are also
considered. In particular, the non-classical wave equation is
derived using Hamiltonian variational principle. The
dispersion relation is obtained by using the trial function
method. The effects of various parameters on wave
propagation characteristics are studied, and the propagation
characteristics of FG polymer composite nanoplates
reinforced with GNPs are revealed.

2. Material properties

Fig. 1 illustrates an FG-PC nanoplate reinforced with
GNPs resting on elastic foundation. The [length; width;
thickness, the total layers] of the nanoplate are symbolized
by [a; b; h; N with 4h=h/N;. Using the Halpin-Tsai
micromechanical model, material properties at the k-layer
can be written as (Arefi et al. 2019)
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Fig. 1 A nanoplate reinforced with GNPs (modified from
Fuetal 2014)
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Here, Young’ modulus of the polymeric-matrix and
nanofillers are symbolized by Eyx and Egne, mass density of
the polymeric-matrix and nanofillers are symbolized by pm
and pene, Poisson's ratio of the polymeric-matrix and
nanofillers are symbolized by v,, and v, the average
length, width and thickness of the GNPs are symbolized by

lene, Wone, and hene, furthermore, the weight fraction of the
GNP polymer nanocomposite for the k-layer is symbolized

by g%, . Here, we consider two Kkinds of GNPs
distributions with (Arefi et al. 2019):
For UD case

g((akljp = g;NP (4a)
For FG case

“ 49;Np ( N,_2+1 —|k _ N,_2+1
Qere =
(2+N))

Here, the weight fraction of GNPs is symbolized by g..
in the later calculation, Ey=3GPa, vw=0.34, and pm=1200
kg/m3Ene=1.01TPa,vene=0.186, pcen=1060 kg/m?; h=20
nm, legne=3 nm, hene=0.7 nm, wgene=1.8 nm (Liu et
al.2017).

) (4b)

3. Wave equations

The second-order shear deformation theory dictates a
displacement field of (Khdeir and Reddy 1999)

U =Uu+z¢ +2°0,
u, :V+Zl//1+22‘//z (%)
U, =w

with [ui, Uz, us] being [axial; width; transverse]

displacements generating the strain of (Khdeir and Reddy
1999)
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with [ £ ;1] being [nonlocal; strain gradient] parameters,

which are, respectively, used for describing the stiffness-
softening and hardening mechanisms of nanostructures.
The Hamilton principle states that
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with Qg being the domain of the nanoplate, [ki; ky; ks] being

[lower layer; upper layer;

shear layer] of the elastic

foundation (Rad 2015), and the stress resultants, the mass

moment of inertias are defined as
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Followed by Hamilton principle, the equations of motions

are taken as below
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Using Egs. (6), (7), (8), (11) and (12), Eq. (13) becomes
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4. Solution

To solve the wave propagation problem, we assume
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with u* v, wW, ", 0, v, v,
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being the wave amplitude,

[kx; ky] being the wave number in [x-; y-] directions, o being
the circular frequency. Using Eq. (23), the eigenvalue
problem can be derived by Eqgs. (14)-(20), as
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(26)

The elements that appear in the matrix (Egs. (25) and
(26)) are defined as follows
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The phase velocity and group velocity can be given by
the following formulas

(0]
Col | k
= 40
M do 0
dk
with k=k,=k.
5. Examples

Here, the verification studies are carried out, the present
wave propagation is compared to the results of the general
third-order shear deformation theory (GTSDT) by Karami
et al. (2019), as well as the refined shear deformation theory
(RSDT) by Karami et al. (2018), as seen, the agreement is
excellent.

In Fig. 3, the small parameters is characterized by
(u,1)=(0, 0) for classical elasticity theory (CET), (x,1)=(1 nm,
0) for nonlocal elasticity theory (NET), (x,1)=(0, 0.2 nm) for
strain gradient theory (SGT), (u,1)=(1 nm, 0.2 nm) for
nonlocal strain gradient theory (NSGT). As expected, the
nonlocal parameter p shows stiffness softening effect while
the strain gradient parameter | shows the stiffness
strengthening effect. Of course, the size effects only work
when the wavenumber is larger enough.

Shown in Fig. 4 is the diagrams of the wave propagation
for the nanoplates with different weight fraction g=sne (=0,
0.5%, 1%). As seen, the phase velocity tends to increase
with the increase of g ene.

In Fig.5, the nanoplates without any foundation
(ki=k,~ks~=0), with Winkler-foundation (k;=k,=0, k=4 N/m),
with Pasternak-foundation (k= 5x10'5 N/m’, k=0, k=4
N/m), with Kerr-foundation (k;=k,=5x10" N/m3 k=4 N/m)
are considered. As seen, the presence of the Winkler-
foundation, Pasternak-foundation and Kerr-foundation all
can increase the stiffness of the nanoplates, and
correspondingly increase the phase velocity of the
nanoplates.

Shown in Fig. 6 is the diagrams of the group velocity for
the nanoplates with different theories (including NET, SGT,
NSGT). As seen, different theories have great influence on
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the propagation characteristics of waves and the group

velocity of the nanoplates.

4.5 T T T
Present
4t ¢ GTSDT| ]
X RSDT

Phase velocity (km/s)
S

0.5 :

10° 10° 10" 10"

Wave number (1/m)

Fig. 2 Comparison of phase velocity in a rectangular
nanoplate, (E=70GPa, p=2702 kg/mé, v=0.3, h=100 nm,

#=1 nmand 1=0.2 nm)

m/s)

Phase velocity (k

Phase velocity (km/s)

Wave number (1/m)

ub

Fig. 3 Dispersion relation of

various theories at g*enp=0.01

Wave number (1/m)

FG

the phase velocity for

—+—Pure epory

L
= 5%

T

Phase velocity (km/s)

0

—+Pure epory
N =50
+ng05n

T

§

Phase veloeity (km/s)

I/ I i’ 1" "
Wave number (1/m)

UD

' It If 1" 1"
Wave number (1/m)

FG

Fig. 4 Dispersion relation of the phase velocity for
various weight fraction gene at x=1 nm and 1=0.2 nm

33

LSy T T 1 15

{ —+—Without foundation
—&— Winkler-foundation |
4 Paserak-foundaton \b
—6—Ker-foundation

Phase velocity (km/s)

i —+— Without foundation
6 —t— Winklerfoundation

& Pagternak-foundation

—6— Kerr-foundation

Wave number 1/m)

ub

Fig. 5 Dispersion relation of the
various elastic foundations at g*ene
1=0.2 nm

Wave number (1/m)

FG

phase velocity for
=0.01, =1 nm and

Group velocity (km/s)
-
2

—+—UD
—=—FG ||

0.6
055
05
045 . . . . . .
I 12 13 14 15 16 17 18 19 2
Wave number (1/m) x10”

S

>

Group velocity (km/s)
[P
ES

in
IS

1 1.1 1.2 13 14 1.5 1.6 1.7
Wave number (1/m)

SGT

s)

Group velocity (km,

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Wave number (1/m)

NSGT

Fig. 6 Dispersion relation of the group velocity for
various theories at g’sne =0.01, ki=k,=5x10%° N/m3, k=4

N/m, =1 nm and 1=0.2 nm



34 Gui-Lin She

6. Conclusions

The wave propagations of the FG-PC nanoplates
reinforced with GNPs have been studied in this paper, the
nonlocal strain gradient model for the nanoplates has been
developed using the second-order shear deformation theory.
The wave propagation analyses are solved using trial
function. The correctness of this paper has been verified by
comparing with the existing results. The numerical analyses
shows that:

e The non-local parameters reduce the propagation
velocity (including phase velocity and group velocity)
of the wave, while the strain gradient parameter has the
opposite effect.

e With the increase of weight fraction g'gne, the
propagation velocity of the wave shows an upward
trend.

e The presence of the Winkler-foundation, Pasternak-
foundation and Kerr-foundation all can increase the
phase velocity of the nanoplates.
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