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1. Introduction 
 

In the recent years, the studies research on the sandwich 

structures has increased sharply because of their advantages 

such as (excellent ratio stiffness/mass, a good ability to 

absorb the energy and high shock wave resistant). These 

studies can be found in the works of (Pagani et al. 2016, 

Tornabene et al. 2017, Kolahchi 2017, Rekatsinas and 

Saravanos 2017, Szekrényes 2018, Chen et al. 2018, 

Tornabene and Brischetto 2018, Badriev et al. 2018, 

Moradi-Dastjerdi and Behdinan 2019, Mehar et al. 2019). 

Several theories and models have been developed which 

can be useful to analyze the behaviors of sandwich 

structures. Thai et al. (2015) developed a novel numerical 

approach based on TSDT and isogeometric approach for 

studying bending, buckling and free vibrational behaviors 

of laminated composite plate. Tan et al. (2017) analyzed 

static and dynamic behaviors of FG plate by employing the 

XIGA based on the Bézier extraction and two-variable RPT. 

A three-dimensional (3D) IGA-meshfree coupling approach 

is presented by Tan et al. (2018) to examine Static, dynamic 

and buckling of FG plates and shells. After the development 
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of the new range of advanced materials (FGM), the FG-

sandwich plates are classified as an exceptional efficient 

type of sandwich structure. These specific classes of 

structures (FG-sandwich plates) are widely investigated by 

several scientists’ researchers. Iurlaro et al. (2014) 

developed a refined zigzag theory (RZT) for static and 

dynamic analysis of the simply supported and clamped FG-

sandwich plate subjected to bi-sinusoidal and uniform loads. 

Duc et al. (2015) studied the dynamic analysis of imperfect 

eccentrically stiffened shear deformable sandwich plate in 

thermal environment. Using HSDT model Dinh Duc and 

Hong Cong (2016) analyzed Nonlinear thermo-mechanical 

dynamic response of piezoelectric FG- sandwich plates on 

elastic foundations. The mechanical analysis of FG 

sandwich plates on elastic foundation is examined by 

Akavci (2016) using a new hyperbolic shear and normal 

deformation plate theory. Do et al. (2017) examined the 

material combination role on mechanical response of FG 

sandwich plates in thermal environment. The Flexural 

dynamic analysis of FG-sandwich plates resting on elastic 

foundation with various boundary conditions is examined 

by Tossapanon and Wattanasakulpong (2017) employing 

the Chebyshev collocation technique. Based on higher-

order layerwise FE formulation, Pandey and Pradyumna 

(2018) studied a static and dynamic response of the FG-

sandwich plate with two configurations of the sandwich 

Layers. Moita et al. (2018) have used a simple finite 
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element model to examine a dynamic response of multilayer 

sandwich plates/shells with a viscoelastic core.based on the 

Hoff assumptions, Li et al. (2018) developed a new model 

for the static analysis of sandwich plates with FG-soft core. 

also other theories and models have been developed over 

the last two years to analyze the various behaviors of the 

FG-sandwich structures such as (Yoosefian et al. 2019,  

H o s se i n i  e t  a l . 2 0 1 9 ,  Khorshidi and Karimi 2019, 

Gholamzadeh babaki and Shakouri 2019, Liu et al. 2019, 

Mirzaalian et al. 2019, Rezaiee-Pajand et al. 2019, Zouatnia 

and Hadji 2019, Li 2020a, b, Dorduncu 2020) 

Through the literature it appears that it is necessary to study 

the FG sandwich structures behaviors with the different 

types of edges supports, for this purpose, the aim of the 

current work is to develop a four variables hyperbolic-

exponential refined theory for dynamic analysis of the FG-

sandwich plate resting on Winkler–Pasternak elastic 

foundation with various boundary conditions. Equations of 

motion are derived using Hamilton’s principle and resolved 

via Galerkin’s approach, The accuracy of the present 

theoretical model is verified by comparing the solution of  

FG sandwich plate with various others studies. The 

influences of the the power-law exponent, foundation 

parameters, geometry, aspect and layer thickness ratios on 

the frequency response of clamped and simply supported 

FG sandwich are deeply discussed. 

 

 

2. Mathematical formulation 
 

2.1 The FG sandwich plates properties  
 
In this work the FG sandwich structure is composed 

from three isotropic layers and is assumed to be reposed on 

a Winkler–Pasternak type elastic foundation with the 

Winkler stiffness of wk  and shear stiffness of sk as shown in 

Fig. 1.  

The FG-sandwich plate has length a , width b  and 

thickness h. the plate is supported at all four edges defined 

in the coordinate system (x, y, z) with x- and y-axes located 

in the middle plane ( 0z ) and its origin placed at the 

corner of the plate. The location of the x- and y-axes are in 

0z  (the middle plane) and its origin placed at the corner 

of the plate. The lower and upper interfaces of the core are 

denoted 1h and 2h , respectively. 

 

 

Fig. 1 Geometry of the FGM sandwich plate resting on 

elastic foundations 

The bottom FG-skin varies from a metal-rich surface 

 20 hhz    to a ceramic-rich surface  1h  while the 

top FG-skin face varies from a ceramic-rich surface  2h  to 

a metal-rich surface  23 hhz  . The isotropic core 

situated between the two skins cited is totally ceramic.  

In this work the FG- face sheets materials properties are 

assumed to vary according to a continuous power law 

function (Lal et al. 2017, Rezaiee-Pajand et al. 2018, 

Sahouane et al. 2019) 

  ( )( ) ( ) n
c m mP z P P V z P   ,  321 ,,n   (1) 

where subscripts c and m indicate the ceramic and metal, 

respectively, P represent the effective material characteristic 

such as mass density ρ(z), Young’s modulus E(z) and 

Poisson’s ratio ( )z .and ( )( ) nV z  is the volume fraction of 

the ceramic phase of each layer (n) is obtained from a 

simple rule of mixtures as 
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Where p  represent the volume fraction index with 

 0p  , The metal volume fraction is given as cm VV 1 . 

 

2.2. Constitutive equations 
 
In the current investigation, for elastic and isotropic 

FGMs, the constitutive relations (stress-strain) can be 

written as: 
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where ( and  ) and (  and
 
 ) are the stress and strain 

components, respectively.
 ijQ are the

 
stiffness coefficients 

expressed by 
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In this work, the conventional HSDT assumptions are 

used and simplified to reduce the number of unknown 

variables. The displacement field functions of the classical 
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HSDT are given as  
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Where f(z) is the warping function and the terms 0u , 

0v , 0w , x , y are the five unknown displacement of the 

mid-plane of the sandwich FG-plate.  

Based on the conventional higher shear deformation 

model and dividing the deflection to bending and shear 

components ( ( , , , ) ( , , ) ( , , ))b sw x y z t w x y t w x y t  . The 

current displacement fields mentioned above can be written 

as follows 
2
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The zero transverse shear stresses are ensured on the 

free surfaces of the FG sandwich plate (top and bottom 

surfaces) without introducing the shear correction factors. 

Based on the current displacement field of Eq. (6). The 

nonzero linear strain components are obtained as  
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2.3 Equations of motion 
  
The equations of motion compatible on the displacement 

field of Eq. (6) and deformations of Eq. (7) are derived 

from the Hamilton’s principle given as (Abdelmalek et al. 

2017, Safa et al. 2019) 

 
0

0
t

EFU U K dt      (10) 

where U
 
is the

 
strain energy variation 

 
, FU  is the 

additional strain energy given by the elastic foundations, 

and K  is the  kinetic energy. The first variation of strain 

energy of the current model can be written as 
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where A  is the top surface. ,N M and Q
 
are

 
stresses and 

moments resultants of the FG sandwich plate. 

By integrating Eq. (3) over the thickness, the stresses 

and moments resultants ,N M and Q
 
are

 
written as 
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where nh  and  1nh are the top and bottom z-coordinates 

of the nth layer. 

The expression of the strain energy induced by elastic 

foundations can be given as 

EF e

A

U f wdA    (13) 

where ef  is the reaction force of elastic foundation and 

can be expressed as  

2 2

2 2e w sx sy

w w
f k w k k

x y

 
  

 
 (14) 

where the parameters wk and ( sxk  and syk )  are the 

Winkler and  Pasternak modulus of subgrade reaction. If 

the shear layer foundation stiffness is neglected

( 0)sx sy sk k k   , Pasternak foundation becomes a 

Winkler foundation. If foundation is isotropic and 

homogeneous, we will get ssysx kkk  .  

The variation of kinetic energy K  is expressed as 
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where )(z  is the mass density, the dot-superscript 

convention represent the differentiation with respect to the 

time variable t, the terms  221210 ,,,,, KJJIII  
are the

 
mass 

inertias defined as 
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By Substituting the Eqs. (11), (13) and (15) into Eq. (10), 

integrating by parts, separating and collecting the 

coefficients of displacements
0 u , 

0 v , 
b w  and 

s w , 

the equations of motion of the FG sandwich plate are 

obtained as follow 

 

(17) 
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where ijA , ijB , etc., are the plate stiffness, defined by 
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By replacing the Eq. (7) and (18) into equation (17), the 

equations of motion can be expressed in terms of 

displacements ( 0 u , 0v , 
bw  and

bw ) as follow 
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where the operator 2 is given by  

2

2

2

2
2

yx 







   (22) 

 

 

3. Analytical solutions 
 

In this investigation three boundary conditions are 

considered. The exact analytical solution of equations of 

motion (Eq. 21) for clamped (C) and simply supported (S) 

edges of FG-sandwich plate is presented. These boundary 

conditions of FG-sandwich plate are defined as: 
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To satisfying the boundary conditions of Eqs. (23) and 

(24). The displacement components are given in the 

derivatives form as 
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Where the terms mnU , mnV , 
bmnW  and 

smnW  are 

coefficients  xX m and  yYn
are

 
functions given in Table 1. 

  Is the frequency with 1i . 

The solution of the free vibrational analysis of FG-

sandwich plate are obtained by substituting the analytical 

solution of Eq. (25) into the equations of motion of Eq. (21). 

the solution is in the matrix form as 
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23 22 4 12 66 10

24 12 66 10 22 4

31 11 13 11

32 11 11 5

33 11 13 5 11 9

3 1 7

34 11 1 2 13 1 2 14 1 2 11

41 11 1 2 15 1

( 2 )

( 2 )

2

2

2

s s s
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yy sy w xy

s
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2 16

42 11 1 2 17 1 2 16

43 11 1 2 15 1 2 16 1 2 17

22 2

44 11 1 1 2 2 15 11 1 2 18

2 2

55 1 19 2 16

2

2 '

s

s

s s

s

k B e

S B k k e k A k B e

S D k k e k A k B e k k e

S H k k k k e H k A k B e
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In the current model, the non-trivial solution is obtained 

when “  2det 0S M        ”. 

 

 

4. Results and discussions 
 
In the following section, Several example for dynamic 

analysis of FG-sandwich plates reposed on elastic 

foundation are presented to show the accuracy and 

efficiency of the present refined four variable unknown 

model. The material properties of the FGM are summarized 

in the Table 2. 

In the presented examples, six kinds of sandwich plates 

are utilized (1-0-1, 1-1-1, 1-2-1, 1-3-1, 2-1-2 and 2-2-1). 

The upper and lower interfaces of core 
1 2( , )h h vary 

according to the configuration of the plate as presented in 

the Table 3. 

In the current work, all numerical results are presented 

in the dimensionless form as 

 

 

Table 2 Material properties of Ceramic and Metal 

Properties Metal Ceramic 

Al Al2O3 

E  (GPa) 70 380 

  0.3 0.3 

  (kg/m3) 2707 3800 

 

 

Table 3 Various layer thickness ratio of sandwich plates 

 

layer 

thickness 

ratio 

 

0h  

 

1h  

 

2h  

 

3h  

1-0-1  

 

 

-h/2 

0 0 
 

 
h/2 

 

1-1-1 -h/6 h/6 

1-2-1 -h/4 h/4 

1-3-1 -3h/10 3h/10 

2-1-2 -h/10 h/10 

2-2-1 -h/10 3h/10 

 

 

 
 

2

2

2

4 2 3

2

ˆ* ,

, ,
12(1 )

b

w s c
w s

a
h D

h

k a k a E h
K K D

D D




   



 

  


 

 
4.1 Validation 
  
Table 4 present comparisons of dimensionless 

fundamental frequency ̂  of a clamped homogeneous  

square plate (p=0) reposed on only Winkler foundation 

0sK  with ( 0.015, 0.15)h b   . The obtained results 

are compared with those given by Sobhy (2013) using 

various shear deformation plate theories. A good agreement 

is achieved between current results and those of Sobhy 

(2013). 

Table 5 give the dimensionless natural frequencies ( ̂ ) 

of simply supported square isotropic plate reposed on 

Winkler-Pasternak elastic foundation ( varied, 10w sK K  ) 

for various mode number ( ,m n ) and geometry ratio ( /b h ). 

The computed results are compared with those published by 

Sobhy (2013). It can be seen from the table that the current 

are in good agreement with those obtained by as Sobhy 

(2013). It can be also observed that the dimensionless 

natural frequencies ( ̂ ) are in direct correlation relation 

with vibration mode number ( ,m n ) and Winkler parameter 

wK .  

Table 6 shows the effects of elastic foundation 

stiffnesses ( wK  , sK ) and a h  and layer thickness ratio on 

the free vibration ( ) of various types of simply supported 

FG-sandwich square plates with (p = 1.5). 
 
 
Table 4 Comparison of dimensionless fundamental 

frequency ( ̂ ) of a clamped homogeneous square plate 

resting on Winkler’s elastic foundation 

wK  Sobhy (2013) Present 

1390.2 5.3330 5.3332 

2780.4 6.5349 6.5351 

 
 

Table 1 The admissible functions  xX
m

and  yY
n  

of SSSS, CCCC and CSCS FG-sandwich plate. 

Boundary conditions The functions  xX m and  yYn
 

SSSS     000  mm XX  

    0 aXaX mm
 

    000  nn YY  

    0 bYbY nn
 

)xsin(  )ysin(  

CCCC     000  mm XX  

    0 aXaX mm
 

    000  nn YY  

    0 bYbY nn
 

)x(sin2   )y(sin2   

CSCS     000  mm XX  

    0 aXaX mm
 

    000  nn YY  

    0 bYbY nn
 

sin( ) cos( ) 1x x      sin( ) cos( ) 1y y      

– ( )' denotes the derivative with respect to the corresponding coordinates. 
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Table 5 Comparison of natural frequency ( *)  of a simply supported homogeneous square plate resting on Pasternak’s 

elastic foundations  

m  n  b/h 
wK

 
Sobhy (2013) Present 

1 1 100 100 2.6551 2.6551 

 500 3.3400 3.3400 

10 200 2.7842 2.7842 

 1000 3.9806 3.9806 

2 1 100 100 5.5718 5.5718 

 500 5.9287 5.9287 

10 200 5.3051 5.3049 

 1000 6.0085 6.0083 

2 2 100 100 8.5405 8.5405 

 500 8.7775 8.7775 

10 200 7.7311 7.7303 

 1000 8.2237 8.2229 
 

Table 6 Effects of elastic foundation parameters ( w
K  and s

K ) and geometry ratio ha  on the dimensionless  f

requency  of various types of simply supported sandwich square plates 

Scheme Theory 
0kk sw 

 
0k,100k sw 

 
100k,100k sw 

 

5ha
 

10 20 5ha
 

10 20 5ha
 

10 20 

1-0-1 

FSDPT(*) 0,9547 1,0167 1,0347 1,4061 1,461 1,4775 4,7803 4,8851 4,9134 

TSDPT(*) 0,9647 1,0198 1,0356 1,4121 1,4631 1,4781 4,7807 4,8854 4,9135 

SSDPT(*) 0,9655 1,02 1,0356 1,4125 1,4633 1,4781 4,7808 4,8854 4,9135 

ESDPT(*) 0,9663 1,0203 1,0357 1,4131 1,4635 1,4782 4,7808 4,8854 4,9135 

HSDPT(*) 0,9643 1,0196 1,0355 1,4119 1,463 1,4781 4,7805 4,8854 4,9135 

Present 0,9600 1,0152 1,0310 1,4057 1,4566 1,4716 4,7600 4,8640 4,892 

1-1-1 

FSDPT(*) 1,0717 1,1367 1,1555 1,1563 1,5227 1,5401 4,6538 4,7513 4,7788 

TSDPT(*) 1,0807 1,1395 1,1563 1,4695 1,5247 1,5407 4,6537 4,7517 4,7789 

SSDPT(*) 1,0817 1,1396 1,1563 1,4697 1,5248 1,5407 4,6537 4,7517 4,7789 

ESDPT(*) 1,0815 1,1398 1,1563 1,47 1,5249 1,5407 4,6537 4,7517 4,779 

HSDPT(*) 1,0816 1,1398 1,1563 1,4703 1,5249 1,5407 4,6538 4,7518 4,779 

Present 1,0774 1,1363 1,1531 1,4652 1,5204 1,5364 4,6408 4,7386 4,7658 

1-2-1 

FSDPT(*) 1,0717 1,1367 1,1555 1,1563 1,5227 1,5401 4,6538 4,7513 4,7788 

TSDPT(*) 1,0807 1,1395 1,1563 1,4695 1,5247 1,5407 4,6537 4,7517 4,7789 

SSDPT(*) 1,0817 1,1396 1,1563 1,4697 1,5248 1,5407 4,6537 4,7517 4,7789 

ESDPT(*) 1,0815 1,1398 1,1563 1,47 1,5249 1,5407 4,6537 4,7517 4,779 

HSDPT(*) 1,0816 1,1398 1,1563 1,4703 1,5249 1,5407 4,6538 4,7518 4,779 

Present 1,0774 1,1363 1,1531 1,4652 1,5204 1,5364 4,6408 4,7386 4,7658 

1-3-1 

FSDPT(*) 1,2605 1,346 1,371 1,5912 1,6688 1,692 4,5914 4,6898 4,719 

TSDPT(*) 1,2666 1,348 1,3716 1,5956 1,6704 1,6924 4,5911 4,6901 4,7192 

SSDPT(*) 1,2663 1,3479 1,3716 1,5954 1,6703 1,6924 4,591 4,6901 4,7192 

ESDPT(*) 1,2662 1,3478 1,3715 1,5953 1,6703 1,6924 4,5909 4,69 4,7192 

HSDPT(*) 1,2753 1,3506 1,3723 1,6024 1,6724 1,693 4,5921 4,6907 4,7194 

Present 1,2648 1,3459 1,3694 1,5933 1,6678 1,6898 4,5836 4,6827 4,7118 

(*) given from Ref. Sobhy (2013). 
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From the comparisons in the Table 6, a good agreement 

is observed between computed results and those obtained 

via first-order shear deformation plate theory (FSDPT), 

third-order shear deformation plate theory (TSDPT), 

exponential shear deformation plate theory (ESDPT), 

hyperbolic shear deformation plate theory (HSDPT) and   

 

 

sinusoidal shear deformation plate theory (SSDPT) 

developed by Sobhy (2013). It can be also noted that the 

increase in the values of the geometry ratio (a/h) and 

foundation parameters ( wK  , sK ) lead to increase the values 

of the fundamental frequency ( ) . The biggest values of the  

 

Table 7 Dimensionless fundamental frequency  of FG-sandwich square plates (a=b, a/h=10) with various boundary 

conditions 

Boundary 

conditions 
p 

Method 

 

Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

SSSS 

0 
HySDT(*) 0.2956 0.2956 0.2956 0.2956 0.2956 

Present 0,2960 0,2960 0,2960 0,2960 0,2960 

0.5 
HySDT(*) 0.5227 0.4846 0.4560 0.4366 0.4172 

Present 0,5229 0.4849 0.4564 0,4370 0.4177 

1 
HySDT(*) 0.7454 0.6593 0.5954 0.5537 0.5124 

Present 0.7452 0.6593 0.5956 0.5540 0.5129 

2 
HySDT(*) 1.0839 0.9254 0.8009 0.7200 0.6427 

Present 1.0830 0.9249 0.8008 0.7202 0.6431 

5 
HySDT(*) 1.4519 1.2678 1.0767 0.9367 0.8131 

Present 1.4492 1.2659 1.0758 0.9364 0.8132 

10 
HySDT(*) 1.5519 1.4053 1.2070 1.0392 0.8998 

Present 1.5489 1.4026 1.2055 1.0387 0.8996 

CSCS 

0 
HySDT(*) 0.1836 0.1836 0.1836 0.1836 0.1836 

Present 0.1875 0.1875 0.1875 0.1875 0.1875 

0.5 
HySDT(*) 0.3205 0.2972 0.2799 0.2682 0.2565 

Present 0.3251 0.3016 0.2842 0.2726 0.2608 

1 
HySDT(*) 0.4546 0.4020 0.3634 0.3384 0.3134 

Present 0,4595 0,4066 0,3678 0,3429 0,3179 

2 
HySDT(*) 0.6886 0.5615 0.4863 0.4379 0.3913 

Present 0,6637 0,5659 0,4908 0,4426 0,3960 

5 
HySDT(*) 0.8835 0.7670 0.6513 0.5676 0.4931 

Present 0,8891 0,7708 0,6554 0,5722 0,4977 

10 
HySDT(*) 0.9492 0.8503 0.7294 0.6290 0.5448 

Present 0,9569 0,8538 0,7331 0,6336 0,5494 

CCCC 

0 
HySDT(*) 0.1606 0.1606 0.1606 0.1606 0.1606 

Present 0,1595 0,1595 0,1595 0,1595 0,1595 

0.5 
HySDT(*) 0.2777 0.2576 0.2427 0.2327 0.2226 

Present 0,2766 0,2566 0,2418 0,2320 0,2219 

1 
HySDT(*) 0.3922 0.3468 0.3137 0.2924 0.2710 

Present 0,3908 0,3458 0,3129 0,2917 0,2705 

2 
HySDT(*) 0.5666 0.4825 0.4182 0.3770 0.3371 

Present 0,5641 0,4809 0,4171 0,3763 0,3367 

5 
HySDT(*) 0.7610 0.6577 0.5584 0.4873 0.4236 

Present 0,7557 0,6545 0,5566 0,4861 0,4229 

10 
HySDT(*) 0.8208 0.7292 0.6249 0.5396 0.4676 

Present 0,8139 0,7249 0,6224 0,5381 0,4667 

(*) given from Ref. Abdelaziz et al. (2017). 
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frequency ( )  are obtained for FG-sandwich plate with 

layer thickness ratio 1-3-1. 

Table 7 gives dimensionless fundamental frequency 

of SSSS, CCCC and CSCS FG-sandwich square plates with 

(a/h=10). The results are computed for ( p  0, 0.5, 1, 2, 5 

and 10). A comparison is made between the current results 

and those of Abdelaziz et al. (2017). It can be confirmed 

again that the present model is in good agreement with 

those existing in the literature. It is clear in the table that the 

dimensionless fundamental frequency  increase with the 

increase of the face sheet material index (p). it can be also 

observed that the lower values of the   are obtained for 

clamped FG-sandwich plate.  

 
4.2 Parametric study 
 

In this part, parametric studies are presented to show the 

various parameters influencing the dynamic response of the 

FG-sandwich plate with various boundary conditions.  

Fig. 2 display the variations of the frequencies ( *)  

versus the FG face sheet material index (p) and    

geometry ratio (a/h) for various layer thickness ratio   of 

simply supported FG-sandwich square plates resting on 

elastic foundations  100
sw

KK . 

 
 

From the obtained graphs, we can see that the frequency 

( *)  is in direct correlation relation with parameter (p) 

and side-to-thickness ratio a/h. It can also observed that the 

increase in the core thickness leads to reduce the differences 

between curves . 

The effect of the inhomogeneity parameter p and Layer 

thickness ratio on fundamental frequency ( *)  of simply 

supported and clamped FG-sandwich square plates with 

(a/h=10) are illustrated in the Fig. 3. From the plotted 

curves, it can be seen that the fundamental frequency ( *)  
is in inverse relation with parameters (p) because the FG 

faces sheet of the sandwich plate become metallic. The 

largest values of the fundamental frequency ( *)  are 

obtained for FG-sandwich plate when the core thickness is 

twice that of the face sheet. 

Fig. 4 plots the variation of the frequencies ( *) versus the 

geometry ratio (a/h) of SSSS, CCCC and CSCS EGM 

sandwich square plate with and without Winkler elastic 

foundation. From the obtained curves, It can be seen that 

the increase in the values of the ratio (a/h) leads to increase 

the eigen frequencies ( *) . We note also that the presence 

of the Winkler elastic foundation reduce the values of the  
 

  

  

Fig. 2 Dimensionless fundamental frequency ( * ) versuss the ratio a/h , layer thickness ratio and inhomogeneity 

parameter p of SSSS FGM sandwich square plates resting on elastic foundations  100
sw

KK  
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Fig. 5 variation of the frequencies ( *) versus ratio b/a 

of SSSS and CCCC sandwich plate for different values 

of Winkler-Pasternak parameters ( , )w sK K  

 

 
 

 

frequencies. It is clear also that the biggest values of ( *)  
are obtained for clamped plate. 
The variation of the dimensionless frequencies ( *)  

versus the foundations parameters  ,w sK K and the 

dimension ratio b/a of clamped and simply supported plate 

with ( a h  10, p=0.5) are plotted in the Fig. 5. It can be 

seen from the results that the dimensionless frequencies is 

in inverse relation with ratio b/a. the frequencies ( *)  of 

the clamped plate are greater than that of simply supported  

 

plate. It can be concluded also that the presence of the 

Winkler-Pasternak elastic foundation has an important role 

on the values of the dimensionless frequencies ( *) . 

 

 

  

 
(a) clamped plate (a/h=10) 

 
(b) simply supported plate (a/h=10) 

Fig. 3 Effect of the material index parameter (p) on non-dimensional frequency ( * ) of square FG-sandwich plates 

  

 
(a) clamped plate (a/h=10) 

 
(b) simply supported plate (a/h=10) 

Fig. 4 Dimensionless frequency ( *) as function of  geometry ratio a/h of the (1-2-1) CCCC, SSSS and CSCS EGM 

sandwich square plate with and without Winkler’s elastic foundation (p=0.5) 
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5. Conclusions 
 

In this work, the dynamic response of two types of FG-

sandwich plates with functionally graded faces sheets is 

investigated, using a four-variable refined plate model. The 

equations of motion are determined on the basis of the 

Hamilton’s principle. The problem of various boundary 

conditions is solved analytically via Galerkin’s approach. A 

comparison with the results of the literature is made to 

verify the accuracy and efficiency of current model. The 

effects of the material index, aspect, geometry and layer 

thickness ratio on dynamic response of the clamped and 

simply supported FG-sandwich plate are examined. Finally, 

an improvement of the present analytical model will be 

considered in the future work to consider other type of 

structures materials (Behera and Kumari 2018, Narwariya et 

al. 2018, Bensattalah et al. 2018, 2019a, b, Nikkhoo et al. 

2019, López-Chavarría et al. 2019, Bakhshi and Taheri-

Behrooz 2019, Singh and Kumari 2020, Ghannadpour and 

Mehrparvar 2020, Al-Maliki et al. 2020, Rachedi et al. 

2020, Abed and Majeed 2020). 
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