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1. Introduction 
 

Silicon is a basic material used in sensing systems and 

structures which may have macro, micron or nano 

dimensions. This material has not a perfect and ideal 

structure and it may possess small size pores. Pores or voids 

in material texture of silicon leads to the variation in 

material attributes. Also, grains are possible to be created 

within silicon and hence this type of material would be a 

crystalline material. Actually, the crystalline materials have 

grains or crystals of silicone together with voids and an 

interface zone between the grains and voids (Wang et al. 

2003). The distribution of grains and voids within material 

structure would be random and it is not possible to place 

them in prescribed locations. In fact, the grains growth in 

possible positions during the fabrication of crystalline 

materials. Moreover, if the dimensions of grains are reduced 

to nano scales, the material would be a nanocrystalline 

material (Meyers et al. 2006). There are diverse approaches 

for describing material properties of nanocrystalline 

materials (Zhou et al. 2013) having grains and voids.  

Shell structures have great application in mechanical 

devices and system form macro to micro/nano dimensions. 

Macro size shells are extensively researched via classic 

elasticity theory in the view of structural dynamic analysis. 

However, classic elasticity theory is not appropriate for 

nano dimension shells for which small scale impacts exist. 

Thus, another theories to carry out size-dependent 

dynamical analysis of nano dimension structural 

components are strain gradient and nonlocal elasticity 

theories (Aydogdu 2009, Thai et al. 2012, Ke et al. 2012, 

Eltaher et al. 2013, Barati 2017, Al-Maliki et al. 2019,  
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Ahmed et al. 2019). Nonlocal elastic theory were used by 

various authors in order to incorporate small scale impacts 

in analysis of nanostructures based on a single scale factor 

(Lim 2010, Li 2014, Li et al. 2013, Zenkour and 

Abouelregal 2014, Ebrahimi and Barati 2016, 2017a, Barati 

and Shahverdi 2016, 2017a, Bounouara et al. 2016, 

Besseghier et al. 2017, Mokhtar et al. 2018). The scale 

factor defined by nonlocal elastic theory leads to structural 

rigidity reduction which highlights that nano size structures 

have different mechanical performance from macro scale 

counterparts. One another scale factor is defined by strain 

gradient theory leading to structural rigidity increment. The 

strain gradient theory express that the strains are not 

uniform within the material structures. Therefore, this 

theory would be useful for modeling of nanocrystalline 

materials and structures. For various types of materials and 

structures, the strain gradient theory has shown its efficacy 

(Lim et al. 2015, Li et al. 2016, Mehralian et al. 2017, 

Barati and Shahverdi 2017b). 

Mechanical analysis of nanocrystalline structures has 

been carried out by few researches. Especially 

nanocrysalline nanoshells having nano-size grains and pores 

are not studied before. However, some papers are published 

on nanocrystalline nanoplates and nanobeams based on 

strain gradient theory taking into account the size of pores 

and grains (Ebrahimi and Barati 2017b, 2018, Barati and 

Shahverdi 2017c,d). For other types of materials rather than 

nanocrystalline materials, some researchers studied the 

mechanical properties of elastic nanoshells based on 

nonlocal and strain gradient theories and proved the 

efficacy of the theories (Zaera et al. 2013, Ke et al. 2014, 

Mehralian et al. 2016, Farajpour et al. 2017, Sun et al. 

2016). 

Within the context of strain gradient elasticity, the 

present article investigates static stability characteristics of 

a crystalline nano-sized shell having voids and nanograins. 

Hence, the nano-size shell has been constructed from a 
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multi-phase porous composite for which each material 

property dependents on the scale of nanograins. 

Furthermore, for taking into account low size impacts more 

properly, the surface energies associated with grains and 

voids have been included. For taking into account all above-

mentioned parameters, a micro-mechanic formulation has 

been incorporated for defining each material property of the 

shell. An analytical trend has been introduced for solving 

the governing equations. It would be stated that the static 

stability of the crystalline curved shell relies on pores size, 

grains size, pores percentages, initial deflection and strain 

gradient factor. 

 

 

2. Model of nanocrystalline nanoshells 
 

As shown in Fig. 1, the curved micro-size shell has been 

made of crystalline composites containing nano-pores and 

nano-grains. Elastic properties (Young’s moduli and 

Poisson’s ratio) for a crystalline composite might be 

introduced as functions of bulk and shear moduli ( NcMK ,

NcM ) based on below relations 
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In the introduced equations, g defines the nano-grains 

material property. Moreover, v defines the void material 

properties. So, fg and fv define grain and void volume fraction 

introduced by 
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Here, ,g vR R and 
inT  respectively define the main 

radiuses of grains, void and interphase thickness. These 

relations have been utilized in order to define each material 

property including void effects. Without incorporating void 

effects, the material properties (Bulk and shear moduli) 

would be defined as (Ebrahimi and Barati 2017b) 
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3. Mathematical modeling for curved shell 

 

Based on shell thickness h, Fig. 1 illustrates a curved 

shell having curvature radius of R. There are various 

plate/shell theories introduced in the literature (Abualnour 

et al. 2019, Addou et al. 2019, Alimirzaei et al. 2019, 

Balubaid et al. 2019, Batou et al. 2019, Bedia et al. 2019, 

Belbachir et al. 2019, Bellal et al. 2020, Berghouti et al. 

2019, Bouamoud et al. 2019, Boulefrakh et al. 2019, 

Boukhlif et al. 2019, Bourada et al. 2019, Boussoula et al. 

2020, Boutaleb et al. 2019, Chaabane  et al. 2019, Draiche 

et al. 2019, Draoui et al. 2019, Hellal et al. 2019, Hussain et 

al. 2019, Kaddari et al. 2020, Khiloun et al. 2019, Khosravi 

et al. 2020, Mahmoudi et al. 2019, Medani et al. 2019, 

Meksi et al. 2019, Refrafi et al. 2020, Rahmani et al. 2020, 

Sahla et al. 2019, Younsi et al. 2018, Semmah et al. 2019, 

Soltani et al. 2019, Tlidji et al. 2019, Tounsi et al. 2020, 

Zarga et al. 2019, Zaoui et al. 2019). The curved micro-

panel may be formulated employing thin shell model which 

represents the strain components as below forms 
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Defined strains incorporates deflection (w) and in-plane 

(u, v) displacements. Also, w* defines the deflection due to 

imperfectness. In the case of micro-size structures, the 

relations for stresses σi (i=x, y, xy) may be defined in the 

context of strain gradient elasticity as 
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in which Qij may be introduced as 
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Here l is called strain gradient coefficient. From integration 

of Eq. (11) over panel thickness, it may be possible to 

express the below relations of forces and moments 
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Fig. 1 A curved crystalline shell 
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A curved panel with curvature (R) owns three governing 

equations which may be calculated employing Hamilton’s 

rule 
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Note that Px is applied mechanical load in axial direction. 

Based on the information that Aj, Bj and Dj are functions of 

x, the governing equations can be re-written by inserting 

Eqs. (13)-(18) in Eqs. (20) and (22) as 
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4. Solution procedure 
 

In order to solve Eqs. (23)-(25), it is crucial to express 

the displacements in reliable forms to satisfy the boundary 

conditions which in the case of simply-support edges 

become: 
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Then, according to above definitions one can use below 

approximations for displacement components based on their 

amplitudes (U ,V ,W ) as (Mirjavadi et al. 2019a, b, c, d, 

e, Forsat 2020, Forsat et al. 2020) 
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where the functions sin[ / ]x
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nf n y b  are the applicable functions for 

satisfying the afore-mentioned conditions. Considering each 

governing equation as Ri (u, v, w)=0 with (i=1,2,3) and 

inserting displacement assumptions presented as Eqs. (28)-

(30) into Ri yields below equations based upon Galerkin’s 

technique 
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The weighted residual methods such as Galerkin’s method 

is well discussed in the works of Farrahi et al. (2009) and 

Faghidian et al. (2012). By substituting Eqs. (28)-(30) into 

Eqs. (23)-(25), and using the Galerkin’s method, one 

obtains 

2 *

11 21 31 1 1 0S U S V S W H W YWW      (34) 

2 *

12 22 32 2 2 0S U S V S W H W Y WW      (35) 
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(36) 

in which Sij are linear stiffness matrix components; Hi 

denotes nonlinear stiffness components and Yi are added 

stiffness due to geometric imperfection. With the aid of Eqs. 

(34) and (35) one can express that 

221 32 22 31 2 21 1 22

11 22 12 21 11 22 12 21

212 31 11 32 1 12 2 11

11 22 12 21 2

*

1

2

11 22 21
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1

)

)
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
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
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 


 

 

 

 (37) 

Then, applying Eq. (37) in Eq. (36) yields a single 

equation based on W and W* only. The solution of obtained 

for finding Px (GPa) will give post-buckling curves. 
 

 
5. Numerical results and discussions 

 

Provided in the present section is post-buckling 

behavior of curved micro-panels made from crystalline 

composites containing interface as matrix and grains as 

inclusions. Material properties of the constituents are 

presented in Table 1. Geometric imperfectness of the micro-

panel is also included. The elastic properties of crystalline 

materials were determined in the context of surface theory 

incorporating volume fraction of nano-pores. The 

dependency of post-buckling loads (P=Px/106h)on the pore 

volume fraction (fv), imperfectness (W*), normalized strain  

 

 

 

Fig. 2 Nonlinear stability curves of the curved shell based upon different values of the strain gradient coefficient (R 

=5L, fv=0.1, Rg=20 nm) 
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Table 1 Material properties of nanocrystalline nanoshell (Shaat and Abdelkefi 2015) 

Phase-1 (Interface) Ein=45.56 GPa, vin=0.064, ρin=2004.3 kg/m3 

Phase-2 (Si-nanograins) Eg=169 GPa, vg=0.064, ρg=2300 kg/m3 

Phase-3 (nanovoids) Ev=0 

Surface coefficients of grains and voids 
s =-4.488 N/m, 

s =-2.774 N/m 

Table 2 Comparison of post-buckling loads of perfect and imperfect panels for different normalized deflections 

W  
* / 0W h   

  * / 0.1W h   
 

 Chikh et al. (2016) present  Chikh et al. (2016) present 

0 0.62411  

 

0.62411  

 

 0 0 

0.1 0.62627  

 

0.62627  

 

 0.31853  

 

0.31853  

 

0.2 0.63274  

 

0.63274  

 

 0.43334  

 

0.43334  

 

0.3 0.64354  

 

0.64354  

 

 0.50047  

 

0.50047  

 

Table 3 Comparison of non-dimensional buckling load (
2 3/xN P L Eh ) of micro-panel for differentstrain gradient 

coefficients 

/l h  Zhang et al. (2015) present 

0.1 297.304  297.306 

0.2 88.3325  88.3328 

0.5 29.7615  29.7617 

1 21.3765 21.3768 

 

 

 

Fig. 3 Nonlinear stability curves of the curved shell based upon different size of the grains (R =5L, fv=0.1, 

λ=0.2) 
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gradient coefficient (λ=l/L), and curvature radius (R) will be 

evaluated in detail. 

As the first step, post-buckling loads of perfect and 

imperfect panels are validated in Table 2 with those 

reported by Chikh et al. (2016) considering the gradation of 

material properties. According to this table, buckling loads 

have been calculated for both perfect (
* / 0W h  ) and  

imperfect (
* / 0.1W h  ) panel taking into account  

 

 

 

 

 

various normalized deflection ( /W W h ). Also, 

validation of the buckling load of a size-dependent micro-

panel with the work of Zhang et al. (2015) is presented in 

Table 3 based on different strain gradient coefficients 

(l/h=0.1, 0.2, 0.5, 1). Obtained buckling loads are in good 

agreement with those obtained by Zhang et al. (2015). 

Fig. 2 illustrates buckling load variation versus 

normalized deflection (W ) of micro-scale curved panel for  

 

 

 

Fig. 4 Nonlinear stability curves of the curved shell based upon different volume of the pores (Rg=20 nm, λ=0.2) 

 

 

 

Fig. 5 Nonlinear stability curves of the curved shell based upon different values of curvature radius (Rg=20 nm, 

λ=0.2) 
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various strain gradient coefficient (λ). The panel radius is 

considered as constant, and the grain size is fixed at Rg=20 

nm. For perfect panel it must be stated that W*/h=0 and also 

for imperfect panel it is assumed that W*h=0.02. The 

magnitude of pore volume fraction is selected as fv=0.1 

based on random pore distribution. It is found from the 

figure that higher values for strain gradient coefficient are 

corresponding to higher post-buckling curves. This is due to 

additional stiffness of the micro-panel when train gradient 

effects are included. 

Nonlinear buckling load variation of nano-crystalline 

curved micro-panels with respect to normalized deflection 

according to different size of grains has been plotted in Fig. 

3. It is assumed that the micro-panel has a curvature radius 

of R=5L. The present figure indicates that enlarging the 

magnitude of grain size may lead to greater post-buckling 

loads. The highest post-buckling curve has been obtained 

for the case of Rg=100 nm. The reason is additional stiffness 

of the micro-scale panel via increase of grains size. 

Fig. 4 compares the post-buckling path of the nano-

crystalline micro-panel between diverse volume fraction of 

pores at a fixed value of grain size Rg=20 nm. For an 

imperfect micro-panel it is assumed that W*/h=0.02. This 

graph indicates that higher portion of the pores is 

corresponding to lower post-buckling load values. This is 

owing to the reason that pore content is increasing in 

thickness direction of the micro-panel by considering higher 

pore volume. So, a micro-panel based on lower pore content 

has extra stiffness compared to highly porous counterpart. 

Fig. 5 illustrates the effects of curvature radius (R) on 

post-buckling curves of nano-crystalline curved micro-size 

panel when λ=0.2. It must be noted that post-buckling curve 

of flat panels will be derived by considering curvature 

radius as infinity (R→∞). Indeed, curvature radius specifies  

 

 

the structural behaviors of curved panel. As instance, by 

increment of curvature radius, the buckling behaviors of 

curved micro-panels become closer to flat panels. Thus, 

based on the graph, it can be seen that at smaller values for 

R, buckling loads of perfect micro-panels first decrease with 

the enlargement of normalized deflection because of 

remarkable effects of panel curvature. However, at larger 

values of R, buckling load decrement becomes less 

appreciable.  

Depicted in Fig. 6 is the variation of buckling load of 

micro-size curved panel versus normalized deflection 

( /W W h ) by taking into account different values for 

geometric imperfection amplitude (W*/h=0, 0.02, 0.04, 

0.06). Strain gradient coefficient is fixed at λ=0.2. It must 

be clarified that 0W   yields a bifurcation point called 

critical buckling load in the case of perfect micro-panel. 

However, there is no bifurcation point for an imperfect 

micro-panel. Therefore, for an imperfect micro-panel the 

post-buckling load starts from zero and reaches to post-

buckling path of the perfect micro-panel at higher values of 

normalized deflection. Since micro-panels are not always 

ideal and they may have initial configuration, it is crucial to 

incorporate their imperfectness effects. 
 
 

6. Conclusions 
 

The presented research investigated post-buckling 

behaviors of geometrically imperfect curved micro-panels 

made of nano-crystalline composite. Micro-scale effects on 

the panel structure were included based on strain gradient 

elasticity. Post-buckling curves were determined based on 

both perfect and imperfect micro-panel assumptions. There 

 

 

 

Fig. 6 Nonlinear stability curves of the curved shell based upon different values of imperfection (Rg=20 nm, 

λ=0.2, R=5L) 
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are some interesting findings which can be classified as: 

 For an imperfect micro-panel the post-buckling 

load starts from zero and reaches to post-buckling 

path of the perfect micro-panel at higher values of 

normalized deflection. 
 Higher values for strain gradient coefficient are 

corresponding to higher post-buckling curves.  
 Enlarging the magnitude of pore volume fraction 

yields lower post-buckling loads. 
 At smaller values for micro-panel curvature, 

buckling loads of perfect micro-panels first 

decrease with the enlargement of normalized 

deflection.  
 Post-buckling loads of the curved shell depend on 

the value of grain size. 
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