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1. Introduction 
 

A novel nanostructures of carbon which is a single 

atomic and two-dimensional layer has discovered in 2004 

(see Novoselov et al. 2004) and named graphene. The 

graphene structure includes the atoms joined through 

bundles. Owing to its superior thermal, electrical and 

mechanical properties, graphene has attracted the attention 

of scientists. Owing to its superior thermal, electrical and 

mechanical properties, graphene has attracted the attention 

of scientists. Therefore, numerous studies (Reddy et al. 

2006, Scarpa et al. 2009, cadelano et al. 2009, zhang et al. 

2011) have been conducted to explore the extraordinary 

features of graphene. In the present paper and many other 

available works, the potential of graphene as a promising 

nano-fillers for the composites is highlighted. 

Graphene layer exhibits higher stiffness compared to 

most of the engineering and industrial metals such as 

stainless steel. The Young’s modulus of this nanostructure 

has been reported as 1TPa. Graphene presents privileged 

conduction capacity even more than copper and silver. 

Other characteristics of graphene are mentioned in  
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(Stankovich et al. 2006, Potts et al. 2011). It is also 

observed that, addition of a small quantity of graphene as 

reinforcement in a nanocomposite media can result in better 

mechanical, thermal and electrical properties (Rafiee et al. 

2009, Zhao et al. 2010). Owing to its flat structure, in many 

applications, graphene is preferred compared with most of 

nanocomposites based on carbon nanotubes because of the 

better interacting of the graphene with polymer. 

Based on several experimental works, the natural 

frequency of the nanocomposites could be remarkably 

enhanced by incorporation of graphene nanofillers even at 

low weight fractions. For instance Chandra et al. (2012) 

reported the enhanced natural frequencies of a composite 

media by adding graphene fillers. According to the 

theoretical analysis, it is verified that the natural frequencies 

of the graphene-embedded nanocomposites are much higher 

than the graphene-free matrix. For instance, Song et al. 

(2017) expressed that introducing only 1.2% graphene 

weight fraction leads to increase natural frequency about 

160%. In another work, Rafiee et al. (2009) reported that 

incorporation of 0.1 (w.t.%) of GPLs, the strength and 

stiffness of the reinforced polymer composites are enhanced 

by the same amount attain by adding 1.0 w.t.% of carbon 

nanotubes (CNTs). It should be noted that, the weight 

fraction of grpahene reinforcement cannot be augmented 

arbitrarily as over-addition of graphene nanofillers may 

results in unpleasant effects (Kulkarni et al. 2010). 
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Abstract.  In the present research, the free vibration analysis of functionally graded (FG) nanocomposite deep spherical shells 

reinforced by graphene platelets (GPLs) on elastic foundation is performed. The elastic foundation is assumed to be Winkler-

Past ernak-type. It is also assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the 

nanocomposite shell. Volume fraction of the graphene platelets as nanofillers may be different in the layers. The modified 

HalpinTsai model is used to approximate the effective mechanical properties of the multilayer nanocomposite. With the aid of 

the first order shear deformation shell theory and implementing Hamilton’s principle, motion equations are derived. Afterwards, 

the generalized differential quadrature method (GDQM) is utilized to study the free vibration characteristics of FG-GPLRC 

spherical shell. To assess the validity and accuracy of the presented method, the results are compared with the available 

researches. Finally, the natural frequencies and corresponding mode shapes are provided for different boundary conditions, 

GPLs volume fraction, types of functionally graded, elastic foundation coefficients, opening angles of shell, and thickness-to-

radius ratio. 
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Graphene nanofiller is apperceived in two type; i.e., 

graphene sheets (GRC) and graphene platelets (GPLRC). 

Thermo-mechanical characteristics are procured based on a 

refined micro-mechanical rule that is calibrated using the 

obtained information of molecular dynamics simulations. 

The weight fraction of graphene sheets in the first model 

varies between 3-11 percent and constituents are assumed 

temperature dependent. Vibrational analysis of thin 

structures reinforced with graphene sheets has been well 

documented in the open literature. When composites are 

reinforced with graphene sheets, Wang et al. (2019) 

analyzed free vibration of graphene reinforced composite 

beams based on the plane-stress state in each layer. A hybrid 

Kantorovich-Galerkin method is applied to this problem. 

FG-GRC Beams resting on elastic foundation are 

investigated by Shen et al. (2017a) considering a thermal 

environment. Also, Shen et al. (2019a) explored the 

nonlinear vibration of post-buckled nanocomposite beam 

based on the von Kármán strain-displacement relationships. 

Large amplitude vibration of functionally graded reinforced 

composite plates are addressed by shen et al. (2019b) when 

they are subjected to thermal load with temperature-

dependent material properties with and without considering 

elastic foundation (Shen et al. 2019c, Shen et al. 2017b). 

NURBS based isogeometric finite element method is 

utilized to investigate the nonlinear free vibration of FG-

GRC plates by Kiani (2018). Using the mentioned method 

this Author examined the post-buckling of a FG-GPLRC 

plate (see Kiani and Mirzaei 2019). The effects of thermal 

environment on natural frequency are presented. Shen et al. 

(2017c, 2018) analyzed vibration behavior of cylindrical 

shells and panels applying two step perturbation method. 

Influences of Graphene sheet volume fraction and piece-

wise pattern on fundamental frequency are studied.  

In another novel class, graphene platelets are assumed as 

reinforcement in the matrix of the nanocomposite media. In 

this type of reinforced composites, properties are calculated 

considering the Halpin-Tsai micromechanical rule. The 

weight fraction of grpahene platelets in this model is less 

that 1 percent and properties are assumed to be temperature-

independent. The main researches on the vibration response 

of nano structures reinforced with graphene platelets are as 

follows: Kitipornchai et al. (2017) obtained non-

dimensional frequencies of porous nanocomposite beams 

using Ritz method. Also, based on the Ritz technique, the 

nonlinear free vibration of FG-GPLRC beams are 

investigated by Feng et al. (2017). Vibration responses of 

the graphene platelets-embedded nanocomposite beams 

subjected two successive moving masses are determined by 

Wang et al. (2019). Equations of motion are governed 

implementing a new higher order shear deformation theory 

and are solved using Hybrid Navier-Newmark solution. 

Vibration Characteristic of curved porous FG-GPL 

nanocomposite beams are studied by Anirudh et al. (2019). 

Vibration response of FG-GPLRC plate are studied by Song 

et al. (2017) for the first time using Navier method. Zhao et 

al. (2017) conducted a theoretical study on the free 

vibration of functionally graded trapezoidal plates 

reinforced with graphene nanoplatelets. Gua et al. (2018) 

employed IMLS-Ritz approximation to investigate the free 

vibration of functionally graded quadrilateral 

nanocomposite plates reinforced by graphene platelets filler. 

In the mentioned study, the effective material properties 

were determined by the modified Halpin-Tsai model and 

rule of mixture. The nonlinear forced (see Gholami and 

Anari 2018) and free (see Gao et al. 2018) vibration 

analysis of FG-GPLRC rectangular plates were also 

addressed in the literature. Gholami and Ansari (2019) 

explored the free vibration response applying a novel 

differential quadrature method based on the energy 

functional of nanocomposites embedded by graphene 

platelets. Transformed differential quadrature method is 

used to obtain the natural frequencies and corresponding 

mode shapes of an FG-GPLRC eccentric annular plate 

(Malekzadeh et al. 2018). In this paper, the frequencies are 

controlled by two piezoelectric layers which are located on 

the top and bottom of plate. Moreover, Saidi et al. (2019) 

employed Galerkin method to analyze the vibration 

behavior FG-GPLRC plate surrounded by two piezoelectric 

layers. Furthermore, the effect of supersonic flow on the 

natural frequency are investigated. Thai et al. (2019) 

performed a comprehensive study to analyze functionally 

graded GPLRC plate utilizing NURBS formulation. Dong 

et al. (2018) presented the nonlinear free vibration analysis 

of FG-GPLRC cylindrical shells with spinning motion. 

Implementing an analytical method and based on the three 

dimensional elasticity, Liu et al. (2018) examined the free 

vibration of an initially stressed functionally graded 

graphene platelets reinforced composite cylindrical shells. 

Wang et al. (2018) analyzed the free vibration of simply-

supported doubly curved shallow nanocomposite shells 

reinforced by graphene nanoplatelets. 

As the above literature survey reveals, numerous 

investigations are available on nanocomposite structures 

reinforced by graphene platelets. However, the free 

vibration analysis of spherical shells has not been 

addressed. In this regard, the current research applied the 

first order shear deformation shell theory to analyze the free 

vibration behavior of spherical shell. Furthermore, the 

solution method is based on the generalized differential 

quadrature method suitable for arbitrary boundary 

conditions. In the present investigation, natural frequencies 

of multi-layer graphene platelet reinforced composite 

spherical shells with and without hole in the apex of shell 

are determined. Also, the shell is assumed on the pasternak-

type elastic foundation. Various patterns of functionally 

graded for graphene reinforcements is assumed into the 

formulation. Halpin-Tsai micromechanical rule and the 

Hamilton’s principle are used to obtain the motion 

equations dealing with the vibration of FG-GPLRC shell on 

elastic foundation. The influence of different parameters are 

investigated on the natural frequencies and mode shape for 

free vibration phenomena. 

 

 

2. Geometry and material properties of spherical 
shell 

 

Consider a FG-GPLRC laminated spherical shell of 

uniform thickness ℎ  in total domain and radius of 
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curvature 𝑅. The spherical shell domain is bounded by 

𝜑𝑖𝑛 ≤ 𝜑 ≤ 𝜑𝑜𝑢𝑡, 0 ≤ 𝜃 ≤ 2𝜋, and −ℎ/2 ≤ 𝑧 ≤ ℎ/2 with 

respect to the coordinates 𝜑 , 𝜃  and 𝑧  along the 

meridional, circumferential and radial directions. The 

coordinates system (𝜑, 𝜃, 𝑧) with its origin located at the 

mid-surface center of the shell is defined, as shown in Fig. 1. 

In this paper, the multilayer graphene nanocomposite 

spherical shell is considered with perfectly bonded GPLRC 

layers of the equal thicknesses. Each ply is made from a 

mixture of GPL filler and isotropic polymer matrix in which 

GPLs are randomly oriented and uniformly dispersed. 

Therefore, the nanoplatelets volume fraction may have a 

step layer-wise variation along the thickness. 

It is supposed that the composite laminated shell 

includes even number of layers, 𝑁𝐿. Four different types of 

volume fraction are assumed in this study for FG-GPLRCs 

(see Wu et al. 2017): FG-O, FG-X, FG-Λ, and UD. In the 

uniform distribution (UD), the GPL constituent remains 

constant across all the layers, thus U-GPLRC correlate with 

an isotropic homogeneous shell. In the step functionally 

graded distributions, the GPL volume fraction linearly 

varies from layer to layer. For the case of X-GPLRC, the 

top and bottom layers are nanoplatelet rich while this is 

inversed for O-GPLRC where the middle layers are rich in 

GPL filler. Eventually, Λ -GPLRC is an asymmetrical 

repartition where nanofillers volume fraction linearly 

increase from the top to the bottom layers. Distribution of 

volume fraction for each layer fits in the following 

expressions (see Wu et al. 2017) 

U − GPLRC ∶   𝑉𝐺𝑃𝐿
(𝑘)
= 𝑉𝐺𝑃𝐿

∗   

X − GPLRC ∶   𝑉𝐺𝑃𝐿
(𝑘)
= 2𝑉𝐺𝑃𝐿

∗ |2𝑘 − 𝑁𝐿 − 1|/𝑁𝐿  

O − GPLRC ∶   𝑉𝐺𝑃𝐿
(𝑘)
= 2𝑉𝐺𝑃𝐿

∗ (1 − |2𝑘 − 𝑁𝐿 − 1|/𝑁𝐿)  

Λ − GPLRC ∶   𝑉𝐺𝑃𝐿
(𝑘)
= 𝑉𝐺𝑃𝐿

∗ (2𝑘 − 1)/𝑁𝐿  (1) 

where, 𝑉𝐺𝑃𝐿
(𝑘)

 illustrates the volume fraction of GPLs in the 

𝑘-th layer of the laminate. In Eq. (1) 𝑘 takes the amount 

from 1 to 𝑁𝐿. Also 𝑉𝐺𝑃𝐿
⋆  displays the total volume fraction 

of the graphene platelets in the deep spherical shell. The 

total volume fraction of GPLs may be represented in terms 

of the weight fraction of the GPLs in the whole shell, 𝑊𝐺𝑃𝐿 

and also the mass density of the constituents, 𝜌𝑚 and 𝜌𝐺𝑃𝐿 

are as follow 

𝑉𝐺𝑃𝐿
∗ =

𝑊𝐺𝑃𝐿

𝑊𝐺𝑃𝐿 + (
𝜌𝐺𝑃𝐿
𝜌𝑚

) (1 −𝑊𝐺𝑃𝐿)
 (2) 

 

 

Fig. 1 Schematic and coordinate system for a spherical shell 

It is known that in the graphene-based nanocomposites 

the size and geometry of the nanoplatelets are two 

important factors for estimation of properties of polymer 

composites. To compute the effective elasticity modulus of 

the GPLRCs in this research, the Halpin-Tsai rule is utilized. 

This rule is widely accepted for determination of effective 

elasticity modulus of GPLRCs (Affdl and Kardos, 1976). 

According to this micromechanical rule, the elasticity 

modulus of each layer of the composite can be obtained 

taking into account the nanofillers’ geometry and dimension 

as follow 

𝐸(𝑘) =
3

8

1 + 𝜉𝐿𝜂𝐿𝑉𝐺𝑃𝐿
(𝑘)

1 − 𝜂𝐿𝑉𝐺𝑃𝐿
(𝑘)

× 𝐸𝑚 +
5

8

1 + 𝜉𝑇𝜂𝑇𝑉𝐺𝑃𝐿
(𝑘)

1 − 𝜂𝑇𝑉𝐺𝑃𝐿
(𝑘)

× 𝐸𝑚 (3) 

where the subsidiary parameters 𝜂𝐿 and 𝜂𝑇 in Eq. (3) are 

expressed as 

𝜂𝐿 =
(
𝐸𝐺𝑃𝐿
𝐸𝑚

) − 1

(
𝐸𝐺𝑃𝐿
𝐸𝑚

) + 𝜉𝐿

,    𝜂𝑇 =
(
𝐸𝐺𝑃𝐿
𝐸𝑚

) − 1

(
𝐸𝐺𝑃𝐿
𝐸𝑚

) + 𝜉𝑇

 (4) 

In Eq. (4), 𝐸𝑚 and 𝐸𝐺𝑃𝐿 are the Young’s modulus of 

the isotropic matrix and GPLs, respectively. The 

geometrical factors of GPLs can be obtained in terms of the 

thickness of the GPLs, 𝑡𝐺𝑃𝐿, width of the GPLs, 𝑏𝐺𝑃𝐿 and 

length of the GPLs, 𝑎𝐺𝑃𝐿 as follows 

𝜉𝐿 = 2(
𝑎𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

),    𝜉𝑇 = 2(
𝑏𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

) (5) 

The effective Poisson’s ratio of the composite media 𝜈 

and The mass density of the composite media 𝜌 may be 

easily obtained by means of the properties of the 

constituents according to the Voigt rule of mixtures. 

Accordingly one may write 

𝜌(𝑘) = 𝜌𝐺𝑃𝐿𝑉𝐺𝑃𝐿
(𝑘) + 𝜌𝑚𝑉𝑚

(𝑘)
 

𝜈(𝑘) = 𝜈𝐺𝑃𝐿𝑉𝐺𝑃𝐿
(𝑘)
+ 𝜈𝑚𝑉𝑚

(𝑘)
 

(6) 

In Eq. (6), the subscripts 𝑚 and 𝐺𝑃𝐿 show the matrix 

and graphene platelets nanofiller, respectively. 𝑉𝑚 = 1 −
𝑉𝐺𝑃𝐿 is the isotropic polymer volume fraction. 

 

 

3. Theoretical formulations 
 

Based on the first order shear deformation theory 

(FSDT) assumptions, the displacements field (𝑢1, 𝑢2, 𝑢3) 
of an arbitrary supposed point in the composite media of 

spherical shell are exhibited in terms of the displacements 

and rotations of the reference surface 

𝑢1(𝜑, 𝜃, 𝑧, 𝑡) = 𝑢1
0(𝜑, 𝜃, 𝑡) + 𝑧𝜓1(𝜑, 𝜃, 𝑡)  

𝑢2(𝜑, 𝜃, 𝑧, 𝑡) = 𝑢2
0(𝜑, 𝜃, 𝑡) + 𝑧𝜓2(𝜑, 𝜃, 𝑡)  

𝑢3(𝜑, 𝜃, 𝑧, 𝑡) = 𝑢3
0(𝜑, 𝜃, 𝑡) (7) 

where 𝑢1
0, 𝑢2

0, and 𝑢3
0 illustrate the displacements of the 

reference surface (𝑧 = 0) in the 𝜑, 𝜃, and 𝑧 directions, 

respectively; Moreover, 𝜓1 and 𝜓2 denote the transverse 
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normal rotations of the reference surface about the 𝜃 and 

𝜑 axes, respectively. Also, 𝑡 is the time variable. 

Strain components associated with the displacements 

field (7), according to the assumed shell theory, may be 

expanded in vector forms as (Reddy 2006) 

{𝜀} = {𝜀0} + 𝑧{𝜀1} (8) 

where 

{
 
 

 
 
𝜀1
0

𝜀2
0

𝜀4
0

𝜀5
0

𝜀6
0}
 
 

 
 

= (1 +
𝑧

𝑅
)
−1

× 

{
 
 
 
 
 

 
 
 
 
 
1

𝑅
(𝑢1,𝜑

0 + 𝑢3
0)

1

𝑅sin(𝜑)
(𝑢2,𝜃

0 + cos(𝜑)𝑢1
0 + sin(𝜑)𝑢3

0)

1

𝑅
(

1

sin(𝜑)
𝑢3,𝜃
0 − 𝑢2

0 + 𝑅𝜓2)

1

𝑅
(𝑢3,𝜑

0 − 𝑢1
0 + 𝑅𝜓1)

1

𝑅
(𝑢2,𝜑

0 ) +
1

𝑅sin(𝜑)
(𝑢1,𝜃

0 − cos(𝜑)𝑢2
0)
}
 
 
 
 
 

 
 
 
 
 

 

(9) 

 

{
 
 

 
 
𝜀1
1

𝜀2
1

𝜀4
1

𝜀5
1

𝜀6
1}
 
 

 
 

= (1 +
𝑧

𝑅
)
−1

× 

{
 
 
 
 

 
 
 
 
1

𝑅
(𝜓1,𝜑)

1

𝑅sin(𝜑)
(𝜓2,𝜃 + cos(𝜑)𝜓1)

0
0
1

𝑅
(𝜓2,𝜑) +

1

𝑅sin(𝜑)
(𝜓1,𝜃 − cos(𝜑)𝜓2)}

 
 
 
 

 
 
 
 

 

(10) 

where 𝜖1
0 , 𝜖2

0 , and 𝜖6
0  are the membrane strains of the 

middle surface; 𝜖1
1 , 𝜖2

1 , and 𝜖6
1  explain the curvature 

changes of the spherical shell; 𝜖4
0 , 𝜖5

0  indicate the 

transverse shear strains. The value 𝑅(1 +
𝑧

𝑅
) is the Lamé 

parameter. 

Considering linear elastic material (The Hook law), the 

constitutive law for each layer of the FG-GPLRC spherical 

shell becomes (Kar and Panda 2015)  

{
 
 

 
 
𝜎1
𝜎2
𝜎4
𝜎5
𝜎6}
 
 

 
 
(𝑘)

=

[
 
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66

]
 
 
 
 
 
(𝑘)

{
 
 

 
 
𝜀1
𝜀2
𝜀4
𝜀5
𝜀6}
 
 

 
 

 (11) 

In the above equations, 𝑄𝑖𝑗’s (𝑖, 𝑗 = 1,2,4,5,6) are the 

reduced material stiffness coefficients which are obtained as  

𝑄11
(𝑘)
= 𝑄22

(𝑘)
=

𝐸(𝑘)

1 − 𝜈(𝑘)2
,      𝑄12

(𝑘)
=
𝜈(𝑘)𝐸(𝑘)

1 − 𝜈(𝑘)2
  

𝑄66
(𝑘)
=

𝐸(𝑘)

2(1 + 𝜈(𝑘))
,      𝑄44

(𝑘)
= 𝑄55

(𝑘)
= 𝜅𝑄66

(𝑘)
 (12) 

where 𝜅 is the shear correction factor of FSDT and in 

general, it depends on the geometry, material properties and 

loading conditions where the approximate values of 𝜅 =
5/6 or 𝜅 = 𝜋2/12 are used extensively (see Reddy 2006). 

In this work, the shear correction factor is chosen 𝜅 = 5/6. 

The stress resultants of the deep spherical shell are 

expressed in terms of the stresses components through the 

thickness, based on the first order theory, may be obtained 

as the follow form 

(𝑁11, 𝑁22, 𝑁12) = ∑

𝑁𝐿

𝑘=1

∫
𝑧𝑘+1

𝑧𝑘

(1 +
𝑧

𝑅
) (𝜎1, 𝜎2, 𝜎6)

(𝑘)𝑑𝑧  

(𝑀11, 𝑀22, 𝑀12) = ∑

𝑁𝐿

𝑘=1

∫
𝑧𝑘+1

𝑧𝑘

𝑧 (1

+
𝑧

𝑅
) (𝜎1, 𝜎2, 𝜎6)

(𝑘)𝑑𝑧 

 

(𝑄1, 𝑄2) = ∑

𝑁𝐿

𝑘=1

∫
𝑧𝑘+1

𝑧𝑘

(1 +
𝑧

𝑅
) (𝜎5, 𝜎4)

(𝑘)𝑑𝑧 (13) 

in which 𝑁11 , 𝑁22 , and 𝑁12  are the membrane stress 

resultants, 𝑀11 , 𝑀22 , and 𝑀12  are the bending stress 

resultants and 𝑄1 and 𝑄2 indicate the membrane out-of-

plane shear stress resultants. 

Derivation of the equations of motion of the functionally 

graded graphene platelets reinforced composite spherical 

shell is accomplished by employing Hamilton’s principle. 

According to this principle, the motion equations of shell on 

the elastic foundation are derived when the following 

equation holds (Reddy 2006, Akbarov et al. 2016) 

∫
𝑡2

𝑡1

(𝛿𝑇 − 𝛿𝑉 − 𝛿𝑈)𝑑𝑡 = 0 (14) 

In the above equation 𝛿𝑇, 𝛿𝑈, and 𝛿𝑉 show the first 

variation of the kinematic, strain and potential energy of the 

applied load, respectively. The strain energy 𝛿𝑈 for the 

composite media takes the following form 

𝛿𝑈 = ∫
2𝜋

0

∫
𝜑𝑜𝑢𝑡

𝜑𝑖𝑛

∫
+0.5ℎ

−0.5ℎ

𝜎𝑖𝛿𝜀𝑖 (1 +
𝑧

𝑅
)
2

× 

𝑅2 sin(𝜑) 𝑑𝑧 𝑑𝜑 𝑑𝜃,      𝑖 = 1,2,4,5,6  

(15) 

Potential energy 𝛿𝑉  due to the Winkler-Pasternak 

elastic foundation for the spherical shell are obtained as 

(Ansari 2016) 

𝛿𝑉

= ∫
2𝜋

0

∫
𝜑𝑜𝑢𝑡

𝜑𝑖𝑛

[𝑘𝑤𝑢3
0𝛿𝑢3

0 +
𝑘𝑔

𝑅2
𝑢3,𝜑
0 𝛿𝑢3,𝜑

0

+
𝑘𝑔

𝑅2sin2(𝜑)
𝑢3,𝜃
0 𝛿𝑢3,𝜃

0 ] 𝑅2sin(𝜑) 𝑑𝜑 𝑑𝜃 

(16) 
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where 𝑘𝑤 and 𝑘𝑔 are Winkler and Pasternak coefficients 

of elastic foundation. Furthermore, kinetic energy is 

expressed as 

𝛿𝑇 = ∫
2𝜋

0

∫
𝜑𝑜𝑢𝑡

𝜑𝑖𝑛

∫
+0.5ℎ

−0.5ℎ

𝜌 (
𝑢̇1𝛿𝑢̇1 + 𝑢̇2𝛿𝑢̇2

+𝑢̇3𝛿𝑢̇3
) × 

(1 +
𝑧

𝑅
)
2

𝑅2sin(𝜑) 𝑑𝑧 𝑑𝜑 𝑑𝜃 

(17) 

where 𝜌 is the mass density, which obtained from Eq. (6) 

for each layer. Also, a (  ̇  ) denotes the derivative with 

respect to time. Substituting the stress tensor components 

from Eq. (11) into (15) and implementing the variational 

approach, the motion equations of the FG-GPLRC spherical 

shells resting on two parameter elastic foundation are found 

to be 

𝛿𝑢1
0    ∶     

1

𝑅
{cot(𝜑)(𝑁11 −𝑁22) + 𝑁11,𝜑

+
1

sin(𝜑)
𝑁12,𝜃 + 𝑄1} = 𝐼1𝑢̈1

0 + 𝐼2𝜓̈1 
 

𝛿𝑢2
0    ∶     

1

𝑅
{2cot(𝜑)𝑁12 +𝑁12,𝜑 +

1

sin(𝜑)
𝑁22,𝜃 +

𝑄2} = 𝐼1𝑢̈2
0 + 𝐼2𝜓̈2  

 

𝛿𝑢3
0    ∶     

1

𝑅
{cot(𝜑)𝑄1 + 𝑄1,𝜑 +

1

sin(𝜑)
𝑄2,𝜃 −

(𝑁11 +𝑁22)−𝑘𝑤𝑅
2𝑢3

0 + 𝑘𝑔cot(𝜑)𝑢3,𝜑
0 + 𝑘𝑔𝑢3,𝜑𝜑

0 +

𝑘𝑔
1

sin2(𝜑)
𝑢3,𝜃𝜃
0 } = 𝐼1𝑢̈3

0  

 

𝛿𝜓1    ∶     
1

𝑅
{cot(𝜑) (𝑀11 −𝑀22) + 𝑀11,𝜑 +

1

sin(𝜑)
𝑀12,𝜃 − 𝑅𝑄1} = 𝐼2𝑢̈1

0 + 𝐼3𝜓̈1  
 

𝛿𝜓2    ∶     
1

𝑅
{2cot(𝜑)𝑀12 +𝑀12,𝜑 +

1

sin(𝜑)
𝑀22,𝜃 −

𝑅𝑄2} = 𝐼2𝑢̈2
0 + 𝐼3𝜓̈2  

(18) 

The governing equations of motion in terms of the 

displacements field for the FG-GPLRC spherical sell may 

be obtained using Eqs. (13)-(18). The resulting equations 

are 
1

𝑅2
{cot(𝜑) [𝐴11𝑢1,𝜑

0 −
𝐴11+𝐴66

sin(𝜑)
𝑢2,𝜃
0 + (𝐴12 −

𝐴11)cot(𝜑)𝑢1
0+𝐵11𝜓1,𝜑 −

𝐵11+𝐵66

sin(𝜑)
𝜓2,𝜃 + (𝐵12 −

𝐵11)cot(𝜑)𝜓1] + 𝐴11𝑢1,𝜑𝜑
0 +

1

sin2(𝜑)
[𝐴66𝑢1,𝜃𝜃

0 −

𝐴12𝑢1
0] + 𝐵11𝜓1,𝜑𝜑 +

1

sin2(𝜑)
[𝐵66𝜓1,𝜃𝜃 − 𝐵12𝜓1] +

𝐴12+𝐴66

sin(𝜑)
𝑢2,𝜑𝜃
0 +

𝐵12+𝐵66

sin(𝜑)
𝜓2,𝜑𝜃 + (𝐴11 + 𝐴12)𝑢3,𝜑

0 +

𝐴55[𝑢3,𝜑
0 − 𝑢1

0 + 𝑅𝜓1]} = 𝐼1𝑢̈1
0 + 𝐼2𝜓̈1  

(19) 

 

1

𝑅2
{cot(𝜑) [𝐴66𝑢2,𝜑

0 +
𝐴11+𝐴66

sin(𝜑)
𝑢1,𝜃
0 −

2𝐴66cot(𝜑)𝑢2
0+𝐵66𝜓2,𝜑 +

𝐵11+𝐵66

sin(𝜑)
𝜓1,𝜃 −

2𝐵66cot(𝜑)𝜓2] + 𝐴66𝑢2,𝜑𝜑
0 +

1

sin2(𝜑)
[𝐴11𝑢2,𝜃𝜃

0 +

(20) 

𝐴66𝑢2
0] + 𝐵66𝜓2,𝜑𝜑 +

1

sin2(𝜑)
[𝐵11𝜓2,𝜃𝜃 + 𝐵66𝜓2] +

𝐴12+𝐴66

sin(𝜑)
𝑢1,𝜑𝜃
0 +

𝐵12+𝐵66

sin(𝜑)
𝜓1,𝜑𝜃 +

(𝐴11+𝐴12)

sin(𝜑)
𝑢3,𝜃
0 +

𝐴44 [
1

sin(𝜑)
𝑢3,𝜃
0 − 𝑢2

0 + 𝑅𝜓2]} = 𝐼1𝑢̈2
0 + 𝐼2𝜓̈2  

 

1

𝑅2
{cot(𝜑) [𝐵11𝑢1,𝜑

0 −
𝐵11+𝐵66

sin(𝜑)
𝑢2,𝜃
0 + (𝐵12 −

𝐵11)cot(𝜑)𝑢1
0+𝐷11𝜓1,𝜑 −

𝐷11+𝐷66

sin(𝜑)
𝜓2,𝜃 + (𝐷12 −

𝐷11)cot(𝜑)𝜓1] + 𝐵11𝑢1,𝜑𝜑
0 +

1

sin2(𝜑)
[𝐵66𝑢1,𝜃𝜃

0 −

𝐵12𝑢1
0] + 𝐷11𝜓1,𝜑𝜑 +

1

sin2(𝜑)
[𝐷66𝜓1,𝜃𝜃 − 𝐷12𝜓1] +

𝐵12+𝐵66

sin(𝜑)
𝑢2,𝜑𝜃
0 +

𝐷12+𝐷66

sin(𝜑)
𝜓2,𝜑𝜃 + (𝐵11 + 𝐵12)𝑢3,𝜑

0 −

𝑅𝐴55[𝑢3,𝜑
0 − 𝑢1

0 + 𝑅𝜓1]} = 𝐼2𝑢̈1
0 + 𝐼3𝜓̈1  

(22) 

 

1

𝑅2
{cot(𝜑) [𝐵66𝑢2,𝜑

0 +
𝐵11+𝐵66

sin(𝜑)
𝑢1,𝜃
0 −

2𝐵66cot(𝜑)𝑢2
0+𝐷66𝜓2,𝜑 +

𝐷11+𝐷66

sin(𝜑)
𝜓1,𝜃 −

2𝐷66cot(𝜑)𝜓2] + 𝐵66𝑢2,𝜑𝜑
0 +

1

sin2(𝜑)
[𝐵11𝑢2,𝜃𝜃

0 +

𝐵66𝑢2
0] + 𝐷66𝜓2,𝜑𝜑 +

1

sin2(𝜑)
[𝐷11𝜓2,𝜃𝜃 + 𝐷66𝜓2] +

𝐵12+𝐵66

sin(𝜑)
𝑢1,𝜑𝜃
0 +

𝐷12+𝐷66

sin(𝜑)
𝜓1,𝜑𝜃 +

(𝐵11+𝐵12)

sin(𝜑)
𝑢3,𝜃
0 −

𝑅𝐴44 [
1

sin(𝜑)
𝑢3,𝜃
0 − 𝑢2

0 + 𝑅𝜓2]} = 𝐼2𝑢̈2
0 + 𝐼3𝜓̈2  

(23) 

in which 𝐼1, 𝐼2, and 𝐼3 are the inertia terms which defined 

by  

(𝐼1, 𝐼2, 𝐼3) = ∑
𝑁𝐿
𝑘=1 ∫

𝑧𝑘+1
𝑧𝑘

𝜌(𝑘) (1 +
𝑧

𝑅
)
2

(1, 𝑧, 𝑧2)𝑑𝑧  (24) 

moreover, In the motion equations, 𝐴𝑖𝑗 , 𝐵𝑖𝑗 and 𝐷𝑖𝑗 

coefficients denote the stretching, bending-stretching, and 

bending stiffness in the composite media. After combining 

several layers of graphene, the GPLs are created, assuming 

uniform distribution and random orientation, each layer of 

the nanocomposite is homogeneous and isotropic, but after 

layering due to changing the mass fraction of GPL from one 

layer to another whole the structure is heterogeneous. Now 

if the mass fraction of the layers are symmetric to the 

middle surface, like X, O, and U model of functionally 

graded the shell will be isotropic and the stretching-bending 

coupling stiffness matrix Bij will be zero, otherwise this 

matrix will have a nonzero value. 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗)

=∑

𝑁𝐿

𝑘=1

∫
𝑧𝑘+1

𝑧𝑘

(𝑄𝑖𝑗
(𝑘), 𝑧𝑄𝑖𝑗

(𝑘), 𝑧2𝑄𝑖𝑗
(𝑘))𝑑𝑧,           

  𝑖, 𝑗 = 1,2,4,5,6  

(25) 

The governing equations are accompanied by the 

boundary conditions. the following, three kinds of boundary 

conditions that was used extensively are considered, namely 

the clamped edge boundary conditions (C), the simply 

supported edge boundary conditions (S) and the free edge 

boundary conditions (F). Equations describing the boundary 
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conditions on the circumferential edges (𝜑 = 𝜑𝑖𝑛    and 

 𝜑 = 𝜑𝑜𝑢𝑡) can be written as 

for  simply  supported  edges  (S) ∶  𝑢1
0  =

 𝑢2
0  =  𝑢3

0  =  𝑀11  =  𝜓2  = 0  
 

for  clamped  edges  (C) ∶  𝑢1
0  =  𝑢2

0  =  𝑢3
0  =

 𝜓1  =  𝜓2  = 0  
 

for  free  edges  (F) ∶  𝑁11  =  𝑁12  =  𝑄1  =
 𝑀11  =  𝑀12  = 0,  

(26) 

Since that shell is assumed close in the circumferential 

direction, the kinematical and physical compatibility should 

be satisfied at the common meridian with (𝜃 = 0,2𝜋). The 

kinematical compatibility conditions consists the continuity 

of displacement components; Also, The physical 

compatibility conditions can only be the five continuous 

conditions for the stress resultants and related equations are 

Kinematical compatibility conditions 

    𝑢1
0(𝜑, 0, 𝑡) = 𝑢1

0(𝜑, 2𝜋, 𝑡),   

    𝑢2
0(𝜑, 0, 𝑡) = 𝑢2

0(𝜑, 2𝜋, 𝑡),   

  𝑢3
0(𝜑, 0, 𝑡) = 𝑢3

0(𝜑, 2𝜋, 𝑡), 
           𝜓1(𝜑, 0, 𝑡) = 𝜓1(𝜑, 2𝜋, 𝑡),    

   𝜓2(𝜑, 0, 𝑡) = 𝜓2(𝜑, 2𝜋, 𝑡); 

(27) 

Physical compatibility conditions 

        𝑁12(𝜑, 0, 𝑡) = 𝑁12(𝜑, 2𝜋, 𝑡),  

        𝑁22(𝜑, 0, 𝑡) = 𝑁22(𝜑, 2𝜋, 𝑡),  

      𝑄2(𝜑, 0, 𝑡) = 𝑄2(𝜑, 2𝜋, 𝑡),   

           𝑀12(𝜑, 0, 𝑡) = 𝑀12(𝜑, 2𝜋, 𝑡),    

         𝑀22(𝜑, 0, 𝑡) = 𝑀22(𝜑, 2𝜋, 𝑡);  

(28) 

 

 

4. GDQ method 
 

The GDQ method will be used to discretize the 

derivatives in the derived motion equations and the 

associated boundary conditions. This method permits to 

approximate the first, second and higher order derivative in 

an arbitrary point in the 2-D spherical shell domain 

(𝜑𝑝, 𝜃𝑞) of a smooth function 𝐮 using a weighted linear 

sum of the function values at some defined distributed 

points. For example implementing GDQ technique to the 

first and second order derivatives given as follow (Artioli 

and Viola 2005, Tornabene and Viola 2007, Javani et al. 

2019) 

𝐮,𝜑|𝜑=𝜑𝑝,𝜃=𝜃𝑞 = ∑

𝑁𝜑

𝑝′=1

∑

𝑁𝜃

𝑞′=1

𝐶𝑝𝑝′
𝜑
𝛿𝑞𝑞′
𝜃 𝐮|𝜑=𝜑𝑝′,𝜃=𝜃𝑞′ 

𝐮,𝜃|𝜑=𝜑𝑝,𝜃=𝜃𝑞 = ∑

𝑁𝜑

𝑝′=1

∑

𝑁𝜃

𝑞′=1

𝛿𝑝𝑝′
𝜑
𝐶𝑞𝑞′
𝜃 𝐮|𝜑=𝜑𝑝′,𝜃=𝜃𝑞′ 

𝐮,𝜃𝜃|𝜑=𝜑𝑝,𝜃=𝜃𝑞 = ∑

𝑁𝜑

𝑝′=1

∑

𝑁𝜃

𝑞′=1

𝛿
𝑝𝑝′
𝜑
𝐶̅𝑞𝑞′
𝜃 𝐮|𝜑=𝜑

𝑝′
,𝜃=𝜃

𝑞′
,  

   𝑝 = 1,2, . . . , 𝑁𝜑, 𝑞 = 1,2, . . . , 𝑁𝜃 

(29) 

where 𝑁𝜑 and 𝑁𝜃 are the number of grid points in the 𝜑 

and 𝜃-directions, respectively. 𝛿𝑝𝑝′
𝜑

 and 𝛿𝑞𝑞′
𝜃  are equal to 

one when 𝑝 = 𝑝′  and 𝑞 = 𝑞′ . Also, 𝐶𝑝𝑝′
𝜑

 and 𝐶𝑞𝑞′𝜃 

associated 𝐶̅𝑝𝑝′
𝜑

 and 𝐶̅𝑞𝑞′
𝜃  are the weighting coefficients of 

the first and second order derivatives, respectively, and are 

determined by means of the Lagrange interpolated 

polynomials, which can be defined by the following 

formula 

𝐶
𝑝𝑝′
𝜑

=

(

 
 
 

Π(𝜑𝑝)

(𝜑𝑝 − 𝜑𝑝′)Π(𝜑𝑝′)
    𝑤ℎ𝑒𝑛    𝑝 ≠ 𝑝′

− ∑

𝑁𝜑

𝑘=1,𝑘≠𝑝

𝐶𝑝𝑘
𝜑
        𝑤ℎ𝑒𝑛    𝑝 = 𝑝′

 

𝐶𝑞𝑞′
𝜃 =

(

 
 
 

Π(𝜃𝑞)

(𝜃𝑞 − 𝜃𝑞′)Π(𝜃𝑞′)
    𝑤ℎ𝑒𝑛    𝑞 ≠ 𝑞′

− ∑

𝑁𝜃

𝑘=1,𝑘≠𝑞

𝐶𝑞𝑘
𝜃         𝑤ℎ𝑒𝑛    𝑞 = 𝑞′

 

𝑝, 𝑝′ = 1,2, . . . , 𝑁𝜑                  𝑞, 𝑞′ = 1,2, . . . , 𝑁𝜃 

(30) 

in which 

Π(𝜑𝑝) = ∏

𝑁𝜑

𝑘=1,𝑘≠𝑝

(𝜑𝑝 − 𝜑𝑘),  

Π(𝜃𝑞) = ∏
𝑁𝜃
𝑘=1,𝑘≠𝑞 (𝜃𝑞 − 𝜃𝑘)  

(31) 

and 

(
𝐶̅
𝑝𝑝′
𝜑

= 2(𝐶𝑝𝑝
𝜑
𝐶
𝑝𝑝′
𝜑
−

𝐶
𝑝𝑝′
𝜑

(𝜑𝑝 − 𝜑𝑝′)
)

𝑝, 𝑝′ = 1,2, … ,𝑁𝜑

,    𝑝 ≠ 𝑝′ 

(

 
 𝐶̅𝑝𝑝

𝜑
= − ∑

𝑁𝜑

𝑘=1,𝑘≠𝑝

𝐶̅𝑝𝑘
𝜑

𝑝 = 1,2, . . . , 𝑁𝜑

,    𝑝 = 𝑝′,   

(
𝐶̅𝑞𝑞′
𝜃 = 2(𝐶𝑞𝑞

𝜃 𝐶𝑞𝑞′
𝜃 −

𝐶𝑞𝑞′
𝜃

(𝜃𝑞 − 𝜃𝑞′)
)

𝑞, 𝑞′ = 1,2, . . . , 𝑁𝜃

,    𝑞 ≠ 𝑞′ 

   (
𝐶̅𝑞𝑞
𝜃 = − ∑

𝑁𝜃

𝑘=1,𝑘≠𝑞

𝐶̅𝑞𝑘
𝜃

𝑞 = 1,2, . . . , 𝑁𝜃

,    𝑞 = 𝑞′ 

(32) 

The accuracy of this method is usually sensitive to the 

grid point distribution. The nodes must be located across the 

domain according to a specific grid distribution. In the 

present research, the Chebyshev-Gauss-Lobatto grid 

distribution is used due to its stability and accuracy. In this 

type of dispensation, the discrete points in the 𝜑 and 𝜃-

directions are defined as 

𝜑𝑝 = (𝜑𝑜𝑢𝑡 − 𝜑𝑖𝑛) (
1

2
−
1

2
cos (

𝑝 − 1

𝑁𝜑 − 1
𝜋))

+ 𝜑𝑖𝑛,      

       𝑝 = 1,2, … , 𝑁𝜑  

(33) 
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𝜃𝑞 = 2𝜋 (
1

2
−
1

2
cos (

𝑞 − 1

𝑁𝜃 − 1
𝜋)) ,            𝑞

= 1,2, … ,𝑁𝜃 

(34) 

The discretized equations of motion and boundary 

conditions after applying GDQ method are not given here 

for the sake of brevity; meanwhile, one may refer to the 

other available works, e.g., (Tornabene and Viola 2007). 

Obtained algebraic eigenvalue problem may be written in 

compact form as follows 

𝐌]{𝑢̈} + [𝐊]{𝑢} = 0 (35) 

where {𝑢} is the displacement vector with (5 × 𝑁𝜑 × 𝑁𝜃) 

components and including unknown displacements field 

(𝑢1𝑝𝑞
0 , 𝑢2𝑝𝑞

0 , 𝑢3𝑝𝑝
0 , 𝜓1𝑝𝑞, 𝜓2𝑝𝑞). Furthermore, in the above 

equation, [𝐌] is the mass matrix and [𝐊] is the stiffness 

matrix. Since the free vibration of the FG-GPLRC spherical 

shell on elastic foundation is harmonic, one can assume the 

following periodic form for the displacement functions 

 

 

Table 1 mechanical properties of the matrix and GPLs (Wu 

2017) 

Properties Epoxy GPL 

Elasticity modulus(𝐸)[GPa] 3.0 1010 

Mass density (𝜌) [kg/m 3] 1200 1062.5 

Poisson’s ratio (𝜈) 0.34 0.186 

 

 

𝑢1
0(𝜑, 𝜃, 𝑡) = 𝑈1

0(𝜑, 𝜃)sin(𝜔𝑡 + 𝛼) 

𝑢2
0(𝜑, 𝜃, 𝑡) = 𝑈2

0(𝜑, 𝜃)sin(𝜔𝑡 + 𝛼) 

𝑢3
0(𝜑, 𝜃, 𝑡) = 𝑈3

0(𝜑, 𝜃)sin(𝜔𝑡 + 𝛼) 

𝜓1(𝜑, 𝜃, 𝑡) = Ψ1(𝜑, 𝜃)sin(𝜔𝑡 + 𝛼) 

𝜓2(𝜑, 𝜃, 𝑡) = Ψ2(𝜑, 𝜃)sin(𝜔𝑡 + 𝛼) 

(36) 

Substituting Eq. (36) into Eq.(35), the following 

algebraic eigenvalue equations in the matrix form which 

yield the natural frequencies and the corresponding mode  

Table 2 Convergence of first three natural frequencies results for a FS functionally graded multilayer X-GPLRC 

spherical shell (ℎ/𝑅 = 0.05, 𝜑𝑖𝑛 = 15
∘, 𝜑𝑜𝑢𝑡 = 90

∘, 𝑊𝐺𝑃𝐿 = 0.3%, and 𝜈 = 0.3) 

 𝑁𝐿 

mode 𝑁𝜃 𝑁𝜑 4 6 8 10 12  14 

Ω1 15 15 14.2932 14.3829 14.4136 14.4277 14.4354 14.4400 

17 14.2909 14.3805 14.4112 14.4253 14.4329 14.4375 

19 14.2905 14.3800 14.4107 14.4249 14.4325 14.4371 

17 15 14.2928 14.3824 14.4131 14.4272 14.4349 14.4395 

17 14.2904 14.3800 14.4107 14.4248 14.4324 14.4370 

19 14.2900 14.3796 14.4103 14.4244 14.4320 14.4366 

19 15 14.2928 14.3824 14.4132 14.4273 14.4349 14.4395 

17 14.2904 14.3800 14.4107 14.4248 14.4325 14.4371 

19 14.2901 14.3796 14.4103 14.4244 14.4320 14.4366 

Ω2 15 15 15.4710 15.4751 15.4765 15.4771 15.4775 15.4777 

17 15.4711 15.4751 15.4765 15.4772 15.4775 15.4777 

19 15.4711 15.4751 15.4765 15.4772 15.4775 15.4777 

17 15 15.4710 15.4751 15.4765 15.4771 15.4775 15.4777 

17 15.4711 15.4751 15.4765 15.4772 15.4775 15.4777 

19 15.4711 15.4751 15.4765 15.4772 15.4775 15.4777 

19 15 15.4710 15.4751 15.4765 15.4771 15.4775 15.4777 

17 15.4711 15.4751 15.4765 15.4772 15.4775 15.4777 

19 15.4711 15.4751 15.4765 15.4772 15.4775 15.4777 

Ω3 15 15 21.0336 21.0479 21.0529 21.0552 21.0564 21.0572 

17 21.0335 21.0479 21.0529 21.0552 21.0564 21.0572 

19 21.0335 21.0479 21.0529 21.0552 21.0564 21.0572 

17 15 21.0336 21.0479 21.0529 21.0552 21.0564 21.0572 

17 21.0335 21.0479 21.0529 21.0552 21.0564 21.0572 

19 21.0335 21.0479 21.0529 21.0552 21.0564 21.0572 

19 15 21.0336 21.0479 21.0529 21.0552 21.0564 21.0572 

17 21.0335 21.0479 21.0529 21.0552 21.0564 21.0572 

19 21.0335 21.0479 21.0529 21.0552 21.0564 21.0572 
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shapes of the spherical shell are obtained 

(𝐊 − 𝛚𝟐𝐌)𝐔 = 0 (37) 

in which 𝛚  and 𝐔  are the natural frequency and the 

corresponding mode shape obtained by solving the above 

eigenvalue equation. 

 

 

5. Results and discussion 
 

The developed process in the previous section is 

implemented in the rest to analyse the free vibration 

characteristics of FG-GPLRC Spherical shell resting on a 

two parameter elastic foundation. Unless otherwise 

mentioned, a nanocomposite consisted an epoxy matrix 

embedded by graphene platelets. The mechanical properties 

for these constituents are given in Table 1. 

Different boundary conditions with the combination of 

clamped (C), simply-supported (S), and free (F) are 

considered at the circumferential edges of structure. For 

instance, the FC boundary condition indicates which shell is 

Free at 𝜑 = 𝜑𝑖𝑛 and which one is clamped at 𝜑 = 𝜑𝑜𝑢𝑡. 
In the present research, to investigate the effects of elastic 

coefficients on natural frequencies of the shell, the 

nondimensional Winkler and Pasternak coefficients are 

appointed according to 

𝐾𝑤 =
𝑘𝑤𝑅

4(1 − 𝜈𝑚
2 )

𝐸𝑚ℎ
3

 

𝐾𝑔 =
𝑘𝑔𝑅

2(1 − 𝜈𝑚
2 )

𝐸𝑚ℎ
3

 

(38) 

Furthermore, the nondimensional natural frequencies of 

mentioned structure are defined as 

 

 

Ω𝑖 = 𝜔𝑖𝑅
2√
𝜌𝑚(1 − 𝜈𝑚

2 )

𝐸𝑚ℎ
2

 (39) 

All of the numerical results are obtained considering the 

following dimensions of reinforcement 

𝑎𝐺𝑃𝐿 = 2.5𝜇m, 𝑏𝐺𝑃𝐿 = 1.5𝜇m, 𝑡𝐺𝑃𝐿 = 1.5nm. 

 

5.1 Convergence and comparison study 

 
A convergence study is performed to obtain the 

optimum number of layers. The aim beyond this study is to 

obtain the number of required grid points in the meridional 

and circumferential directions to reach the converged 

natural frequencies Ω. The results of the converged first 

three nondimensional natural frequency of the FG-GPLRC 

spherical shell with ℎ/𝑅 = 0.05 are presented in Table 2. 

Moreover, the weight fraction of fillers is selected as 

𝑊𝐺𝑃𝐿 = 0.3% and X-GPLRC pattern is considered. At the 

𝜑𝑖𝑛 = 15
∘  free edge and at the 𝜑𝑜𝑢𝑡 = 90

∘  simply-

supported are assumed (FS). As seen from the results of 

related figure, after assumption of 19 grid point across the 

shell domain, the results are converged. Therefore, to obtain 

high accurate results for the subsequent results, the number 

of grid points is set equal to 𝑁𝜑 = 𝑁𝜃 = 21. Another result 

of this study states that there is a very small difference 

between the natural frequencies at 𝑁𝐿 = 10 and 𝑁𝐿 > 10 

therefore a multilayer GPLRC shell with 10 layers could 

offer sufficient accuracy to model the ideal functionally 

graded shell with smooth variations between material 

compositions and properties. In the rest of the paper, all of 

results of the FG-GPLRC shell will be obtained with 10 

layers. 

Table 3 Comparison of the frequency parameters Ω = 𝜔𝑅√𝜌(1 − 𝜈2)/𝐸 for an isotropic FS hemispherical shell 

(𝜑𝑖𝑛 = 0, 𝜑𝑜𝑢𝑡 = 90
∘ and 𝑅 = 1 m) 

 modes  ℎ/𝑅 = 0.01  ℎ/𝑅 = 0.05 

n  m Present  Artioli and 

Viola (2006) 

Qu et al. (2013)   Present  Artioli and 

Viola (2006) 

Qu et al. (2013) 

0 1 0.7138 0.7138 0.7138 0.7362 0.7364 0.7360 

2 0.8891 0.8892 0.8891 0.9587 0.9605 0.9583 

3 0.9337 0.9338 0.9336 1.1694 1.1744 1.1690 

4 0.9664 0.9667 0.9663 1.1826 1.1832 1.1832 

5 1.0097 1.0102 1.0097 1.4785 1.4859 1.4780 

1 1 0.5343 0.5343 0.5343 0.5422 0.5421 0.5422 

2 0.8445 0.8444 0.8444 0.8788 0.8796 0.8785 

3 0.9162 0.9163 0.9162 1.0535 1.0573 1.0535 

4 0.9498 0.9501 0.9498 1.3218 1.3300 1.3213 

5 0.9863 0.9867 0.9862 1.6461 1.6511 1.6463 

2 1 0.8589 0.8589 0.8589 0.8767 0.8763 0.8764 

2 0.9217 0.9215 0.9217 0.9970 0.9946 0.9966 

3 0.9510 0.9507 0.9510 1.1917 1.1869 1.1913 

4 0.9781 0.9773 0.9781 1.5238 1.5191 1.5232 

5 1.0169 1.0155 1.0169 1.9788 1.9789 1.9782 
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Since there is no the free vibration study on the FG-GPLRC 

spherical shell in the open access literature, the comparison 

of frequency characteristics for isotropic shell with FS 

boundary condition are provided in Table 3. In this 

comparative study, frequency parameter is defined Ω =

 𝜔𝑅√𝜌(1 − 𝜈2)/𝐸  for the hemispherical shells with 

geometrical parameters 𝜑𝑖𝑛 = 0 , 𝜑𝑜𝑢𝑡 = 90
∘ , 𝑅 = 1 m, 

and ℎ/𝑅 = 0.01  and 0.05 . In this study 𝑛  denotes 

circumferential modes and 𝑚 indicates meridional modes.  

The results are compared with other works by Artioli 

and Viola (2006) using the GDQ method and Qu et al. 

(2013) using the variational method. An excellent 

agreement is seen for each thickness-to-radius ratio. 

As mentioned in the introduction section, there is no 

related research on the free vibration of nanocomposite 

spherical shells reinforced with graphene platelets. 

However for the case of annular plates, results of 

Malekzadeh et al. (2018) could be mentioned. The spherical 

shell can be reduce to an annular plate considering zero rise 

in the shell. In order to compare, the radius of curvature is 

set equal to a large number, i.e., 𝑅 = 105m and opening 

angles must be must be corresponding to radius, for this 

condition, 𝜑𝑖𝑛 = 0.25 × 10
−5 rad and 𝜑𝑜𝑢𝑡 = 10

−5 rad. 

The thickness is set equal to ℎ = 0.1m. Under such 

conditions, the inner and outer radius of the annular plate 

will be 𝑅𝜑𝑖𝑛 = 0.25m and 𝑅𝜑𝑜𝑢𝑡 = 1m, respectively, 

which is the same as the one provided by Malekzadeh et al. 

(2018). Comparison of fundamental frequency parameter 

𝜆 = 𝜔ℎ√𝜌𝑚/𝐸𝑚  for three types of boundary conditions 

(CC, CS, CF) and four functionally graded patterns of 

fillers distribution along thickness are provided in Table 4. 

It can be seen that results are in good agreement with those 

of Malekzadeh et al. (2018) which are obtained by means of 

the transformed differential quadrature method. 

 

5.2 Parametric study 
 

After validating the present formulation and proposed 

method, novel numerical results are given in this section. It 

is worth noting that repeated frequencies were not 

considered in this research. 

Variations of the first five nondimensional natural 

frequencies of the FG-GPLRC spherical shell are provided  

 

 

in Table 5 for three values of weight fractions and four 

types of GPLs distributions. Annular spherical shell with 

thickness ratio ℎ/𝑅 = 0.05 and opening angles 𝜑𝑖𝑛 = 15
∘ 

and 𝜑𝑜𝑢𝑡 = 90
∘ are assumed. Also, the effects of various 

boundary conditions are taken into account. It is evident 

that the higher values of nanofillers weight fractions will 

increase of the nondimensional natural frequency. 

Furthermore, the shell with functionally graded X-GPLRC 

and O-GPLRC types of distribution showed the highest and 

lowest natural frequencies, respectively. Also, shells with 

clamped edges and free edges exhibited the highest and 

least increasing impact on nondimensional natural 

frequency. 

Variations of the nondimensional frequencies of 

clamped (CC) FG-GPLRC spherical shell for different 

values of 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 are listed in Table 6. This figure is 

associated to elastic foundation with (𝐾𝑤, 𝐾𝑔) =

(0,0), (200,0), (0,20) and (200,20) , respectively. For 

developing the numerical results of this figure, ℎ/𝑅 = 0.05  

and 𝑊𝐺𝑃𝐿 = 0.3% are assumed. It is clear that for the 𝜑𝑖𝑛 

values, the increases in 𝜑𝑜𝑢𝑡 of shell results in decline of 

the natural frequency of X patterns of FG-GPLRC structure, 

while for the same values of 𝜑𝑜𝑢𝑡, the increment of angle 

𝜑𝑖𝑛  the natural frequencies tended to a higher values. 

Therefore, one can state that the increase in the length of the 

clamped spherical shell in the meridional direction will 

augment the shell flexiblity and reduce the non-dimensional 

frequency. On the other hand, increase of the 

nondimensional  

Winkler and Pasternak coefficients results in higher natural 

frequencies. 

For different combinations of boundary conditions, the 

nondimensional fundamental frequency of X, O and U 

patterns of FG-GPLRC multilayer spherical shell is 

evaluated as presented in Table 7. For developing the results 

of this figure, 𝜑𝑖𝑛 = 15
∘ , 𝜑𝑜𝑢𝑡 = 120

∘ , 𝑊𝐺𝑃𝐿 = 0.3% 

and (𝐾𝑤 , 𝐾𝑔) = (100,10) are assumed. For this example 

various thickness-to-radius ratio are taken into 

consideration which are ℎ/𝑅 = 0.01,0.05,0.1. It can be 

concluded that boundary conditions play a key role in the 

vibrational behavior of the shell and considerably effects 

the natural frequencies. For less flexible boundary 

conditions, the spherical shell is more stable and caused  

Table 4 Comparison of natural frequency parameter 𝜆 = 𝜔ℎ√𝜌𝑚/𝐸𝑚 for a FG-GPLRC annular plate with weight fraction of 

reinforcements 𝑊𝐺𝑃𝐿 = 1% 

 B.Cs. 

Graded type Source CC CS CF 

U-GPLRC Present 0.2207 0.1526 0.0344 

 Malekzadeh et al. (2018) 0.22095 0.15274 0.03445 

X-GPLRC Present 0.2485 0.1740 0.0398 

 Malekzadeh et al. (2018) 0.24454 0.17090 0.03899 

O-GPLRC Present 0.1829 0.1246 0.0277 

 Malekzadeh et al. (2018) 0.19038 0.13001 0.02898 

Λ-GPLRC Present 0.2024 0.1418 0.0311 

 Malekzadeh et al. (2018) 0.20598 0.14149 0.03174 
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higher nondimensional natural frequencies. On the other 

hand, it can be inferred that for different boundary 

conditions, by increase of the shell thickness ratio, the 

frequencies of the structure increase while influences of 

functionally graded patterns showed a decline. 

Fig. 2 aims to analyse the effect of the spherical shell 

opening angle (𝜑𝑜𝑢𝑡) in different boundary conditions. In 

this example, shells with CC, SS, CS, and FS types of  

 

 

boundary conditions are considered. Four different amounts 

of elastic foundation coefficients for X-GPLRC spherical 

shells with geometrical characteristics ℎ/𝑅 = 0.05  and 

𝜑𝑖𝑛 = 30
∘ is taken as case studies. Also, weight fraction of 

graphene platelets is set to 𝑊𝐺𝑃𝐿 = 0.3% . It is again 

verified that, the higher natural frequency belongs to higher 

Winkler and Pasternak elastic coefficients. 

 

Table 5 The influences of GPL distribution pattern, weight fraction and boundary conditions on the first five 

dimensionless frequency parameter Ω of FG-GPLRC spherical shells (ℎ/𝑅 = 0.05, 𝜑𝑖𝑛 = 15
∘ , 𝜑𝑜𝑢𝑡 = 90

∘  and 

(𝐾𝑤 , 𝐾𝑔) = (0,0))  

 mode 

B.Cs. 𝑊𝐺𝑃𝐿(%) Graded type Ω1 Ω2 Ω3 Ω4 Ω5 

CC 

 

0.1 U-GPLRC 20.537 21.393 21.473 22.089 23.510 

X-GPLRC 20.796 21.545 21.624 22.224 23.633 

O-GPLRC 20.270 21.148 21.397 21.952 23.270 

Λ-GPLRC 20.441 21.308 21.416 22.009 23.426 

0.3 U-GPLRC 25.145 26.192 26.290 27.045 28.784 

X-GPLRC 25.771 26.465 26.743 27.372 29.081 

O-GPLRC 24.479 25.577 26.099 26.704 28.153 

Λ-GPLRC 24.798 25.882 26.119 26.791 28.429 

0.5 U-GPLRC 29.032 30.242 30.355 31.226 33.234 

X-GPLRC 29.931 30.606 31.025 31.698 33.661 

O-GPLRC 28.063 29.343 30.075 30.731 32.307 

Λ-GPLRC 28.450 29.716 30.083 30.817 32.628 

CS 0.1 U-GPLRC 19.387 20.383 21.385 22.012 23.246 

X-GPLRC 19.570 20.545 21.435 22.121 23.367 

O-GPLRC 19.200 20.214 21.331 21.899 23.107 

Λ-GPLRC 19.210 20.266 21.356 21.961 23.146 

0.3 U-GPLRC 23.737 24.956 26.183 26.950 28.461 

X-GPLRC 24.181 25.346 26.301 27.212 28.744 

O-GPLRC 23.272 24.536 26.044 26.666 28.022 

Λ-GPLRC 23.217 24.594 26.081 26.764 28.150 

0.5 U-GPLRC 27.408 28.815 30.231 31.117 32.861 

X-GPLRC 28.045 29.374 30.400 31.491 33.261 

O-GPLRC 26.731 28.203 30.026 30.700 32.184 

Λ-GPLRC 26.593 28.235 30.059 30.802 32.358 

CF 0.1 U-GPLRC 1.403 1.955 3.461 5.972 6.304 

X-GPLRC 1.476 1.990 3.643 5.972 6.626 

O-GPLRC 1.325 1.917 3.266 5.958 5.972 

Λ-GPLRC 1.388 1.948 3.422 5.984 6.233 

0.3 U-GPLRC 1.718 2.393 4.237 7.312 7.718 

X-GPLRC 1.891 2.477 4.671 7.313 8.483 

O-GPLRC 1.520 2.296 3.740 6.836 7.312 

Λ-GPLRC 1.648 2.361 4.061 7.342 7.401 

0.5 U-GPLRC 1.983 2.764 4.893 8.444 8.912 

X-GPLRC 2.231 2.882 5.510 8.445 10.002 

O-GPLRC 1.692 2.620 4.158 7.609 7.610 

Λ-GPLRC 1.859 2.705 4.576 8.345 8.488 
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As expected, with the enhancement in 𝜑𝑜𝑢𝑡, the shell loses 

its the flexural rigidity; hence the natural frequency 

declines. Another result states that increase of 𝜑𝑜𝑢𝑡 
reduces the influence of elastic foundation coefficients on 

fundamental natural frequency. 

Additionally, changes of nondimensional fundamental 

frequency of FG-GPLRC spherical shell versus angle 𝜑𝑖𝑛  

 

with X distribution pattern are depicted in Fig. 3 for 

different types of boundary conditions and elastic 

foundation coefficients. In this study shells with ℎ/𝑅 =
0.02, 𝑊𝐺𝑃𝐿 = 0.3% and 𝜑𝑜𝑢𝑡 = 120

∘ are examined. The 

results demonstrate that enhancement of 𝜑𝑖𝑛, fundamental 

frequency is constantly elevate for the shells without free 

edges while spherical shells with free edges exhibit 

undetectable behavior. 

Table 6 The influences of opening angles and elastic foundation coefficients on the first five dimensionless frequency 

parameter Ω of clamped X-GPLRC spherical shells (ℎ/𝑅 = 0.05 and 𝑊𝐺𝑃𝐿 = 0.3%) 

 mode 

(𝐾𝑤, 𝐾𝑔)  𝜑𝑖𝑛 𝜑𝑜𝑢𝑡   Ω1   Ω2   Ω3   Ω4  Ω5 

(0,0) 10 60 31.945 34.039 35.320 38.895 39.220 

90 24.426 25.006 25.536 27.113 27.999 

120 17.597 17.971 20.486 22.433 22.954 

20 60 37.860 38.051 41.203 41.361 44.873 

90 27.422 27.562 27.853 28.518 29.608 

120 19.384 20.791 22.888 23.424 23.757 

30 60 49.141 49.418 51.016 51.475 53.038 

90 29.554 30.284 30.563 32.089 33.026 

120 21.530 23.224 24.714 25.274 25.557 

(200,0) 10 60 34.670 36.698 37.707 41.153 41.584 

90 27.243 27.316 28.489 30.239 30.742 

120 19.898 20.461 25.400 25.690 28.035 

20 60 40.235 40.458 43.392 43.612 47.013 

90 30.178 30.381 30.907 30.983 32.602 

120 22.232 22.877 22.888 26.301 26.338 

30 60 51.046 51.308 52.864 53.320 54.871 

90 32.461 32.953 33.474 34.607 35.482 

120 24.380 25.649 26.407 27.499 27.565 

(0,20) 10 60 39.058 39.711 44.297 44.983 52.030 

90 27.982 29.304 29.808 33.032 33.407 

120 19.464 20.486 20.498 24.892 25.839 

20 60 45.330 46.826 48.045 50.148 53.857 

90 31.491 32.379 34.062 34.274 36.207 

120 22.726 22.888 22.928 26.001 26.818 

30 60 58.192 59.172 59.551 60.439 63.278 

90 34.568 35.838 36.738 39.123 40.566 

120 25.908 25.930 26.407 27.467 28.591 

(200,20) 10 60 41.284 41.785 46.356 47.049 53.801 

90 29.669 31.818 32.097 34.146 35.355 

120 20.486 21.044 22.871 27.487 28.111 

20 60 47.312 48.734 49.962 52.076 55.599 

90 33.917 34.127 36.408 36.567 38.335 

120 22.888 24.278 25.231 28.557 29.030 

30 60 59.795 60.774 61.125 62.055 64.772 

90 36.873 38.244 38.587 41.423 42.523 

120 26.407 27.422 28.182 29.966 30.783 
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Fig. 4 demonstrates the effects of the percent of GPLs 

weight fraction together with various thickness-to-radius 

ratio on the fundamental frequency parameter of a FC FG-

GPLRC spherical shell. This study provides three annular 

hole at the apex of the X-GPLRC spherical shell 𝜑𝑖𝑛 =
0∘, 20∘, 40∘. For developing this example is set to 𝜑𝑜𝑢𝑡 =
90∘. It can be seen that the frequency parameters increase 

monotonically increased by rise of the GPLs weight fraction 

for all values of thickness ratio and opening angles. Also, It 

is observed that the increase of ℎ/𝑅 ratio diminishes the 

nondimensional natural frequency. It is worth noting that 

the increment in the thickness-to-radius ratio enhanced the 

 

 

 

 

structure stability; hence the natural frequency will be 

increased, but the non-dimensional frequency decreases. 

For further clarification of the vibrational behavior of 

nanocomposite spherical shells reinforced with graphene  

platelets, the first six mode shapes of a simply-supported 

(SS) X-GPLRC spherical shell are indicated in Fig. 5. 

Moreover, the weight fraction 𝑊𝐺𝑃𝐿 = 0.5% is regarded 

for this example. The mentioned shell are assumed with 

geometrical parameter ℎ/𝑅 = 0.05 , 𝜑𝑖𝑛 = 15
∘ , and 

𝜑𝑜𝑢𝑡 = 90. 

In the other example, mode shape analysis is provided 

for various types of boundary conditions and opening  

Table 7 The influences of thickness-to-radius ratio on the fundamental dimensionless frequency parameter Ω1 of 

spherical shells with various boundary conditions and types of GPL distribution (𝜑𝑖𝑛 = 15
∘, 𝜑𝑜𝑢𝑡 = 120

∘, 𝑊𝐺𝑃𝐿 =
0.3%, (𝐾𝑤 , 𝐾𝑔) = (100,10)) 

  B.Cs. 

(ℎ/𝑅)  Graded type  CC CS   CF   SC   SS  SF FC FS 

0.01  U-GPLRC 82.340 80.565 8.325 81.070 79.319 7.907 27.912 27.850 

  X-GPLRC 82.705 80.817 8.376 81.349 79.490 7.923 29.562 29.499 

  O-GPLRC 81.920 80.278 8.267 80.751 79.130 7.889 26.023 25.963 

0.05  U-GPLRC 21.250 20.509 5.514 20.648 19.917 5.514 10.393 9.994 

  X-GPLRC 21.331 20.643 5.515 20.794 20.006 5.515 10.438 10.006 

  O-GPLRC 21.053 20.361 5.515 20.485 19.823 5.515 10.342 9.981 

0.1   U-GPLRC 10.749 10.749 2.753 10.749 10.749 2.753 7.085 6.850 

  X-GPLRC 10.751 10.751 2.753 10.751 10.751 2.753 7.110 6.856 

  O-GPLRC 10.748 10.748 2.753 10.748 10.748 2.753 7.056 6.844 

  

  

Fig. 2 The variation of the fundamental frequency parameter versus the 𝜑𝑜𝑢𝑡 of the X-GPLRC spherical shells for four 

elastic coefficients with various boundary conditions (ℎ/𝑅 = 0.05, 𝜑𝑖𝑛 = 30
∘, 𝑊𝐺𝑃𝐿 = 0.3%): (a) CC, (b) SS, (c) CS, (d) 

FS 
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angles in Fig. 6. FG-GPLRC spherical are considered with 

the weightfraction 𝑊𝐺𝑃𝐿 = 0.5% and functionally graded  

 

 

 

 

X-type. For developing this study, 
ℎ

𝑅
= 0.05 and 𝜑𝑖𝑛 

  

  

Fig. 3 The variation of the fundamental frequency parameter versus the 𝜑𝑖𝑛 of the X-GPLRC spherical shells forfour 

elastic coefficients with various boundary conditions (ℎ/𝑅 = 0.02, 𝜑𝑜𝑢𝑡 = 120
∘, 𝑊𝐺𝑃𝐿 = 0.3%): (a) CC, (b) SS, (c) FC, 

(d) FS 

  

 

Fig. 4 The variation of the fundamental frequency parameter versus the 𝑊𝐺𝑃𝐿 of the FC X-GPLRC spherical shells for 

four thickness ratio with various 𝜑𝑖𝑛 (𝜑𝑜𝑢𝑡 = 90
∘ and (𝐾𝑤, 𝐾𝑔) = (0,0)): (a) 𝜑𝑖𝑛 = 0

∘, (b) 𝜑𝑖𝑛 = 20
∘, (c) 𝜑𝑖𝑛 = 40

∘ 
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15∘ are considered. It can be concluded that the boundary 

conditions and half of opening angle can change the 

fundamental mode shape of the shell. 

 

 

6. Conclusions 
 

An analysis is performed in this work to examine the 

free vibration of the FG-GPLRC spherical shells on the 

Winkler-Pasternak elastic foundation. The governing 

motion equations of the shell are established by means of 

the Sanders kinematic assumptions, first order shell theory 

and linear elasticity law. These equations are solved by the 

GDQ method. Following conclusions can be made: 

• The weight fractions and functionally graded types of 

graphene platelets play a significant role in the natural 

frequencies of FG-GPLRC spherical shell. the non-

dimensional frequency of the structure increases by 

enhancement of weight fraction. Also, the FGX type of 

GPLs across the thickness direction results in the highest 

fundamental frequency. 

 

 

 

• Variations of 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 can significantly affect 

the nondimensional frequency. Generally the longer length 

spherical shell in 𝜑  direction makes the less stable 

structure hence decreases the non-dimensional natural 

frequency. 

• Types of the boundary conditions play an important 

role in the vibration characteristics of the spherical shell. 

The magnitude of natural frequencies for stiffer edge is 

much higher than the Softer edge. Moreover, the mode 

shapes exceedingly depend on the types of the boundary 

conditions of the shell. 

•  thickness-to-radius ratio of the shell is another 

important factor in the sphere natural frequency. Results 

show that as the thickness ratio of the sphere increases, the 

natural frequencies decreases noticeably. 

•  Larger elastic foundation coefficients improves the 

stability of the FG-GPLRC deep spherical shells and so the 

frequency parameters tend to higher magnitudes. 

 

 

 
 

 

 
Fig. 5 First six mode shapes of simply-supported X-GPLRC spherical shell (ℎ/𝑅 = 0.05, 𝜑𝑖𝑛 = 15

∘ , 𝜑𝑜𝑢𝑡 = 90
∘, 

𝑊𝐺𝑃𝐿 = 0.5% and (𝐾𝑤, 𝐾𝑔) = (0,0)) 
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