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1. Introduction 
 

New innovative composite materials, known as 

Functionally graded materials (FGMs), were proposed 

firstly in Sendai area for addressing heat-resistant problem 

by Japanese scientists in 1984 during the space-plane 

project, (Alshorbagy et al. 2011, Miyamoto et al. 2013). 

FGMs offer smooth and continuous distribution of two or 

more materials along one or more directions by a specific 

function. FGMs have potential applications in various fields 

such as aircraft, space vehicles, rocket engine, automotive 

industries, optics, barrier coating, nuclear reactors, Hamed 

et al. (2016), and in nano-structures application such as 

micro-/nano-electro-mechanical-systems (MEMS/NEMS), 

thin films, shape memory alloys, and atomic force 

microscopes (AFM), Eltaher et al. (2012).  

To investigate mechanical response of nanostructure 

accurately, modified continuum model theories such as, 

nonlocal of elasticity of Eringen [Eltaher et al. (2016a, b, c), 

Phung-Van et al. (2017a, 2018), Eltaher et al. (2019a), 

Eltaher and Mohamed (2020a), Fenjan et al. (2020)], couple 

stress theory Nguyen et al. (2017), Thanh et al. (2018), 

Akbas (2018a), Thanh et al. (2019a, b, c), Akbas (2019b), 

Surface elasticity theory Khater et al. (2014), Agwa and  
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Eltaher (2016), Almitani (2020), energy equivalent method 

of CNTs Eltaher and Agwa (2016), Eltaher et al. (2019b), 

Mohamed et al. (2020), and doublet mechanic Gul and 

Aydogdu (2018) and Mohamed et al. (2020), Eltaher and 

Mohamed (2020a) are exploited to include the size-scale 

effects.   

Since, the size-scale effect is missing in classical 

continuum mechanics, nonlocal theories of continuum 

mechanics are widely used in order to assess size effects in 

nanostructures, Apuzzo et al. (2017). Reddy (2007) and 

Thai (2012) presented analytical solutions for mechanical 

behaviors of nonlocal nanobeam included higher order 

beam theories. Reddy (2011) developed microstructure-

dependent nonlinear Euler–Bernoulli and Timoshenko FG 

beam theories to study the size effect on postbuckling of 

nanobeam. Eltaher et al. (2012, 2013a) studied bending, 

buckling and free vibration of FG nonlocal nanobeam by 

using finite element method. Simsek and Yurtcu (2013) 

presented an analytical solution for bending and buckling of 

FG nanobeams based on the nonlocal Timoshenko beam 

theory. Eltaher et al. (2013b, 2014a, b) presented effect of 

neutral axis position natural frequencies of FG 

macro/nanobeams included a nonlocal elasticity for Euler 

and Timoshenko beam theories. Shaat et al. (2013) studied 

nonlinear size-dependent FE of FG tiny-bodies considering 

surface energy effects. Rahmani and Pedram (2014) 

analyzed and modeled the size effect on vibration of FG 

nonlocal Timoshenko nanobeams. Eltaher et al. (2016) 

presented a comprehensive review on the importance of 

nonlocal elasticity in analysis of mechanical behaviors of 

nanobeam. Simsek (2016) studied nonlinear free vibration 
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of FG nanobeam using nonlocal strain gradient theory via 

Hamiltonian approach. Hamed et al. (2016) studied free 

vibration of symmetric and sigmoid FG nonlocal 

nanobeams by using finite element method. Ahouel et al. 

(2016) investigated bending, buckling, and vibration of FG 

nanobeams using the nonlocal differential constitutive 

relations of Eringen. Akbas (2017a) explored forced 

vibration responses of FG modified couple stress theory 

nanobeams with damping effect excited by a transverse 

triangular impulse force. Apuzzo et al. (2017) studied free 

vibrations of Bernoulli-Euler nano-beams by using the 

stress-driven nonlocal integral model. Trabelssi et al. (2017) 

examined free vibration response of a nonlocal nonlinear 

FG Euler–Bernoulli nanobeam resting on a nonlinear elastic 

foundation. Emam et al. (2018) explored postbuckling and 

free vibration of multilayer imperfect nanobeams under a 

pre-stress load. Barretta et al. (2018) developed exact 

solutions of inflected FG nano-beams modeled by integral 

elasticity theory. Soliman et al. (2018) and Eltaher et al. 

(2018a) investigated the dynamic transient response of FG 

pipe subjected to internal pressure and unsteady 

temperature. Heydari (2018) analyzed vibration and 

buckling of arbitrary gradation of nano-higher order 

rectangular beam. Mirzaei et al. (2019) exploited first-order 

shear deformation theory to study time-dependent creep of 

FG beam with trapezoidal cross section. Rahmani et al. 

(2018) studied free vibration of deep curved FG nano-beam 

based on modified couple stress theory. Liu et al. (2019) 

examined the nonlinear vibrational behaviors of FG 

sandwich nonlocal strain gradient nanobeams in the 

presence of initial geometric imperfection. Bambaeechee 

(2019) developed exact analytical solutions for the free 

vibration of AFG and uniform beams with general elastic 

supports by using Euler-Bernoulli beam theory. Simsek 

(2019) derived closed-form solutions for static, buckling, 

free and forced vibration of FG nanobeams using nonlocal 

strain gradient theory. Aria and Friswell (2019) developed a 

nonlocal finite element model to study buckling and 

vibration of FG nanobeams. Melaibari et al. (2020) 

investigated static stability of higher order FG beam under 

variable axial load. Hamed et al. (2020a) studied buckling 

analysis of sandwich beam rested on elastic foundation and 

subjected to varying axial in-plane loads. Karami et al. 

(2020) explored dynamic behavior of two-dimensional FG 

tapered Timoshenko nanobeam in thermal environment 

using nonlocal strain gradient theory. Akbas et al. (2020) 

and Asiri et al. (2020) studied dynamic response of layered 

FG viscoelastic deep beams under pulse load by using finite 

element method.  

FGMs can be manufactured by self-propagating high 

temperature synthesis, multi-step sequential infiltration 

technique, and non-pressure sintering technique. In these 

processes, porosities and micro-voids may occur inside 

materials owing to the technical issues, Wang et al. (2017), 

Lee and Ahn (2018) and Matuła et al. (2019). The porosity 

and voids can weaken the strength of FGMs dramatically 

and adverse effects on required properties of structures.  

Porous FG materials are found naturally around us, such 

as, bamboo with density gradients along the radial direction 

in its cross section, human cancellous bone which is 

sponge-like cellular structure, banana peel, and elk antler, 

etc. Artificial FGPMs, such as biomedical implants, 

cushioning materials, filtration materials and drug delivery 

devices, Zhang and Wang (2017). Various techniques, such 

as, Gas foaming, phase separation techniques, solvent 

casting and particle leaching, selective laser sintering, 

stereolithography, and fused deposition modeling have been 

used to manufacture porous materials, Zhang and Wang 

(2017).  Recently, representative porous materials 

extensively used in lightweight structures, aerospace and 

automotive industries, due to their outstanding multi-

functionality obtained by low specific weight, efficient 

capacity of energy dissipation, reduced thermal and 

electrical conductivity, Kitipornchai et al. (2017).  

Yahia et al. (2015) presented analytic dispersion relation 

for wave propagation in FG higher-order plates with 

porosities. Akbas (2015) investigated free vibration and 

bending of FG beams resting on elastic foundation. Galeban 

et al. (2016) studied free vibration of FG thin beams made 

of saturated porous materials. Ebrahimi and Habibi (2016) 

analyzed deflection and vibration of higher-order shear 

deformable compositionally graded porous plate. Amar et al. 

(2017) presented effects of power-law exponents, porosity 

distributions, porosity volume fractions, the material length 

scale parameter and slenderness ratios on bending and 

dynamic responses of FG micro-beam modeled by modified 

couple stress theory (MCST). Akbas (2017b, c, d) 

investigated the free vibration and bending behavior of 

temperature-dependent FG porous deep beams with 

different porosity models under mechanical and thermal 

loads. Mirjavadi et al. (2017) studied the effect of thermal 

on vibration of two-dimensional FG porous Timoshenko 

nanobeams. Jandaghian and Rahmani (2017) investigated 

vibration of FG nanobeams based on third-order shear 

deformation theory under various boundary conditions. 

Phung-Van et al. (2017b) studied nonlinear transient 

isogeometric analysis of smart piezoelectric functionally 

graded material plates based on generalized shear 

deformation theory under thermo-electro-mechanical loads. 

Akbas (2018b) examined numerically effects of material 

distribution, porosity coefficients, nonlinear effects on the 

static behavior of FG beams. Akbas (2018c) investigated 

forced vibration analysis of FG porous deep plane stress 

beams under dynamically load. Yousfi et al. (2018) 

developed an analytical solution of the Navier type for free 

vibration analysis of FG porous plate. Guessas et al. (2018) 

investigated analytically the effect of porosity on the 

buckling behavior of carbon nanotube-reinforced composite 

porous. Nguyen et al. (2018) studied free vibration of 

tapered BFGM beams using an efficient shear deformable 

finite element model. Eltaher et al. (2018b) proposed 

modified porosity model to study free vibration of FG 

porous nanobeams. Benahmed et al. (2019) studied critical 

buckling of FG nanoscale beam with porosities by using 

nonlocal higher-order shear deformation. Hamed et al. 

(2019) examined effects of porosity models on static 

behavior of size dependent FG nanobeam by using nonlocal 

elasticity theory. Khatir et al. (2019) exploited Artificial 

Neural Network (ANN) combined with Particle Swarm 

Optimization (PSO) for damage quantification in laminated 
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composite plates using Cornwell indicator (CI). Mekerbi et 

al. (2019) analyzed thermal buckling of FG plates with 

porosity and resting on elastic foundation by using quasi 3D 

theory. Thanh et al. (2019d) presented the size-dependent 

effects on thermal buckling and post-buckling behaviors of 

FG material micro-plates with porosities by using 

isogeometric analysis. Yuksel and Akbas (2019) presented 

buckling analysis of fiber-reinforced laminated composite 

plate with porosity effects within the first shear deformation 

plate theory. Akbas (2019b) presented forced vibration 

analysis of sandwich deep beams made of FGM in face 

layers and a porous material in core layer. Akbas (2019c) 

studied hygro-thermal post-buckling analysis of a FG beam 

by using Newton-Raphson method and finite element 

method. Berghouti et al. (2019) presented vibration analysis 

of nonlocal porous nanobeams made of functionally graded 

material. Phung-Van et al. (2019) presented the influence of 

porosity on nonlinear transient responses of functionally 

graded nanoplates by using isogeometric analysis. Hamed et 

al. (2020b) studied influence of axial load function and 

optimization on static stability of sandwich FG beams with 

porous core. Gafour et al. (2020) exploited non-local shear 

deformation and energy principle to study free vibration of 

FG porous nanobeam. Eltaher and Mohamed (2020c) 

studied buckling of FG beam under variable axial in-plane 

load by using differential quadrature method. Zhao et al. 

(2020) presented effects of porosity and flexoelectricity on 

static bending and free vibration of FG piezoelectric 

nanobeams.  

As predicated from literature, the dynamic free vibration 

behavior of FG nonlocal nanobeam with different porosity 

models by suing finite element method has not been 

addressed. So, this paper presented a numerical model to 

present effects of uniform, symmetric, bottom surface top 

surface porosity models on the natural frequencies of FG 

nanobeam. Nonlocal differential form of Eringen is 

exploited to include the size-scale effect in modified 

continuum model. The following sections of a manuscript 

are arranged as: Section 2 depicts constitutive material 

equations, porosity models, kinematic relation, nonlocal 

elasticity and mathematical equation of motion. Section 3 is 

devoted to the numerical finite element method and element 

matrices. Numerical results and parametric studies of 

porosity models, material gradation parameter, and 

nanoscale effect on the first five natural frequencies of 

nanobeam are discussed through Section 4.  Conclusion 

and main points of the present study is summarized in 

Section 5. 

 

 

2. Mathematical formulation 
 

2.1 Material graduation functions 
 

The gradation of function graded material can be 

presented and modeled by a simple homogenization Voigt 

rule, Hamed et al. (2016). The volume fraction of materials 

are graded across the beam thickness (𝑧) by the following 

functions, Alshorbagy et al. (2011) 

𝑉𝑐 = (
1

2
+

𝑧

ℎ
)

𝑛

 &        𝑉𝑚 = 1 − (
1

2
+

𝑧

ℎ
)

𝑘

       

(0 ≤ 𝑛 < ∞)   
(1) 

where 𝑉, 𝑘 , ℎ are volume fraction, gradation parameter, 

and beam thickness, respectively. subscripts 𝑐  and 𝑚 

represent ceramic and metal materials, respectively. 

Therefore, the gradation of Young’s modulus (𝐸)  and 

density (𝜌)  of FG materials can be depicted by a 

generalized power law function as  

   𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚) [
1

2
+

𝑧

ℎ
]

𝑘

+ 𝐸𝑚     

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚) [
1

2
+

𝑧

ℎ
]

𝑘

+ 𝜌𝑚 

(2) 

 

2.2 Porosity models 
 
It is observed from experimental examination that linear 

variation of porosity is inadequate to consider a reduction in 

the rigidity of a structure. Thus, four porosity models are 

proposed through this study. The first model is proposed by 

Wattanasakulpong and Ungbhakorn (2014), presumed that 

the porosity is uniformly distributed through the thickness 

of the beam by the following [Model 1], as shown in Fig. 1  

𝐸(𝑧) = [𝐸𝑐 − 𝐸𝑚] (
1

2
+

𝑧

ℎ
)

𝑘

+ 𝐸𝑚 −
𝛼

2
 [𝐸𝑐 + 𝐸𝑚]  (3a) 

𝜌(𝑧) = [𝜌𝑐 − 𝜌𝑚] (
1

2
+

𝑧

ℎ
)

𝑘

+ 𝜌𝑚 −
𝛼

2
 [𝜌𝑐 + 𝜌𝑚]  (3b) 

In which 𝛼  is the volume fraction of porosity in the 

material. The last term of the equation represents the 

porosity content in both metal and ceramic constituents.  

The model 2 of the porosity, assumed that the porosity is 

distributed symmetric around mid-axis and its peak lies near 

to mid-axis and decreased continuously as moved away to 

top or bottom surface. The material distributions for a 

symmetric model, shown in Fig. 2, can be implemented by  

𝐸(𝑧) = {[𝐸𝑐 − 𝐸𝑚] (
1

2
+

𝑧

ℎ
)

𝑘

+ 𝐸𝑚} {1 − 𝛼 𝑐𝑜𝑠 [𝜋 (
𝑧

ℎ
)]}    (4a) 

 

 

 
 

Fig. 1 Uniform porosity distribution Model 1, Thang et al. 

(2018) 
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Fig. 2 Symmetric porosity distribution Model 2, Thang et al. 

(2018) 

 

 

𝜌(𝑧) = [[𝜌𝑐 − 𝜌𝑚] (
1

2
+

𝑧

ℎ
)

𝑘

+ 𝜌𝑚] [1 − 𝛼 𝑐𝑜𝑠 [𝜋 (
𝑧

ℎ
)]] (4b) 

The third model assumed that the porosity is concentrated at 

the bottom surface and decreases upwards, as shown in 

Fig.3. Hence, the porous material gradated through the 

thickness by the following  

 𝐸(𝑧) = [[𝐸𝑐 − 𝐸𝑚] (
1

2
+

𝑧

ℎ
)

𝑘

+ 𝐸𝑚] [1 − 𝛼 𝑐𝑜𝑠 [
𝜋

2
(

𝑧

ℎ
+

1

2
)]]     (5a) 

𝜌(𝑧) = [[𝜌𝑐 − 𝜌𝑚] (
1

2
+

𝑧

ℎ
)

𝑘
+ 𝜌𝑚] [1 − 𝛼 𝑐𝑜𝑠 [

𝜋

2
(

𝑧

ℎ
+

1

2
)]]  (5b) 

The fourth porosity model assumed that, the porosity is 

concentrated at the top surface and decreased gradually in 

nonlinear behavior. The fourth model can be depicted by  

𝐸(𝑧) = [[𝐸𝑐 − 𝐸𝑚] (
1

2
+

𝑧

ℎ
)

𝑘
+ 𝐸𝑚] [1 − 𝛼 𝑐𝑜𝑠 [

𝜋

2
(

𝑧

ℎ
−

1

2
)]]     (6a) 

𝜌(𝑧) = [[𝜌𝑐 − 𝜌𝑚] (
1

2
+

𝑧

ℎ
)

𝑘
+ 𝜌𝑚] [1 − 𝛼 𝑐𝑜𝑠 [

𝜋

2
(

𝑧

ℎ
−

1

2
)]]  (6b) 

 

2.3 Nonlocal differential constitutive equations 
  
Nonlocal elasticity assumed that the stress at a specified  

 

 
 

Fig. 3 Decreasing of porosity distribution upwards Model 3, 

Thang et al. (2018) 

point is a functional of strain field around this point with a 

certain distance. The integral nonlocal equation can be 

portrayed as, Eltaher et al. (2018c, d) 

𝜎𝑖𝑗(𝑥) = ∫ 𝛼(|𝑥′ − 𝑥|, 𝜏)Tij(𝑥′)d𝑥′

𝑉
  (7) 

In which Tij(𝑥′) are the macroscopic stress tensor at point 

𝑥  and 𝛼(|𝑥′ − 𝑥|, 𝜏)  is nonlocal modulus function that 

represents the effect of interatomic bonding. 𝜏 isa material 

length scale constant. The macroscopic stress tensor can be 

described as a function of material elasticity tensor (𝐶) 

and strain (𝜀) by generalized Hooke’s law as 

t(𝑥) = 𝐶(𝑥): 𝜀(𝑥) (8) 

In (1983) Eringen proved that when nonlocal modulus 

described by a Green’s function, the nonlocal constitutive 

relation can be reduced to the differential form as 

[1 − (𝑒0𝑎)2 ∇2]𝜎𝑖𝑗 = 𝑡𝑖𝑗 (9) 

where𝑒0 is a constant to match the reliable results by 

experiments,𝑎 is the internallength scale, and ∇2  is the 

Laplacian operator. For one-dimensional nonlocal 

nanobeam, nonlocal constitute relation Eq. (9) can be 

written as, Eltaher et al. (2018 c, d) 

𝜎𝑥𝑥 − 𝜇
𝜕2𝜎𝑥𝑥

𝜕𝑥2 = 𝐸𝜀𝑥𝑥;  [𝜇 = (𝑒0𝑎)2] (10) 

 
2.4 Governing equation of motion   
 
Based on the Euler-Bernoulli theory, where plane 

sections perpendicular to the neutral axis of the beam before 

deformation remain plane and rigid, and rotate such that 

they remain perpendicular to the neutral axis after 

deformation. The displacement field can be assumed as 

𝑢(𝑥, 𝑧) = 𝑢0(𝑥) − 𝑧
𝑑𝑤0(𝑥)

𝑑𝑥
  (11a) 

𝑤(𝑥, 𝑧) = 𝑤0(𝑥)  (11b) 

where 𝑢  and 𝑤  are the total displacements along the 

coordinate (𝑥) , and 𝑢0  and 𝑤0  denote the axial and 

transverse displacements of a point on the neutral axis. 

According to Euler theory, the only nonzero strain is 

𝜀𝑥𝑥(𝑥, 𝑧) =
𝑑

𝑑𝑥
[𝑢0(𝑥) − 𝑧

𝑑𝑤0(𝑥)

𝑑𝑥
] =

𝑑𝑢0(𝑥)

𝑑𝑥
−

𝑧
𝑑2𝑤0(𝑥)

𝑑𝑥2 = 𝜀𝑥𝑥
0 + 𝑧𝜀𝑥𝑥

1   
(12) 

The nonzero classical stress can be presented by  

𝜎𝑥𝑥(𝑥, 𝑧) = 𝐸(𝑧)𝜀𝑥𝑥(𝑥, 𝑧) = 𝐸(𝑧)[𝜀𝑥𝑥
0 + 𝑧𝜀𝑥𝑥

1 ] (13) 

The Axial and bending moment can be written as 

𝑁𝑥𝑥 = ∫ 𝜎𝑥𝑥𝑑𝐴
𝐴

= 𝐴11𝜀𝑥𝑥
0 + 𝐵11𝜀𝑥𝑥

1   (14a) 
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𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

= 𝐵11𝜀𝑥𝑥
0 + 𝐷11𝜀𝑥𝑥

1   (14b) 

Where 

[𝐴11, 𝐵11, 𝐷11] = 𝑏 ∫𝐸(𝑧) [1, 𝑧,  𝑧2]𝑑𝑧
ℎ

 

               = 𝑏 ∫ 𝐸1(𝑧) [1, 𝑧,  𝑧2]𝑑𝑧
ℎ

2

−
ℎ

2

   

(15) 

and the nonlocal axial force and bending moment can be 

derived from Eq. (10) by product it by 1 and z then 

integrate over cross sectional area, results  

𝑁 − 𝜇
𝜕2𝑁

𝜕𝑥2 = 𝐴11𝜀𝑥𝑥
0 + 𝐵11𝜀𝑥𝑥

1   (16a) 

𝑀 − 𝜇
𝜕2𝑀

𝜕𝑥2 = 𝐵11𝜀𝑥𝑥
0 + 𝐷11𝜀𝑥𝑥

1   (16b) 

Using Hamilton’s principle, the equation of motion of a FG 

porous nonlocal nanobeam can be derived as follows  

𝐴11
𝜕2𝑢0

𝜕𝑥2 + 𝐵11
𝜕3𝑤𝑜

𝜕𝑥3 + (1 − 𝜇
𝜕2

𝜕𝑥2) 𝑓 = 𝐼0
𝜕2𝑢0

𝜕𝑡2 −

𝐼1
𝜕3𝑤0

𝜕𝑡2𝜕𝑥
− 𝜇 [ 𝐼0

𝜕4𝑢0

𝜕𝑡2𝜕𝑥2 − 𝐼1
𝜕5𝑤0

𝜕𝑡2𝜕𝑥3]  
(17a) 

𝐵11 (
𝑑3𝑢0

𝑑𝑥3 ) +𝐷11
𝑑4𝑤0

𝑑𝑥4 + (1 − 𝜇
𝜕2

𝜕𝑥2) 𝑞 + (1 −

𝜇
𝜕2

𝜕𝑥2) (�̅�
𝜕2𝑤0

𝜕𝑥2 ) = (1 − 𝜇
𝜕2

𝜕𝑥2) [𝐼0
𝜕2𝑤0

𝜕𝑡2 + 𝐼1
𝜕3𝑢0

𝜕𝑡2𝜕𝑥
−

𝐼2
𝜕4𝑤0

𝜕𝑡2𝜕𝑥2]  

(17b) 

where 𝑓 is the axial distributed force in x-direction, 𝑞 is 

the transverse distributed force in z-direction, and �̅� is the 

axial compressive load applied at the neutral axis and 

normal to the cross section. Inertia terms 𝐼0, 𝐼1, and 𝐼2 are 

described by  

[𝐼0, 𝐼1, 𝐼2] = 𝑏 ∫ 𝜌(𝑧) [1, 𝑧,  𝑧2]𝑑𝑧
ℎ

  (18) 

 

 

3. Numerical formulation  
 

The displacement components at the mid-plane (that is 

coincident with neutral plane in the current material 

distributions) of a beam element can be described as, 

Eltaher et al. (2013)  

In-plane displacement 𝑢0   

𝑢0
(𝑒)(𝑥, 𝑡) = ∑ 𝑁𝑖𝑈𝑖(𝑡)2

𝑖=1 = 𝑁1𝑈1(𝑡) + 𝑁2𝑈2(𝑡)  

where 𝑖 = 1,2 
(19a) 

Transverse displacement 𝑤𝑜 

w0
(e)(x, t) = ∑ ÑkW̃k

4

k=1
 

= Ñ1𝑊1 + Ñ2𝜃1 + Ñ3𝑊2 + Ñ4𝜃2  

(19b) 

where 𝑈, 𝑊 and 𝜃 are the nodal displacements and slope, 

respectively. 𝑁𝑖  is the Lagrangian interpolation function 

for in plane displacement, and �̃�k  is Hermetian 

interpolation shape function for transverse displacements. 

The variational form of the nonlocal Euler-Bernoulli beam 

is 

∫ ∫ {([− ∫ 𝐸1(𝑧)𝑑𝑧
0

−
ℎ

2

− ∫ 𝐸2(𝑧)𝑑𝑧
ℎ

2
0

]
𝜕𝑢0

𝜕𝑥

𝜕𝛿𝑢0

𝜕𝑥
+

𝐿

0

𝑇

0

[∫ 𝑧𝐸1(𝑧)𝑑𝑧
0

−
ℎ

2

+ ∫ 𝑧𝐸2(𝑧)𝑑𝑧
ℎ

2
0

]
𝜕2𝑤𝑜

𝜕𝑥2

𝜕𝛿𝑢0

𝜕𝑥
+

 [∫ 𝑧𝐸1(𝑧)𝑑𝑧
0

−
ℎ

2

+ ∫ 𝑧𝐸2(𝑧)𝑑𝑧
ℎ

2
0

]
𝜕𝑢0

𝜕𝑥

𝜕2𝛿𝑤0

𝜕𝑥2 +

[− ∫ 𝑧2𝐸1(𝑧)𝑑𝑧
0

−
ℎ

2

− − ∫ 𝑧2𝐸2(𝑧)𝑑𝑧
ℎ

2
0

]
𝜕2𝑤0

𝜕𝑥2

𝜕2𝛿𝑤0

𝜕𝑥2
) +

(𝑓𝛿𝑢0 + 𝜇
𝜕𝑓

𝜕𝑥

𝜕𝛿𝑢0

𝜕𝑥
) + (𝑞𝛿𝑤0 − 𝜇𝑞

𝜕2𝛿𝑤0

𝜕𝑥2 ) +

(�̅�
𝜕𝑤0

𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑥
− 𝜇�̅�

𝜕2𝑤0

𝜕𝑥2

𝜕2𝛿𝑤0

𝜕𝑥2 ) + (𝐼0
𝜕𝑢0

𝜕𝑡

𝜕𝛿𝑢0

𝜕𝑡
−

𝜇𝐼0
𝜕3𝑢0

𝜕𝑡2𝜕𝑥

𝜕𝛿𝑢0

𝜕𝑥
) + (𝐼0

𝜕𝑤0

𝜕𝑡

𝜕𝛿𝑤0

𝜕𝑡
+ 𝜇𝐼0

𝜕2𝑤0

𝜕𝑡2

𝜕2𝛿𝑤0

𝜕𝑥2 +

𝐼2
𝜕2𝑤0

𝜕𝑡𝜕𝑥

𝜕2𝛿𝑤0

𝜕𝑡𝜕𝑥
− 𝜇𝐼2

𝜕4𝑤0

𝜕𝑡2𝜕𝑥2

𝜕2𝛿𝑤0

𝜕𝑥2 ) + (𝐼1
𝜕2𝑢0

𝜕𝑡𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑡
+

𝜇𝐼1
𝜕3𝑢0

𝜕𝑡2𝜕𝑥

𝜕2𝛿𝑤0

𝜕𝑥2 − 𝐼1
𝜕2𝑤0

𝜕𝑡𝜕𝑥

𝜕𝛿𝑢0

𝜕𝑡
+

𝐼1𝜇
𝜕4𝑤0

𝜕𝑡2𝜕𝑥2

𝜕𝛿𝑢0

𝜕𝑥
)} 𝑑𝑥𝑑𝑡 + ∫ [�̅�𝐵 𝛿𝑢0 + �̅�𝐵 𝛿𝑤0 +

𝑡

0

�̅�𝐵 
𝜕𝛿𝑤0

𝜕𝑥
]

0

𝐿

𝑑𝑡 = 0    

(20) 

By substituting Eqs. (19) into Eq. (20) and integrating 

over the domain, the equation of motion is derived as 

(M𝑙 + 𝜇M𝑛𝑙) �̈� + 𝐾𝑠 𝑌 + 𝐾𝐺Y = 𝐹 + 𝑄 (21) 

where M𝑙 and M𝑛𝑙 are local and nonlocal mass matrices, 

respectively. 𝐾𝑠 is the stiffness matrix of the FG beam, 𝐾𝐺 

is the geometrical stiffness matrix, 𝑌 is the generalized 

displacement vector, 𝐹  and 𝑄  are the distributed force 

vector and the concentrated force vector, respectively. The 

element matrices and force vectors are described as follows:  

The mass matrices are represented by  

𝑀𝑙 = ∫ 𝐼0𝑁𝑖𝑁𝑗

𝑙

0
 𝑑𝑥 + ∫ (𝐼0ÑkÑl + 𝐼2

𝜕Ñk

𝜕𝑥

𝜕Ñl

𝜕𝑥
)

𝑙

0

 𝑑𝑥 +

∫ (𝐼1
𝜕𝑁𝑖

𝜕𝑥
Ñl + 𝐼1

𝜕2Ñl

𝜕𝑥2 𝑁𝑖)
𝑙

0

 𝑑𝑥  

(22a) 

𝑀𝑛𝑙 = − ∫ 𝐼0
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥

𝑙

0

 𝑑𝑥 + ∫ (𝐼0Ñk
𝜕2Ñl

𝜕𝑥2 −
𝑙

0

𝐼2
𝜕2Ñk

𝜕𝑥2

𝜕2Ñl

𝜕𝑥2 )  𝑑𝑥 + ∫ (𝐼1
𝜕𝑁𝑖

𝜕𝑥

𝜕2Ñl

𝜕𝑥2 + 𝐼1
𝜕2Ñl

𝜕𝑥2

𝜕𝑁𝑖

𝜕𝑥
)

𝑙

0

 𝑑𝑥  

(22b) 

The element stiffness matrix can be calculated by  

𝐾𝑢 = ∫ [− ∫ 𝐸1(𝑧)𝑑𝑧
0

−
ℎ

2

− ∫ 𝐸2(𝑧)𝑑𝑧
ℎ

2
0

]
𝑙

0

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
𝑑𝑥    

where    𝑖 and 𝑗 =1,2  

(22c) 

𝐾𝑤 = ∫ [− ∫ 𝑧2𝐸1(𝑧)𝑑𝑧
0

−
ℎ

2

− ∫ 𝑧2𝐸2(𝑧)𝑑𝑧
ℎ

2
0

]
𝑙

0

𝜕Ñk

𝜕𝑥

𝜕Ñl

𝜕𝑥
𝑑𝑥    (22d) 
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where  𝑘 and 𝑙 =1,2,3,4 

𝐾𝑢𝑤 = ∫ [∫ 𝑧𝐸1(𝑧)𝑑𝑧
0

−
ℎ

2

+
𝑙

0

∫ 𝑧𝐸2(𝑧)𝑑𝑧
ℎ

2
0

]
𝜕2Ñk

𝜕𝑥2

𝜕𝑁𝑖

𝜕𝑥
𝑑𝑥 + ∫ [∫ 𝑧𝐸1(𝑧)𝑑𝑧

0

−
ℎ

2

+
𝑙

0

∫ 𝑧𝐸2(𝑧)𝑑𝑧
ℎ

2
0

]
𝜕𝑁𝑖

𝜕𝑥

𝜕2Ñk

𝜕𝑥2 𝑑  

(22e) 

𝐾𝑠 = 𝐾𝑢 + 𝐾𝑤 + +𝐾𝑢𝑤 (22f) 

The element geometrical stiffness matrix is represented 

by  

𝐾𝐺 = ∫ [−�̅�
𝜕Ñk

𝜕𝑥

𝜕Ñl

𝜕𝑥
+ 𝜇 �̅�

𝜕2Ñk

𝜕𝑥2

𝜕2Ñl

𝜕𝑥2 ] 𝑑𝑥
𝐿

0

  (22g) 

The force vector is given by 

𝐹 = 𝑞 ∫ [Ñk − 𝜇
𝜕2Ñk

𝜕𝑥2 ]  𝑑𝑥
𝐿

0

+ ∫ [𝑓𝑁𝑖 +
𝐿

0

𝜇
𝜕𝑓

𝜕𝑥

𝜕𝑁𝑖

𝜕𝑥
]  𝑑𝑥  

(22h) 

 
 
4. Numerical results   

 
Through this section, parametric studies are presented to 

illustrate effects of porosity models, porosity parameter, 

material gradation parameter, and nonlocal size-scale on the 

first five natural frequencies of FG porous nanobeam.  

Through this analysis, the constituent materials of the FG 

beam in the present study are steel metal and ceramic is 

alumina, whose properties are presented in Table 1. The 

thickness of FG porous nanobeam is 100 nm, however, the 

length and with are assumed to be 100 h and 10 h. 

 

 

 

 
 

Fig. 4 Illustrate the geometrical dimension of simply-

supported FG nanobeam structure , Eltaher et al. (2018b)  

 

 

Table 1 Material properties of FGM constituents 

Properties Steel (metal) Alumina (Al2O3) 

(ceramic) 

𝐸 (GPa) 210 390 

𝜌 (kg/m3) 7800 3960 

𝜐 0.3 0.3 

 

 

In free vibration analysis, the eigenvalue problems are 

solved using the following relations   

[𝐾]{�̅�} = 𝜔2[𝑀]{�̅�} (23) 

where {�̅�}  represents the eigenvectors, 𝜆  are the 

eigenvalues (critical buckling loads), and 𝜔2  are the 

eigenvalues (natural frequencies) of the dynamic system. 

The nondimensional natural frequency is calculated 

according to the formula, 𝑤𝑖 = 𝜔𝑖
2𝐿2√

𝜌𝑐𝐴

𝐸𝑐𝐼
 .     

 

4.1 Model validation  
 
To validate this model, the nonlocal elasticity model is 

compared by results obtained by Reddy (2007), for 

isotropic material. As shown, the current results are 

identical as obtained by Redd (2007). 

 

4.2 Effect of gradation parameter   
 

The effect of gradation parameter on the first five 

natural frequencies of FG porous beam for different 

porosity models is presented in Figs. (5-9). As shown, by 

increasing gradation parameter the natural frequencies 

decreased sharply through a range of 0 ≤ 𝑘 ≤ 2. After that, 

approximately linear decreasing of the natural frequencies 

with a small rate is observed in case of  2 ≤ 𝑘, for all 

porosity model.  

 

 

 
 

Fig. 5 Gradation Parameter Effect on the 1st natural 

frequencies for different porosity models at α=0.2 and μ=0 

 

 

Table 2 The first natural frequency for isotopic material 

with different nonlocal parameter at L/h=10 

𝜇 Reddy (2007) Obtained Results 

0 9.8696 9.8696 

1 9.4159 9.4159 

2 9.01495 9.0195 

3 8.6693 8.6693 

4 8.3569 8.3569 
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Fig. 6 Gradation Parameter Effect on the 2nd natural 

frequencies for different porosity models at α=0.2 and μ=0 

 

 
 

 
 

Fig. 7 Gradation Parameter Effect on the 3rd natural 

frequencies for different porosity models at α=0.2 and μ=0 

 

 

 
 

Fig. 8 Gradation Parameter Effect on the 4th natural 

frequencies for different porosity models at α=0.2 and μ=0 

 

 

 
 

Fig. 9 Gradation Parameter Effect on the 5th natural 

frequencies for different porosity models at α=0.2 and μ=0 

 

 

It is predicted from the figure that, natural frequencies for 

the first porosity model (uniform distribution) is the highest 

one in case of 𝑘 ≤ 1 and, it is the lowest frequencies in the 

range of 1 ≤ 𝑘. The natural frequency for porosity model 2 

(symmetric distribution with mid-plane) is the highest one 

comparable by the other models if the gradation index 

greater than 1. 

 

4.3 Effect of porosity parameter  
   
The influence of porosity parameter on the first fife 

natural frequencies of FG porous nanobeam is illustrated in 

Figs. (10-14). At the beginning, all models have the same 

natural frequencies because the beam is fully without any 

porosity at 𝛼 = 0, and all models become the same. After 

that, there different phenomena. As shown porosity 

parameter has different effects on the frequencies of 

nanobeam according to the porosity model and mode 

number. As a case in hand, for the first natural frequency as 

depicted in Fig. 10, the neutral frequency decreased by 

increasing the porosity parameter for the uniform porosity 

distribution (Model 1). However, it has opposite effect in 

case of symmetric distribution through mid-plane, i.e., the 

1st natural frequency is increased proportionally with 

increasing the porosity parameter for model 2. For these 

two models, the porosity parameter has the same effect on 

the natural frequencies for the higher modes. In case of 

model 3, the first natural frequency is increased by 

increasing the porosity parameter. However, the higher 

frequencies are insignificant for the variation of porosity 

parameter. In case for, the first natural frequency decreases 

with increasing the porosity parameter and the higher 

frequencies remain constant by changing the porosity 

parameter. The highest natural frequencies are observed for 

model 2, and lowest natural frequencies are noticed for 

model 1. The natural frequencies for model 3 and model 4 

are close to each other, as depicted in Figs. (11-14).   
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Fig. 10. Porosity parameter effect on the 1st natural 

frequencies for different porosity models at k=3.0 and μ=0 

 

 
 

Fig. 11 Porosity parameter effect on the 2nd natural 

frequencies for different porosity models at k=3.0 and μ=0 

 

 

 
 

Fig. 12. Porosity parameter effect on the 3rd natural 

frequencies for different porosity models at k=3.0 and μ=0 

 

 
 

Fig. 13 Porosity parameter effect on the 4th natural 

frequencies for different porosity models at k=3.0 and μ=0 

 

 

 

 
 

Fig. 14 Porosity parameter effect on the 5th natural 

frequencies for different porosity models at k=3.0 and μ=0 

 

 

 

4.4 Nonlocal size-scale effect 
     

The effects of nonlocal scale parameter on the 1st natural 

frequency of porous FG nanobeam for different gradation 

parameter as presented in Figs. (15-18). As shown in Fig. 11 

for model 1, the effect of length scale is insignificant on the 

1st natural frequency in the range of 𝑘 ≤ 1. By increasing 

the gradation parameter more than 1, the effect of nanoscale 

on the natural frequency becomes significant and tends to 

decrease the natural frequency by increasing its value.  For 

other porosity models, shown in Figs. (16-18), by 

increasing the nonlocal parameter, the 1st natural frequency 

decreases gradually for any value of gradation parameter. It 

can conclude that, the nonlocal parameter tends to soften 

the material and thus decreasing its natural frequency. 
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Fig. 15 Effect of nonlocal scale parameter on the 1st natural 

frequency of porous FG nanobeam α=0.2 for the porosity of 

model 1 

 

 
 

Fig. 16 Effect of nonlocal scale parameter on the 1st natural 

frequency of porous FG nanobeam α=0.2 for the porosity of 

model 2 

 

 
 

Fig. 17 Effect of nonlocal scale parameter on the 1st natural 

frequency of porous FG nanobeam α=0.2 for the porosity of 

model 3 

 

 
 

Fig. 18 Effect of nonlocal scale parameter on the 1st natural 

frequency of porous FG nanobeam α=0.2 for the porosity of 

model 4 

 

 

5. Conclusions 
 

In the framework of continuum mechanics, the free 

vibration of functional graded porous nanobeam is 

investigated. Different porosity models, such as uniform 

porosity distribution, symmetric with mid-plane, bottom 

surface distribution and top surface distribution, are 

proposed through analysis. Modified continuum model is 

adopted by include nano-scale effect by nonlocal Eringen 

theory. The mathematical model is solved numerically using 

the finite element method.  The most findings of the 

current analysis can be summarized as: -. 

 By increasing gradation parameter, the natural 

frequencies decreased sharply through a range of 

0 ≤ 𝑘 ≤ 2 . After that, approximately linear 

decreasing of the natural frequencies with a small 

rate is observed in case of  2 ≤ 𝑘. 

 Natural frequencies for the first porosity model 

(uniform distribution) is the highest one in case of 

𝑘 ≤ 1 and, it is the lowest frequencies in the range 

of 1 ≤ 𝑘. 

 The natural frequency for porosity model 2 

(symmetric distribution with mid-plane) is the 

highest one comparable by the other models if the 

gradation index greater than 1 

 Porosity parameter has different effects on the 

frequencies of nanobeam according to the porosity 

model and mode number. 

 The nonlocal parameter tends to soften the 

material and thus decreasing its natural frequency. 
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