
Steel and Composite Structures, Vol. 36, No. 6 (2020) 671-687 

DOI: https://doi.org/10.12989/scs.2020.36.6.671                                                                  671 

Copyright © 2020 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=8                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 
 

In recent years, modern structures such as sandwich 

beams and new materials including SMA and porous 

materials have grabbed attention of the vast majority of 

researchers, meanwhile, many researchers focused on 

analyzing buckling and bending behaviors of sandwich 

beam, SMA and porous material (Arani et al. 2018, Babaee 

et al. 2018, Yazdani et al. 2019). Faraji-Oskouie et al. 

(2019) studied the bending behavior of small-scale 

Timoshenko beam based on the integral/differential 

nonlocal-micropolar elasticity theory. Their results 

illustrated that the nonlocal effect captured by the integral 

model is more outstanding than that in the differential 

model. Kaci et al. (2018) developed an exact analytical 

solution to analyze the post-buckling non-linear response of 

deformable symmetric composite beams. In their theory, 

they presented a parabolic distribution of transverse shear 

stresses in order to satisfy nullity conditions on both sides 

of the beam without the need of shear correction factor. 

Their results indicated that the classical and first-order 

theories underestimate the amplitude of buckling. 

Kozikowska (2019) studied topology and geometry  
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optimization of statically determinate beams with arbitrary 

number of supports. He used Pareto optimality concept to 

formulate and solved the problem with the aim of 

minimizing the absolute maximum bending moment and the 

maximum deflection. Lee and Lee (2018) proposed a 

transfer matrix method for the bending vibration of two 

types of tapered beams subjected to axial force. They 

studied the effects of cracking and axial loading on 

behavior of the beam. Arani et al. (2019) used the nonlocal 

strain gradient elasticity theory and different higher order 

shear deformation beam theories simultaneously to study 

critical buckling load. They solved the governing equations 

by DQM and investigated the critical buckling load, critical 

voltage and critical temperature rising. The result 

demonstrated that with increasing the Winkler foundation, 

the buckling mechanical load is increased. Buckling and 

free vibration analysis of functionally graded sandwich I-

beams based on the first-order shear deformation theory 

was studied by Nguyen et al. (2019). Their results indicated 

that the shear effects are more for beams with C-C 

boundary conditions, and are significant for beams with 

small span-to-height’s ratio. Mohammadimehr and Rostami 

(2018) analyzed the static bending and vibration analysis of 

a rotating sandwich cylindrical shell with nanocomposite 

core and piezoelectric face sheets subjected to magnetic and 

thermal fields. They investigated the effect of geometrical 

parameters, applied voltages on the inner and outer 

piezoelectric layers and volume fractions of carbon 

nanotubes (CNT) on vibration behavior of sandwich 

cylindrical shell. They derived the governing equations of 
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motion from Lagrange’s equations and used Ritz method to 

obtain the critical buckling loads and the natural frequencies 

of thin-walled beams for both non-shear deformable and 

shear deformable theory. Rajabi and Mohammadimehr 

(2019) investigated the bending analysis of a micro 

sandwich skew plate with isotropic core and piezoelectric 

composite face sheets based on the classical plate theory. 

Babaeeian and Mohammadimehr (2020) illustrated 

investigation of the time elapsed effect on residual stress 

measurement in a composite plate by DIC method. 

Shape memory alloys represent a unique material class 

exhibiting peculiar properties such as the shape memory 

effect, the super-elasticity associated with damping 

capabilities, high corrosion and extraordinary fatigue 

resistance. The SMA, because of unique properties, is used 

in the wide fields of industry. For instance, in structural 

engineering and earthquake, because of super-elasticity and 

shape memory are used as wire, rod, and sheet to strengthen 

the structure against the earthquake. One of the most 

important applications of the SMA wires is orthodontic 

wires in dentistry. In recent years, many researchers have 

studied the stability and dynamic behaviors of sandwich 

beams embedded with SMA. Previous studies investigated 

the influence of SMA in mechanical behaviors of structures 

(He et al. 2017, Soltanieh et al. 2019, Yu et al. 2018).  

Kheirikhah and Khosravi (2018) studied the buckling and 

free vibration behaviors of the composite sandwich plates 

reinforced by SMA wires. The effects of geometry 

parameters like (thickness, plate aspect ratio) and boundary 

conditions on the natural frequencies and the critical 

buckling loads of the plates are investigated. The obtained 

results showed that an increase in the thickness ratio causes 

a decrease in both the dimensionless buckling load and the 

dimensionless natural frequency. Akhavan-Rad and 

Kheirikhah (2019) used third-order shear deformation plate 

theory to discuss the static analysis of a sandwich plate with 

flexible core and composite face sheets embedded with 

SMA wires in the face sheets. Their results showed that 

activating SMA wires causes a decrease in the deflection 

and stresses in these plates. Babaee et al. (2018) presented 

the nonlinear thermal buckling analysis of functionally 

graded (FG) beam integrated with shape memory alloy. 

They used the Brinson one-dimensional constitutive law to 

model the characteristics of SMA. Hamilton’s principle is 

used to derive the nonlinear equilibrium equations. They 

studied the effect of material and geometrical parameters on 

the nonlinear thermal buckling. Kabir and Tehrani (2017) 

attempted to recognize the effects of SMA activation 

temperature, SMA fiber volume fraction, SMA pre-strain 

and biaxial ratio on the buckling and post-buckling 

solutions. Their results indicated that the active strain 

energy tuning (ASET) method is more effective than the 

active property tuning (APT) method in increasing the 

critical buckling load of the reinforced plates with SMA 

fibers. Akbari and Khalili (2019) examined numerically 

behavior of thin-walled composite shell with embedded 

SMA wires. They showed that the numerical model has 

sufficient accuracy on the buckling behavior of the 

composite structures embedded with SMA. 

Porous materials are used in cases which the weight of 

structure plays a significant role. Because of this, exclusive 

properties have wide applications in biomedical, aerospace, 

automotive and civil engineering. Recently, researchers and 

engineers conducted many studies about various categories 

of porous materials such as organic materials, polymeric 

foams and metal foams (Thanh et al. 2019, Fang et al. 

2019, Emdadi et al. 2019, Liu et al. 2019). Polit et al. 

(2019) analyzed the static bending and elastic stability of 

porous nanocomposite curved beams. Their results 

indicated that the weight dispersion pattern of GPLs 

significantly influences the stiffness of the beam while 

relating with the distribution of porosity in the metal foam. 

Tang et al. (2018) used Euler–Bernoulli beam theory and 

minimum total potential energy principle to derive the 

equilibrium equations. They analyzed the critical buckling 

load for different porosity distribution patterns by 

employing the generalized differential quadrature method 

(GDQM) to governing equations. Eltaher et al. (2018) 

studied the bending and vibration analysis of functionally 

graded (FG) nanobeams based on Euler beam theory (EBT). 

They solved equations by finite element method and 

showed that increasing porosity, material graduation and 

nanoscale parameters lead to decrease the bending 

resistance as well as the fundamental frequencies of the 

nanobeam. Their results showed that the static deflection 

increases with an increase in the porosity, nonlocal effect, 

and metal content into the material. Based on Hamilton's 

principle, Sahmani et al. (2018) extracted the non-classical 

governing differential equations of motion. Also, the 

influence of three different functionally graded porosity 

distributions and many other parameters is investigated. 

According to the presented results in mentioned study, 

among different patterns of porosity dispersion, the one that 

has higher Young's modulus in top and bottom of the beam 

provides minimum deflection of the beam. Alambeigi et al. 

(2020) presented free and forced vibration analysis of a 

sandwich beam considering porous core and SMA hybrid 

composite face layers on Vlasov’s foundation. Amiri et al. 

(2020) considered stress and buckling analysis of a thick-

walled micro sandwich panel with a flexible foam core and 

carbon nanotube reinforced composite (CNTRC) face 

sheets. 

The focus of this research is to investigate the influence 

of temperature on bending and buckling behavior of the 

sandwich beam with porous core and composite face layers 

resting on Vlasov’s foundation. As SMA wires which are 

embedded in composite face layers are significantly 

sensitive to temperature change. Moreover, the effect of 

some important parameter such as porosity coefficient, 

volume fractional of SMA, and volume fractional of 

BNNTs is studied. To the authors’ best knowledge, this is 

for the first time that bending and buckling behavior of a 

sandwich beam with porous core and composite face layers 

embedded with SMA wires are studied.  The porous core 

material is titanium alloy (Ti-6Al-4V) and the mechanical 

properties of porous core are assumed to be graded along 

the cross-section of the beam according to uniform and FG 

distribution patterns. The boundary conditions of the beam 

are supposed to be simply supported and the interface 

between the core and face layers are considered to be fully 
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bonded. In order to solve the governing equations Navier’s 

solution is applied. 

 

 

2. Layers formulation 
 
2.1 Shape memory alloy 

 
In this study, the used memory alloy is made of nickel-

titanium and its phase is transformed with temperature. 1D 

Brinson model is used to simulate the modeling of memory 

alloy behavior. The fundamental equation of the SMA 

presented by Brinson is as follows Babaee et al. (2018) 

σ − 𝜎0 = 𝐸(𝜉)ε − 𝐸(𝜉0)휀0 + Ω(𝜉)𝜉𝑠 − Ω(𝜉0)𝜉𝑠0 + 𝜃(𝑇 − 𝑇0) (1) 

At the above equation  σ, 𝐸, 𝑇, Ω, ε , 𝜃  , and 𝜉𝑆 

illustrate stress, Young’s modulus, temperature, phase 

transformation coefficient, strain, thermoelastic term, and 

martensite fraction induced by stress, respectively. 

Subscript 0 denotes the value at the onset of the current 

phase transformation. 

The martensite phase volume fraction is defined by 𝜉. 

When 𝜉 = 0, SMA is in the fully austenite phase and in the 

fully martensite phase 𝜉 = 1. 

𝜉 = 𝜉𝑆 + 𝜉𝑇 (2) 

In which, 𝜉𝑆  and 𝜉𝑇  demonstrate the martensite 

fraction induced by stress and the martensite fraction 

induced by temperature, respectively. It should be noticed 

that the effect of martensite fraction induced by temperature 

is studied in this research. 

Based on the Brinson model Ω can be presented as 

follow 

𝛺(𝜉) = −휀𝐿𝐸(𝜉) (3) 

In which, 휀𝐿 is the maximum residual strain of SMA 

that can be calculated from experimental results. 

By substituting Eq. (3) to the fundamental equation (Eq. 

(1)), generally Brinson model constitutive law can be 

written as follows 

σ = 𝐸(𝜉)(ε − 휀𝐿𝜉𝑠) + 𝜃(𝑇 − 𝑇0) (4) 

The Young’s modulus of SMA based on Reuss method 

is obtained Babaee et al. (2018) 

𝐸(𝜉) =
𝐸𝐴

1 + (
𝐸𝐴
𝐸𝑀

− 1) 𝜉
 

(5) 

In which, 𝐸𝐴 and 𝐸𝑀 represent the fully austenite and 

fully martensite modulus, respectively. The martensitic 

fraction at low temperature can be obtained by Brinson’s 

model as the following  

De-Sousa et al. (2018) 

𝑀𝑓 < 𝑇 < 𝑀𝑠 

𝜉𝑇 =
1 − 𝜉0
2

[cos (
𝜋(𝑇 −𝑀𝑓)

𝑀𝑠 −𝑀𝑓
) + 1] 

(6) 

In which, 𝑀𝑠  and 𝑀𝑓  depict the start and final 

temperature in martensite phase, respectively. At high 

temperature martensitic fraction is 

𝐴𝑠 < 𝑇 < 𝐴𝑓 

𝜉𝑇 =
𝜉0
2
[cos (

𝜋(𝑇 − 𝐴𝑠)

𝐴𝑓 − 𝐴𝑠
) + 1] 

(7) 

 

2.2 Effective properties of composite layer 
 

The Young’s modulus of BNNT epoxy⁄  composite is 

calculated by using the Halpin-Tsai equation as following 

Rafiee et al. (2009) 
𝐸BNNT epoxy ⁄

=
3

8

1 + 2 (
𝑙𝐵𝑁𝑁𝑇
𝑑𝐵𝑁𝑁𝑇

) (
(𝐸𝑒𝑞 𝐸𝑒𝑝𝑜𝑥𝑦⁄ ) − 1

(𝐸𝑒𝑞 𝐸𝑒𝑝𝑜𝑥𝑦⁄ ) + 2(𝑙𝐵𝑁𝑁𝑇 𝑑𝐵𝑁𝑁𝑇⁄ )
)𝑉∗

1 − (
(𝐸𝑒𝑞 𝐸𝑒𝑝𝑜𝑥𝑦⁄ ) − 1

(𝐸𝑒𝑞 𝐸𝑒𝑝𝑜𝑥𝑦⁄ ) + 2(𝑙𝐵𝑁𝑁𝑇 𝑑𝐵𝑁𝑁𝑇⁄ )
)𝑉∗

× 𝐸𝑒𝑝𝑜𝑥𝑦 +
5

8

1 + 2(
(𝐸𝑒𝑞 𝐸𝑒𝑝𝑜𝑥𝑦⁄ ) − 1

(𝐸𝑒𝑞 𝐸𝑒𝑝𝑜𝑥𝑦⁄ ) + 2
)𝑉∗

1 − (
(𝐸𝑒𝑞 𝐸𝑒𝑝𝑜𝑥𝑦⁄ ) − 1

(𝐸𝑒𝑞 𝐸𝑒𝑝𝑜𝑥𝑦⁄ ) + 2
)𝑉∗

× 𝐸𝑒𝑝𝑜𝑥𝑦 

𝐸𝑒𝑞 = 4(
𝑡𝐵𝑁𝑁𝑇
𝑑𝐵𝑁𝑁𝑇

) × 𝐸𝐵𝑁𝑁𝑇 

(8) 

In which, 𝑉∗ and 𝐸𝑒𝑞 are the volume fraction and the 

equivalent modulus of the boron nitride, respectively. 

Three different distributions of BNNT along the z-

direction are given in Appendix A. The Poisson’s ratio and 

mass density for two phase of BNNT epoxy resin⁄  are 

expressed as Mohammadimehr et al. (2018b) 

𝜐BNNT epoxy ⁄ = 𝑉𝐵𝑁𝑁𝑇𝜐𝐵𝑁𝑁𝑇 + 𝑉𝑒𝑝𝑜𝑥𝑦𝜐𝑒𝑝𝑜𝑥𝑦 

𝜌BNNT epoxy ⁄ = 𝑉𝐵𝑁𝑁𝑇𝜌𝐵𝑁𝑁𝑇 + 𝑉𝑒𝑝𝑜𝑥𝑦𝜌𝑒𝑝𝑜𝑥𝑦 
(9) 

The effective Young’s modulus, Poisson’s ratio and 

mass density of composite layer (SMA wires 

and  BNNT epoxy⁄ ) are calculated by using the rule of 

mixture as follows 

𝐸𝑚 = 𝑉𝑆𝑀𝐴𝐸(𝜉) + 𝑉BNNT epoxy ⁄ 𝐸BNNT epoxy ⁄  

𝜐𝑚 = 𝑉SMA𝜐𝑆𝑀𝐴 + 𝑉BNNT epoxy ⁄ 𝜐BNNT epoxy ⁄  

𝜌𝑚 = 𝑉𝑆𝑀𝐴𝜌𝑆𝑀𝐴 + 𝑉BNNT epoxy ⁄ 𝜌BNNT epoxy ⁄  

 𝑉BNNT epoxy ⁄ = 1 − 𝑉SMA   

(10) 

In which, 𝑉𝑆𝑀𝐴 is the volume fraction of SMA wires. 

Also,  𝐸𝑚 , 𝜐𝑚  and 𝜌𝑚  denote the effective Young’s 

modulus, Poisson’s ratio and mass density, respectively. 

In Table 1, the mechanical properties of BNNTs and 

epoxy resin are given. In which, t, d and 𝑙 represent the 

thickness, diameter and length of boron nitride nanotube 

(Mohammadimehr et al. 2018a, b, Arenal et al. 2011, Wu et 

al. 2015, Huang et al. 2011). 

 

2.3 Porous core 
 

In this part, the core is made of Ti-6Al-4V alloy foams 

and porosity is distributed through the thickness in different 

patterns. Thickness (𝑧-direction in a Cartesian coordinate  
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system), width and length (𝑥 -direction in a Cartesian 

coordinate system) of the sandwich beam are shown via 

ℎ, 𝑏 and 𝐿, respectively. 

The mechanical properties of core is graded in 𝑧 -

direction of coordinate system. The effective elastic 

modulus and mass density of porous core are written as 

follows Bamdad et al. (2019) 

𝐸𝑐(𝑧) = 𝐸
∗[1 − 𝑒0𝜓(𝑧)] 

𝜌𝑐(𝑧) = 𝜌
∗[λ(𝑧)] 

(11) 

Where 𝐸∗ and 𝜌∗ denote Young’s modulus and mass 

density when the core metal foam hasn’t any porosity. e0 

represents the coefficient of porosity, 𝜓(𝑧) and λ(𝑧) refer 

to the three different porosity distributions which are chosen 

in this study as uniform, symmetric and asymmetric that are 

expressed in Appendix B. Also, 𝐸𝑐(𝑧) and 𝜌𝑐(𝑧) are the 

Young’s modulus and density of core in which varies in z 

direction. The mechanical properties of porous core are 

given in Table 1 Chen et al. (2016). 

The Poisson’s ratio of FG porous cored is given as 

𝜐(𝑧) = 0.221 [1 −
𝜌𝑐(𝑧)

𝜌∗
]

+ 𝜐∗ (0.342 [1 −
𝜌𝑐(𝑧)

𝜌∗
]

2

− 1.21 [1 −
𝜌𝑐(𝑧)

𝜌∗
] + 1) 

(12) 

 

 

3. Theory and governing equations 
 

3.1 Displacement field 
 

A sandwich Reddy beam with FG core and SMA wires 

embedded composite face sheets has been considered in this 

research. Reddy beam theory (RBT) is used as following 

AkhavanAlavi et al. (2019), Wattanasakulpong and Bui 

(2018) 

𝑢𝑖(𝑥, 𝑧) = 𝑢0
𝑖 (𝑥) + 𝑧∅𝑖(𝑥)

−
4𝑧3

3ℎ𝑖
2 (∅

𝑖(𝑥) +
𝑑𝑤0

𝑖(𝑥)

𝑑𝑥
)           

𝑤𝑖(𝑥, 𝑧) = 𝑤0
𝑖(𝑥)    , 𝑖 = 𝑐𝑜𝑟𝑒 & 𝑓𝑎𝑐𝑒 𝑠ℎ𝑒𝑒𝑡𝑠 

(13) 

In which, 𝑢 and 𝑤 are displacement components of an 

arbitrary point along the x and z axes, respectively, and ∅ 

denotes the rotation about the y-axis. Besides, 𝑢0 and 𝑤0 

demonstrate the displacement components on the middle 

surface of beam in the x and z directions according to Fig. 1. 

The strain components of RBT is derived from the 

displacement field are shown in Appendix C. 

 

 
 
3.2 Constitutive equations 
 

Based on the elasticity theory, the constitutive equations 

of SMA/FG smart composite sandwich beam that is 

undergone thermal loading are given as follows Babaee et 

al. (2018) 
σxx

= {

Q11εxx + 𝐸(𝜉)𝜉𝑆휀𝐿 + Θ(T − 𝑇0)     
(𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑙𝑎𝑦𝑒𝑟𝑠 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆𝑀𝐴) 

  C11εxx                                                    
 (𝐹𝐺 𝑐𝑜𝑟𝑒)                                                

 

τxz

= {

Q55γxz                                                    
(𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑙𝑎𝑦𝑒𝑟𝑠 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆𝑀𝐴)

  C55γxz                                                    
(𝐹𝐺 𝑐𝑜𝑟𝑒)                                                 

 

(14) 

In which Q and 𝐶 are elastic stiffness that are defined 

in Appendix D. εxx  and γxz  are the normal and shear 

strains, respectively. σxx and τxz denote the normal and 

shear strains, respectively. 

 

3.3 External work 
 

In this study, the principle of virtual work is used to 

obtain the maximum deflection by applying the actual 

transverse force and also, to acquire the critical buckling 

load for a simply supported beam. The variation of external 

work is defined as follows (Wang et al. 2000) 

𝑊𝑒𝑥𝑡 = −
1

2
∫ (𝑁𝑥 (

𝑑𝑤0
𝑑𝑥

)
2

+ 𝑞𝑤0)𝑑𝑥
𝑙

0

 

𝛿𝑊𝑒𝑥𝑡 = −∫ (𝑞 + 𝑁𝑥
𝑑2𝑤0
𝑑𝑥2

)𝛿𝑤0𝑑𝑥
𝑙

0

 

(15) 

In which, 𝑁𝑥 𝑎𝑛𝑑 𝑞 denotes the axial force along the 

length of the beam and transverse distributed load at the top 

surface of the beam, respectively. 𝑊𝑒𝑥𝑡 is the work done 

by the external loads. 

 
3.4 Strain energy 
 

The variation of strain energy for SMA/FG smart 

composite sandwich beam can be calculated as follows 

U𝑠 =
1

2
∫ (𝜎𝑥𝑥휀𝑥𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑉
𝐶𝑜𝑟𝑒

+
1

2
∫ (𝜎𝑥𝑥휀𝑥𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑉
𝑢𝑝𝑝𝑒𝑟 𝑠ℎ𝑒𝑒𝑡

+
1

2
∫ (𝜎𝑥𝑥휀𝑥𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑉
lower sheet

 

𝛿U𝑠 = ∫ (𝜎𝑥𝑥𝛿휀𝑥𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑉
𝐶𝑜𝑟𝑒

+
1

2
∫ (𝜎𝑥𝑥𝛿휀𝑥𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑉
𝑢𝑝𝑝𝑒𝑟 𝑠ℎ𝑒𝑒𝑡

+
1

2
∫ (𝜎𝑥𝑥𝛿휀𝑥𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑉
lower sheet

 

(16) 

Table 1 Geometry and mechanical properties of BNNT, epoxy resin and porous core 

Properties 𝐸[𝑃𝑎] 𝜈 
𝜌[
𝐾𝑔

𝑚3
] 

𝑡𝐵𝑁𝑁𝑇[𝑚] 𝑑𝐵𝑁𝑁𝑇[𝑚] 𝑙𝐵𝑁𝑁𝑇[𝑚] 

BNNT 1.8 × 1012 0.34 3487 0.07 × 10−9 10 × 10−9 30 × 10−9 
Epoxy resin 15.47 × 109 0.3 1100 - - - 

Porous core 113.8 × 109 0.342 4430 - - - 
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Where U𝑠 is the strain energy due to the mechanical 

loads. 

The displacement field of Vlasov’s model foundation is 

supposed as follows (Arenal et al. 2011) 

𝑢𝑓(𝑥, 𝑧) = 0 

𝑤𝑓(𝑥, 𝑧) = 𝑤0(𝑥)𝜒(𝑧) 
(17) 

According to this model, there is no horizontal 

displacement, 𝑤0(𝑥)  and 𝜒(𝑧)  are indicate vertical 

displacement of mid surface and shape function of 

foundation, respectively. Boundary conditions for shape 

function as follows 

𝜒 (−
ℎ𝑐
2
− ℎ𝑓) = 1, 𝜒 (−

ℎ𝑐
2
− ℎ𝑓 − 𝐻) = 0 (18) 

In which, 𝐻 is the thickness of the foundation. Using 

the strain-displacement equations of elasticity, the strain 

components can be expressed as 

𝑓𝜀𝑥𝑥 = 0        

𝑓𝜀𝑧𝑧 = 𝑤0(𝑥)
𝑑𝜒(𝑧)

𝑑𝑧
 

𝑓𝛾𝑥𝑧 = 𝜒(𝑧)
𝑑𝑤0(𝑥)

𝑑𝑥
 

(19) 

The constitutive equations for the isotropic foundation 

can be expressed as follows 

{

𝜎𝑥𝑥
𝜎𝑧𝑧
𝜏𝑥𝑧
}

𝑓

= [

𝐷11 𝐷12 0
𝐷21 𝐷11 0
0 0 𝐷55

]

𝑓

{
0
휀𝑧𝑧
𝛾𝑥𝑧

}

𝑓

 (20) 

In which, 𝐷 is the elastic stiffness of the foundation 

that is defined in Appendix E. The strain energy of Vlasov’s 

foundation can be derived as follows 

U𝑓 =
1

2
∫ (𝜎𝑧𝑧휀𝑧𝑧 + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑉
𝑓

 

𝛿U𝑓 = ∫ (𝜎𝑧𝑧𝛿휀𝑧𝑧 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑉
𝑓

 

(21) 

 

 

 

where U𝑓 is the strain energy of Vlasov’s foundation. 

 

3.5 Principle of minimum total potential energy 
 

By applying the principle of minimum total potential 

energy, the governing equations of Reddy beam subjected to 

the thermal loading are derived as (Ebrahimi and Barati 

2018, Heydari and Shariati 2018) 

𝛿𝛱 = 𝛿𝑈 + 𝛿𝑊 = 0 (23) 

Where 𝛿 denote the variation operator, 𝑈 and 𝑊 are 

the strain energy and external work, respectively. The 

governing equations are presented in Appendix F. 
 

 

4. Numerical results 
 

4.1 Solution method 
 

In order to determine the critical buckling load and 

maximum deflection of the sandwich Reddy beam 

including porous cored and composite layers embedded 

with SMA wires, the analytical solution of Navier is utilized 

in this research (Chaabane et al. 2019): 

𝑢(𝑥) = ∑𝑈𝑛

∞

𝑛=1

cos (
𝑛𝜋

𝑙
𝑥) 

𝑤(𝑥) = ∑𝑊𝑛

∞

𝑛=1

sin (
𝑛𝜋

𝑙
𝑥) 

∅(𝑥) = ∑Φ𝑛

∞

𝑛=1

cos (
𝑛𝜋

𝑙
𝑥) 

(23) 

In which 𝑈𝑛,𝑊𝑛  and Φ𝑛 are unknown maximum 

displacement coefficients. The transverse distributed load 

based on the Fourier series is expanded as follows (Thai and 

Vo 2012) 

𝑞(𝑥) = ∑𝑄𝑛

∞

𝑛=1

sin
𝑛𝜋

𝐿
𝑥 (24) 

 

 

 

Fig. 1 Schematic of sandwich beam with porous core and composite face layers 
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In which, 𝑄𝑛 =
4𝑞0

𝑛𝜋⁄  is the amplitude for uniform 

load. It is noticeable that to obtain the critical buckling load, 

𝑞 is set to zero. 

By solving the following system bending behavior of 

sandwich beam is obtained as 

[𝐾]{𝑹} = {𝑭} (25) 

In which K is the global stiffness matrix. The unknown 

vector 𝑹 and the force vector 𝑭 are defined as follows 

𝑹 = {𝑈𝑛   𝑊𝑛    Φ𝑛 }
𝑇 (26) 

𝑭 = {0   q(x)    0 }𝑇 (27) 

To obtain the critical buckling load, the determinant of 

coefficients matrix of the following system should be equal 

to zero 

([𝐾] − 𝑁𝑥[𝐾𝑔]){𝑹} = {𝟎} (28) 

In which, 𝑁𝑥 and 𝐾𝑔 are the critical buckling load and 

the geometric stiffness, respectively. 

 

4.2 Validation 
 

As no published results for the SMA/FG smart 

composite sandwich Reddy beam under current 

consideration are available in open literature, bending 

analysis is validated with Arani et al. (2018). Table 2 is 

illustrated for ensuring the accuracy of results. And also, 

comparison of dimensionless maximum deflection [�̅� =
𝑤 ∗ 102(𝐸𝐼/𝑞0𝐿

4) ] in simply supported beams subjected 

to uniform load  𝑞0 has been demonstrated. 

 

 

 

 

 

 

( 𝑏 = 1.1 [𝑚], 𝐿 = 10 [𝑚],  𝑞0 = 1 [
𝑁

𝑚
], 𝐸 = 30 ×

106[𝑃𝑎], 𝜐 = 0.3, 𝐼 =
1

12
𝑏ℎ3[𝑚4]) 

 

To validate the buckling analysis, the obtained results 

are compared with a sandwich beam with below properties. 

In Table 3, the comparison between the present work and 

the obtained results by Wu et al. (2015) is shown. 

Poly methyl methacrylate (PMMA) is considered as matrix: 

 𝐸𝑃𝑀𝑀𝐴 = 2.5 × 10
9 [𝑃𝑎], 𝜌𝑃𝑀𝑀𝐴

= 1190[𝐾𝑔/𝑚3], 𝜈𝑃𝑀𝑀𝐴 = 0.3 

Carbon nanotube (CNT) is selected as reinforcement: 

𝐸𝐶𝑁𝑇 = 5.6466 × 10
12[𝑃𝑎], 𝜌𝐶𝑁𝑇 = 1400[𝐾𝑔/𝑚

3], 𝜈𝐶𝑁𝑇
= 0.175 

 𝜂1 = {

0.137          𝑓𝑜𝑟 𝑉𝐶𝑁𝑇 = 0.12
0.142          𝑓𝑜𝑟 𝑉𝐶𝑁𝑇 = 0.17
0.141         𝑓𝑜𝑟 𝑉𝐶𝑁𝑇 = 0.28

 

In which,  𝜂1is the CNT efficiency parameter. 

 

 

5. Results and discussion 
 

In this research, the geometry parameters of the 

sandwich beam are assumed as follows 
ℎ𝑐
ℎ𝑓
⁄ = 8 , 𝑏 = 0.5[𝑚], ℎ = 0.2[𝑚], 𝐸∗

= 113.8 × 109[𝑃𝑎], 𝜐∗ = 0.342, 𝜌∗

= 4430[𝐾𝑔𝑚−3]   

Table 2 Comparison of dimensionless maximum deflection Arani et al. (2018)) 

Models 

L/h 

10 20 100 

EBT*(Reference) 

Error percentage** (%) 

1.3130 

2 

1.3130 

0.3 

1.3130 

0.2 

TBT*(Reference) 

Error percentage (%) 

1.3483 

0.2 

1.3155 

0.2 

1.3074 

0.1 

RBT(present) 1.3454 1.3178 1.3100 

* Euler-Bernoulli beam theory (EBT) & Timoshenko beam theory (TBT) 

**  𝐸𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = |
𝑅𝑒𝑓−𝑃𝑟𝑒

𝑅𝐸𝑓
| × 100 

Table 3 Comparison the dimensionless critical buckling load for simply supported boundary condition ofa san

dwich beam between the preset work and Wu et al. (2015) 

L/h CNT Dist. 

 
VCNT = 0.12 VCNT = 0.17 VCNT = 0.28 

present Wu et al.  

(2015) 

present Wu et al.  

(2015) 

present Wu et al.  

(2015) 

10 UD 

FG 

0.0068 

0.0070 

0.0070 

0.0072 

0.0081 

0.0084 

0.0082 

0.0085 

0.0104 

0.0109 

0.0107 

0.0111 

20 UD 

FG 

0.0019 

0.0019 

0.0018 

0.0018 

0.0021 

0.0022 

0.0021 

0.0022 

0.0027 

0.0028 

0.0028 

0.0029 

30 UD 

FG 

0.0008 

0.0008 

0.0008 

0.0008 

0.0009 

0.0010 

0.0009 

0.0010 

0.0011 

0.0012 

0.0012 

0.0013 
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In which, ℎ𝑐 and ℎ𝑓 describe the core and face sheet 

thicknesses, respectively. And also 𝐸∗, 𝜐∗ and 𝜌∗illustrates 

the pure Young’s modulus, Poisson’s ratio and density of 

porous core, respectively. The material properties of SMA 

are given in Table 4. 

Based on the following dimensionless relations the 

results are obtained: 

 

 Bending :   dimensionless maximum deflection 

𝑊𝑚𝑎𝑥 = 𝑤 × 10
2(
𝐸∗𝐼

𝑞0𝐿
4
)]    ,      𝐼 =

1

12
𝑏ℎ3[𝑚4] 

 Buckling :  dimensionless critical buckling load 

𝑃𝑐𝑟 = 𝑁𝑥
𝐿2

𝐸∗𝐼
 

 

 
 

 
 

 
 
5.1 Thermo-mechanical behaviour of SMA 
 
By increasing the temperature from 𝐴𝑠  to  𝐴𝑓 , the 

phase transformation of martensite to austenite occurs. As 

indicated in Fig. 2, SMA wires in the austenite phase, have 

higher Young’s modulus because of regular molecular shape 

and vice versa, by decreasing the temperature and 

transforming to the martensite phase, its molecular shape 

changes to irregular. 

 

5.2 Influence of SMA and dispersion of porosity 
 

In the study of buckling and bending, the most 

important parameters to be analyzed are the critical 

buckling load and maximum deflection, respectively.  

Table 4 Thermomechanical properties of NiTi SMA Babaee et al. (2018) 

Modulus and density Phase transformation temperature Other parameters 

EA = 67 [GPa] As = 34.5[ °C] νs = 0.33 

EM = 26.3 [GPa] Af = 49 [°C] εL = 0.067 

θ = 0.55[MPa℃−1] Ms = 18.4 [°C] T0 = 25[°C] 

ρ = 6450 [Kg/m3] Mf = 9 [°C] - 

 
(a) 

 
(b) 

Fig. 2 (a) Process of changing the martensite volume fraction for a heating/cooling cycle of an SMA element and (b) 

the SMA Young’s modulus behavior when it changes between two phases of fully austenite and fully martensite 
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(a) 

 
(b) 

Fig. 3 Influence of SMA wires and dispersion of porosity on (a) dimensionless maximum deflection (b) dimensionless 

critical buckling load 

 
(a) 

 
(b) 

Fig. 4 The effect of porosity coefficient in a heating/cooling cycle of SMA wires on (a) dimensionless maximum 

deflection and (b) dimensionless critical buckling load 
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As shown in Fig. 3, when the beam is devoid SMA, the 

structure has weaker stiffness. And also by increasing the 

SMA temperature from 𝐴𝑠 to 𝐴𝑓, the elastic modulus of 

SMA wires increases. Three different distributions of 

porosity are considered that the symmetry dispersion has 

more significant effect on the stiffness of the beam than the 

two other types of distribution. The maximum deflection 

and critical buckling load in term of 𝑇 are presented in Fig. 

3, for 𝑒0 = 0.3,𝑊𝐵𝑁𝑁𝑇 = 2% and uniform dispersion of 

BNNT. 

 

5.3 Effect of porosity coefficient 
 

For further study, the sensitivity of the structural 

response to the porosity coefficient in a heating/cooling 

cycle of SMA is calculated. Fig. 4 shows the influence of 

porosity coefficient on the buckling and bending behavior 

while the sandwich beam resting on the elastic foundation 

based on Vlasov’s model, the thickness and density of 

foundation are considered 𝐻 = 0.5[𝑚], 𝜌 = 600[
𝐾𝑔

𝑚3] 

respectively. 

 

5.4 Effect of length-to-thickness ratio and phase 
regions 

 

The deflection and critical buckling load can be affected  

 

 

significantly by region of the phases, which variation is 

plotted in Fig. 5. As can be seen, region of fully austenite 

provides the highest amount of stiffness for the beam and 

region of fully martensite causes lowest quantity of stiffness 

for the sandwich beam. The symmetry distribution of 

porosity, 𝑒0 = 0.3, 𝑞0 = 1 [
𝑁

𝑚
] ,𝑊𝐵𝑁𝑁𝑇 = 2%,𝑉𝑆𝑀𝐴 = 0.2 

Vlasov’s foundation and martensite fraction for a heating 

cycle of SMA are considered. 

 

5.5 Influence of weight fraction of BNNTs 
 

One of the effective parameters on critical buckling load 

and deflection is the weight fraction of BNNT. As shown in 

Fig. 6, by increasing the amount of boron nitride nanotube, 

the stiffness of the sandwich beam increases to some extent. 

While symmetry pattern is chosen as distribution of 

porosity and the beam is rest on Vlasov’s foundation. This 

comparison is done between two regions (fully austenite & 

fully martensite). 

 

5.6 Effect of volume fraction of SMA and different 
BNNTs patterns 

 

The presented analysis in this section is delivered for the 

volume fraction of SMA and various patterns of BNNT. 

Fig. 7 illustrates that the type of A-V pattern has the lowest  

 
(a) 

 
(b) 

Fig. 5 Investigating the length to thickness ratio in the various phases (a) dimensionless maximum deflection (b) 

dimensionless critical buckling load 
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stiffness and the highest stiffness belongs to V-A type. As 

can be seen the SMA volume fraction has a significant 

effect on the dimensionless maximum deflection of the 

sandwich beam. While the thickness of face sheets is equal 

to  ℎ𝑓 = 10[𝑐𝑚] , the amount of weight fraction is 

𝑊𝐵𝑁𝑁𝑇 = 20% and symmetry dispersion is considered as 

porosity distribution. 

 

5.7 Effect of temperature changing 
 

Comparison of the critical buckling load and deflection  

 

 

 

 

for different volume fractions of SMA in term of 

temperature are illustrated in Fig. 8. As shown in this figure, 

in the higher  𝑉𝑆𝑀𝐴 , the rate of stiffness changes with 

temperature is more intensive. Moreover, by increasing the 

volume fraction of SMA, the size of the heating/cooling 

cycle is increased, which means the structure is more 

sensitive to variation of temperature. Porosity coefficient 

(𝑒0 = 0.3), the weight fraction of BNNT (𝑊𝐵𝑁𝑁𝑇 = 2%) 

and the symmetric distribution of pores are considered for 

this analysis. 

 

 
(a) 

 
(b) 

Fig. 6 Influence of weight fraction of BNNTs in different phases on (a) dimensionless maximum deflection (b) 

dimensionless critical buckling load. (𝑉𝑆𝑀𝐴 = 0.2, 𝑒0 = 0.3) 

 

Fig. 7 Dimensionless maximum deflection in term of length of beam for different Patterns of BNNTs and volume 

fraction of SMA 
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6. Conclusions 
 

In this paper, the buckling and bending analysis of a 

sandwich beam with FG porous core and composite face 

sheets embedded with SMA wires are analytically investigated 

using the Navier method. By applying the third-order shear 

deformation theory and principle of minimum total potential 

energy, the governing equations are derived. The influence of 

three different patterns of BNNTs and also the three different 

distributions of porosity on the behavior of buckling and 

bending are studied. To obtain the effective properties of 

composite layers, Halpin-Tsai and rule of mixture are used. In 

addition, the influence of geometric parameters and effective 

parameters such as volume fraction of SMA, temperature, the 

thickness ratio of the beam, distribution of porous, porosity 

coefficient, and weight fraction of BNNTs on maximum 

deflection and critical buckling load of the sandwich beam is 

studied. Although by increasing the temperature the stiffness of 

the beam should be decreased but due to the unique 

temperature properties of SMA, it’s quite vice versa. When 

temperature increases (at fully austenite phase), the SMA 

molecular shape becomes more regular and their 

intermolecular forces enhance, that it leads to increase the 

critical buckling load and decreases maximum deflection. Also, 

due to the high thermal properties of SMA wires by increasing 

the volume fraction of SMA, the size of the heating/cooling 

cycle composed gets more and to this cause, the strength of the 

beam increases. Moreover, in the higher volume fraction of 

SMA, in the region of phase transformation from martensite to  

 

austenite the rate of increasing critical buckling load 

(decreasing maximum deflection) is more intensive. In this 

study, three different patterns of BNNTs contain uniform 

distribution, V-A and A-V distributions are considered. The 

results show that the type of V-A pattern among two other 

patterns has the highest critical buckling load and lowest 

maximum deflection and by contrast, the type of A-V pattern 

has the lowest buckling load and highest maximum deflection. 

As it is illustrated, by increasing the porosity coefficient the 

buckling load of sandwich Reddy beam with porous cored 

decreases and its deflection increases. And also, in the austenite 

phase, the stiffness of the beam is considerably more than its 

value in the martensite phase. It is noted that an increasing in 

the length to thickness ratio leads to a decrease of stiffness. As 

it can be observed, by increasing length-to-thickness, the 

critical buckling load decreases and maximum deflection 

increases. Also, three different distributions of porosity 

(symmetry, asymmetry and uniform) are investigated in this 

paper. As it is shown, the asymmetry porosity pattern provides 

the lowest stiffness among the other two patterns but by 

contrast, the symmetry distribution has the highest stiffness. 
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Fig. 8 Effect of SMA volume fraction in the heating/cooling temperature cycle on (a) dimensionless maximum 

deflection and (b) dimensionless critical buckling load 
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Appendix 
 

As illustrated in Fig. 9 increase the length to thickness 

ratio the dimensional critical buckling load is decreased and 

the dimensional maximum deflection is increased. 

 

7.1 A 
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Subscripts “t” and “b” denotes the top and bottom layers 

[31]. 

 

7.2 B 
 

Three type dispersion are given here Bamdad et al. 

(2019) 
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ℎ𝑏𝑓
2 𝑢𝑏𝑓113 +

4

3

𝜕3

𝜕𝑥3
𝑤(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓113 +

4

3

𝜕2

𝜕𝑥2
𝜙(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓113 +

4

3

𝜕2

𝜕𝑥2
𝜙(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓113  

+
4

3

𝜕2

𝜕𝑥2
𝜙(𝑥)

ℎ𝑐
2 𝑢𝑐113 −

𝜕2

𝜕𝑥2
𝑢(𝑥)𝑢𝑏𝑓110 +

4

3

𝜕3

𝜕𝑥3
𝑤(𝑥)

ℎ𝑐
2 𝑢𝑐113 −

𝜕2

𝜕𝑥2
𝜙(𝑥)𝑢𝑏𝑓111  

−
𝜕2

𝜕𝑥2
𝜙(𝑥)𝑢𝑡𝑓111 −

𝜕2

𝜕𝑥2
𝑢(𝑥)𝑢𝑡𝑓110 −

𝜕2

𝜕𝑥2
𝜙(𝑥)𝑢𝑐111 −

𝜕2

𝜕𝑥2
𝑢(𝑥)𝑢𝑐110 +

2
𝜕

𝜕𝑥
𝑢(𝑥)𝜉𝑠휀𝐿𝜉 = 0 

𝜹𝒘𝟎 : 
8
𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓552 −

16
𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑐
4 𝑢𝑐554 +

8
𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑐
2 𝑢𝑐552

−
16

𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑡𝑓
4 𝑢𝑡𝑓554 

−
16

𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑏𝑓
4 𝑢𝑏𝑓554 −

16
𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑐
4 𝑢𝑐554 +

16

9

𝜕4

𝜕𝑥4
𝑤(𝑥)

ℎ𝑐
4 𝑢𝑐116

−
4

3

𝜕3

𝜕𝑥3
𝜙(𝑥)

ℎ𝑐
2 𝑢𝑐114 

+
8
𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑐
2 𝑢𝑐552 −

𝜕2

𝜕𝑥2
𝑤(𝑥)𝑁𝑥 +

16

9

𝜕4

𝜕𝑥4
𝑤(𝑥)

ℎ𝑡𝑓
4 𝑢𝑡𝑓116

+
16

9

𝜕3

𝜕𝑥3
𝜙(𝑥)

ℎ𝑏𝑓
4 𝑢𝑏𝑓116 

−
4

3

𝜕3

𝜕𝑥3
𝑢(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓113 +

16

9

𝜕3

𝜕𝑥3
𝜙(𝑥)

ℎ𝑡𝑓
4 𝑢𝑡𝑓116 +

16

9

𝜕3

𝜕𝑥3
𝜙(𝑥)

ℎ𝑏𝑓
4 𝑢𝑏𝑓116

−
4

3

𝜕3

𝜕𝑥3
𝜙(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓114 

−
4

3

𝜕3

𝜕𝑥3
𝜙(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓114 +

8
𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓552 +

8
𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓552

−
16

𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑡𝑓
4 𝑢𝑡𝑓554 

−
16

𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑏𝑓
4 𝑢𝑏𝑓554 +

16

9

𝜕4

𝜕𝑥4
𝑤(𝑥)

ℎ𝑏𝑓
4 𝑢𝑏𝑓116 −

4

3

𝜕3

𝜕𝑥3
𝑢(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓113

−
𝜕

𝜕𝑥
𝜙(𝑥)𝑢𝑡𝑓550 

−
𝜕

𝜕𝑥
𝜙(𝑥)𝑢𝑏𝑓550 −

𝜕

𝜕𝑥
𝜙(𝑥)𝑢𝑐550 +

16

9

𝜕3

𝜕𝑥3
𝜙(𝑥)

ℎ𝑐
4 𝑢𝑐116

−
4

3

𝜕3

𝜕𝑥3
𝑢(𝑥)

ℎ𝑐
2 𝑢𝑐113 + 𝑞(𝑥) 
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−
𝜕2

𝜕𝑥2
𝑤(𝑥)𝑢𝑏𝑓550 −

𝜕2

𝜕𝑥2
𝑤(𝑥)𝑢𝑐550 −

𝜕2

𝜕𝑥2
𝑤(𝑥)𝑢𝑡𝑓550 + 𝐾𝑤𝑤(𝑥)

− 𝐾𝑠
𝜕2

𝜕𝑥2
𝑤(𝑥) 

+
8
𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓552 −

4

3

𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑏𝑓
2 𝑇𝜃𝑢𝑠𝑏3 +

4

3

𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑡𝑓
2 𝑇0𝜃𝑢𝑠𝑡3

−
4

3

𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑡𝑓
2 𝑇𝜃𝑢𝑠𝑡3 

+
4

3

𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑡𝑓
2 𝜉𝑠휀𝐿𝜉𝑢𝑠𝑡3 +

4

3

𝜕2

𝜕𝑥2
𝑤(𝑥)

ℎ𝑏𝑓
2 𝜉𝑠휀𝐿𝜉𝑢𝑠𝑏3 = 0 

𝜹𝝓:−
4

3

𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑏𝑓
2 𝜉𝑠휀𝐿𝜉𝑢𝑠𝑏3 −

4

3

𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑡𝑓
2 𝜉𝑠휀𝐿𝜉𝑢𝑠𝑡3 +

𝜕

𝜕𝑥
𝑤(𝑥)𝑢𝑐550

+ 𝜙(𝑥)𝑢𝑐550 

+
16𝜙(𝑥)

ℎ𝑐
4 𝑢𝑐554 −

8𝜙(𝑥)

ℎ𝑐
2 𝑢𝑐552 −

8
𝜕
𝜕𝑥
𝑤(𝑥)

ℎ𝑐
2 𝑢𝑐552 +

16
𝜕
𝜕𝑥
𝑤(𝑥)

ℎ𝑡𝑓
4 𝑢𝑡𝑓554

−
8𝜙(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓552 

−
8
𝜕
𝜕𝑥
𝑤(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓552 +

16
𝜕
𝜕𝑥
𝑤(𝑥)

ℎ𝑏𝑓
4 𝑢𝑏𝑓554 +

16𝜙(𝑥)

ℎ𝑏𝑓
4 𝑢𝑏𝑓554

+
16𝜙(𝑥)

ℎ𝑡𝑓
4 𝑢𝑡𝑓554 

+
16

𝜕
𝜕𝑥
𝑤(𝑥)

ℎ𝑐
4 𝑢𝑐554 −

8𝜙(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓552 −

8
𝜕
𝜕𝑥
𝑤(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓552

−
16

9

𝜕2

𝜕𝑥2
𝜙(𝑥)

ℎ𝑡𝑓
4 𝑢𝑡𝑓116 

+
4

3

𝜕2

𝜕𝑥2
𝑢(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓113 +

4

3

𝜕3

𝜕𝑥3
𝑤(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓114 −

16

9

𝜕3

𝜕𝑥3
𝑤(𝑥)

ℎ𝑏𝑓
4 𝑢𝑏𝑓116

+
4

3

𝜕3

𝜕𝑥3
𝑤(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓114 

+
4

3

𝜕2

𝜕𝑥2
𝑢(𝑥)

ℎ𝑐
2 𝑢𝑐113 −

16

9

𝜕2

𝜕𝑥2
𝜙(𝑥)

ℎ𝑐
4 𝑢𝑐116 −

16

9

𝜕3

𝜕𝑥3
𝑤(𝑥)

ℎ𝑐
4 𝑢𝑐116

−
16

9

𝜕2

𝜕𝑥2
𝜙(𝑥)

ℎ𝑏𝑓
4 𝑢𝑏𝑓116 

+
8

3

𝜕2

𝜕𝑥2
𝜙(𝑥)

ℎ𝑐
2 𝑢𝑐116 +

4

3

𝜕3

𝜕𝑥3
𝑤(𝑥)

ℎ𝑐
2 𝑢𝑐114 +

8

3

𝜕2

𝜕𝑥2
𝜙(𝑥)

ℎ𝑏𝑓
2 𝑢𝑏𝑓116

−
16

9

𝜕3

𝜕𝑥3
𝑤(𝑥)

ℎ𝑡𝑓
4 𝑢𝑡𝑓116 

+
4

3

𝜕2

𝜕𝑥2
𝑢(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓114 +

8

3

𝜕2

𝜕𝑥2
𝜙(𝑥)

ℎ𝑡𝑓
2 𝑢𝑡𝑓116 +

𝜕

𝜕𝑥
𝑤(𝑥)𝑢𝑏𝑓550 + 𝜙(𝑥)𝑢𝑏𝑓550

+ 𝜙(𝑥)𝑢𝑡𝑓550 

𝜕

𝜕𝑥
𝑤(𝑥)𝑢𝑡𝑓550 −

4

3

𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑡𝑓
2 𝑇0𝜃𝑢𝑠𝑡3 +

𝜕

𝜕𝑥
𝜙(𝑥)𝑇0𝜃𝑢𝑠𝑏1 −

𝜕2

𝜕𝑥2
𝜙(𝑥)𝑢𝑐112

−
𝜕

𝜕𝑥
𝜙(𝑥)𝑇𝜃𝑢𝑠𝑏1 

+
4

3

𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑏𝑓
2 𝑇𝜃𝑢𝑠𝑏3 −

4

3

𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑏𝑓
2 𝑇0𝜃𝑢𝑠𝑏3 +

𝜕

𝜕𝑥
𝜙(𝑥)𝜉𝑠휀𝐿𝜉𝑢𝑠𝑡1

−
𝜕

𝜕𝑥
𝜙(𝑥)𝑇𝜃𝑢𝑠𝑡1 

+
4

3

𝜕
𝜕𝑥
𝜙(𝑥)

ℎ𝑡𝑓
2 𝑇𝜃𝑢𝑠𝑡3 +

𝜕

𝜕𝑥
𝜙(𝑥)𝜉𝑠휀𝐿𝜉𝑢𝑠𝑏1 −

𝜕2

𝜕𝑥2
𝑢(𝑥)𝑢𝑐111

−
𝜕2

𝜕𝑥2
𝜙(𝑥)𝑢𝑡𝑓112 

−
𝜕2

𝜕𝑥2
𝜙(𝑥)𝑢𝑏𝑓112 −

𝜕2

𝜕𝑥2
𝑢(𝑥)𝑢𝑏𝑓111 −

𝜕2

𝜕𝑥2
𝑢(𝑥)𝑢𝑡𝑓111

+
𝜕

𝜕𝑥
𝜙(𝑥)𝑇0𝜃𝑢𝑠𝑡1 = 

 

𝑢𝑐111 = ∫ 𝐶11(𝑧) × 𝑧𝑑𝑧
ℎ𝑐/2

−ℎ𝑐/2

 

𝑢𝑐113 = ∫ 𝐶11(𝑧) × 𝑧
3𝑑𝑧

ℎ𝑐/2

−ℎ𝑐/2

 

𝑢𝑐116 = ∫ 𝐶11(𝑧) × 𝑧
6𝑑𝑧

ℎ𝑐/2

−ℎ𝑐/2

 

𝑢𝑐552 = ∫ 𝐶11(𝑧) × 𝑧
5𝑑𝑧

ℎ𝑐/2

−ℎ𝑐/2

 

𝑢𝑏𝑓110 = ∫ 𝑄11(𝑧)𝑑𝑧
−ℎ𝑐/2

−
ℎ𝑐
2
−ℎ𝑓

 

𝑢𝑏𝑓112 = ∫ 𝑄11(𝑧) × 𝑧
2𝑑𝑧

−ℎ𝑐/2

−
ℎ𝑐
2
−ℎ𝑓

 

𝑢𝑏𝑓114 = ∫ 𝑄11(𝑧) × 𝑧
4𝑑𝑧

−ℎ𝑐/2

−
ℎ𝑐
2
−ℎ𝑓

 

𝑢𝑏𝑓550 = ∫ 𝑄55(𝑧)𝑑𝑧
−ℎ𝑐/2

−
ℎ𝑐
2
−ℎ𝑓

 

𝑢𝑏𝑓554 = ∫ 𝑄55(𝑧) × 𝑧
4𝑑𝑧

−ℎ𝑐/2

−
ℎ𝑐
2
−ℎ𝑓

 

𝑢𝑡𝑓111 = ∫ 𝑄11(𝑧) × 𝑧 𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2

 

𝑢𝑡𝑓113 = ∫ 𝑄11(𝑧) × 𝑧
3𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2

 

𝑢𝑡𝑓116 = ∫ 𝑄11(𝑧) × 𝑧
6𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2

 

𝑢𝑡𝑓552 = ∫ 𝑄55(𝑧) × 𝑧
2𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2

 

 

𝑢𝑐110 = ∫ 𝐶11(𝑧)𝑑𝑧
ℎ𝑐/2

−ℎ𝑐/2

 

𝑢𝑐112 = ∫ 𝐶11(𝑧) × 𝑧
2𝑑𝑧

ℎ𝑐/2

−ℎ𝑐/2

 

𝑢𝑐114 = ∫ 𝐶11(𝑧) × 𝑧
4𝑑𝑧

ℎ𝑐/2

−ℎ𝑐/2
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𝑢𝑐550 = ∫ 𝐶55(𝑧)𝑑𝑧
ℎ𝑐/2

−ℎ𝑐/2

 

𝑢𝑐554 = ∫ 𝐶55(𝑧) × 𝑧
4𝑑𝑧

ℎ𝑐/2

−ℎ𝑐/2

 

𝑢𝑏𝑓111 = ∫ 𝑄11(𝑧) × 𝑧 𝑑𝑧
−ℎ𝑐/2

−
ℎ𝑐
2
−ℎ𝑓

 

𝑢𝑏𝑓113 = ∫ 𝑄11(𝑧) × 𝑧
3𝑑𝑧

−ℎ𝑐/2

−
ℎ𝑐
2
−ℎ𝑓

 

𝑢𝑏𝑓116 = ∫ 𝑄11(𝑧) × 𝑧
6𝑑𝑧

−ℎ𝑐/2

−
ℎ𝑐
2
−ℎ𝑓

 

𝑢𝑏𝑓552 = ∫ 𝑄55(𝑧) × 𝑧
2𝑑𝑧

−ℎ𝑐/2

−
ℎ𝑐
2
−ℎ𝑓

 

𝑢𝑡𝑓110 = ∫ 𝑄11(𝑧)𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2

 

𝑢𝑡𝑓112 = ∫ 𝑄11(𝑧) × 𝑧
2𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2

 

𝑢𝑡𝑓114 = ∫ 𝑄11(𝑧) × 𝑧
4𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2

 

𝑢𝑡𝑓550 = ∫ 𝑄55(𝑧)𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2

 

𝑢𝑡𝑓554 = ∫ 𝑄55(𝑧) × 𝑧
4𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2
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