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1. Introduction 
 

The generalized theories of thermoelasticity, which 

admit the finite speed of the thermal signal, were the center 

of interest of active research during the last three decades. 

Biot (1956) introduced the theory of coupled thermo-

elasticity to overcome the first shortcoming in the classical 

uncoupled theory of thermoelasticity where it predicts two 

phenomena not compatible with physical observations. The 

generalized thermoelastic theories were introduced by Lord 

and Shulman (1967) and Green and Lindsay (1972) in the 

1960s. The L-S theory postulated a wave-type heat 

conduction law to replace the classical Fourier's law. This 

law is the same as that suggested by Cattaneo (1958) and 

Vernote (1961). It contains the heat flux vector as well as its 

time derivative and also contains a new constant that acts as 

relaxation time. In the context of the Lord-Shulman (L-S) 

theory, the generalized thermoelastic problem with 

temperature dependent properties was studied by He et al. 

(2013). The (G-L) theory modified the energy equation and 

allows two relaxation times. Several authors have studied 

several problems of thermoelasticity Alimirzaei et al. 

(2019), Bhatti et al. (2020), Karami et al. (2019), Lata et al. 

(2016), Lata et al. (2019). Three new thermoelastic theories 

based on entropy equality rather than the usual entropy 

inequality introduced by Green and Naghdi (1991, 1992, 

1993). The constitutive assumptions for the heat flux vector 

are different in each theory. Thus, they obtained three 

theories that they called thermoelasticity of type I, of type II 

and of type III. When the theory of type I is linearized, one  
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can obtain the classical system of thermoelasticity. The 

theory of type II (a limiting case of type III) does not admit 

energy dissipation. The Green-Naghdi theory, has attracted 

a lot of attention in the recent years Othman and Atwa 

(2012), Sarkar et al. (2020), Othman et al. (2015). Ezzat 

and El-Bary (2017) studied fractional magneto-

thermoelastic materials with phase-lag Green-Naghdi 

theories. Hosseini (2020 investigated a GN-based modified 

model for size-dependent coupled thermoelasticity analysis 

in nano-scale, considering non-locality in heat conduction 

and elasticity: An analytical solution for a nanobeam with 

energy dissipation. Lata and Singh (2019) explained the 

effect of nonlocal parameter on nonlocal thermoelastic solid 

due to inclined load. Kumar et al. (2016a) investigated the 

thermo-mechanical interactions in a transversely isotropic 

magneto-thermoelastic with and without energy dissipation 

with the combined effects of rotation, vacuum and two 

temperatures. Kumar et al. (2016b) studied the effects of 

Hall current in a transversely isotropic magneto-

thermoelastic two temperature medium with rotation and 

with and without energy dissipation due to normal force. 

Kumar et al. (2017) discussed the effects of Hall current 

and two temperatures in transversely isotropic magneto-

thermoelastic with and without energy dissipation due to 

Ramp type heat. 

Diffusion can be defined as the movement of particles 

from an area of high concentration to an area of lower 

concentration until equilibrium is reached. It occurs as a 

result of the second law of thermodynamics, which states 

that the entropy or disorder of any system must always 

increase with time. Diffusion is important in many life 

processes. There is now a great deal of interest in the study 

of this phenomenon, due to its many applications in 
geophysics and industrial applications. In an integrated 

circuit fabrication, diffusion is used to introduce dopants in 

controlled amounts into the semiconductor substrate. In 

particular, diffusion is used to form the base and emitter in 
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bipolar transistors, form integrated resistors, form the 

source/drain regions in MOS transistors and dope poly-

silicon gates in MOS transistors. In most of these 

applications, the concentration is calculated using what is 

known as Fick’s law. This is a simple law that does not take 

into consideration the mutual interaction between the 

introduced substance and the medium into which it is 

introduced or the effect of the temperature on this 

interaction. The phenomenon of diffusion is used to 

improve the conditions of oil extractions (seeking ways of 

more efficiently recovering oil from oil deposits). These 

days, oil companies are interested in the process of thermo-

elastic diffusion for more efficient extraction of oil from oil 

deposits. The thermo-diffusion process also helps the 

investigation in the field associated with the advent of 

semiconductor devices and the advancement of micro-

electronics.  
Thermo-diffusion in the solids is one of the transport 

processes that have great practical importance. Most of the 

research associated with the presence of concentration and 

temperature gradients has been made with metals and alloys. 

Thermo-diffusion in an elastic solid is due to the coupling 

of the fields of temperature, mass diffusion and that of 

strain. Heat and mass were exchanged with the environment 

during the process of thermo-diffusion in an elastic solid. 

The concept of thermo-diffusion is used to describe the 

processes of thermomechanical treatment of metals 

(carbonizing, nitriding steel, etc.) and these processes are 

thermally activated, their diffusing substances being, e.g., 

nitrogen, carbon, etc. They are accompanied by 

deformations of the solid. Othman et al. (2009) studied the 

effect of diffusion on the two-dimensional problem of 

generalized thermoelasticity with Green and Naghdi theory. 

Othman et al. (2013) discussed the effect of fractional 

parameter on plane waves of generalized thermoelastic 

diffusion with reference temperature-dependent elastic 

medium. Recently, Kumar and Kumar (2015) introduced 2-

D deformation in a homogeneous micro-stretch thermo-

elastic medium with mass diffusion due to mechanical 

forces. He et al. (2015) worked on the dynamic response of 

a 2-D generalized thermoelastic diffusion problem for a 

half-space is investigated in the context of the generalized 

thermoelastic diffusion theory.   

The so-called ultra-short lasers are those with pulse 

duration ranging from nanoseconds to femtoseconds. In the 

case of ultra-short-pulsed laser heating, the high-intensity 

energy flux and ultra-short duration laser beam have 

introduced situations where very large thermal gradients or 

an ultra-high heating rate may exist on the boundaries in Al-

Qahtani and Datta (2008). Various research work related to 

the problem can be seen in the list of references (Sun et al. 

2008, Ronghou et al. 2014, Marin 2010, Marin et al. 2015, 

Marin et al. 2017, Marin et al. 2019, Tounsi et al. 2020, 

Zarga et al. 2019).  

The present investigation is devoted to the study of the 

effect of thermal loading due to laser pulse on the general 

three-dimensional model of the equations of the generalized 

thermoelasticity with diffusion for a homogeneous isotropic 

elastic half-space solid in the context of G-L theory without 

any body forces or heat sources. The problem has been 

solved numerically using a normal mode analysis. 

Numerical results for the displacement, thermal stress, 

strain, temperature, chemical potential, and mass 

concentration, with and without laser pulses, are 

represented graphically. 

 

 

2. Governing equations and formulation of the 
problem 

 

The governing equations of an isotropic and homo-

geneous elastic medium with generalized thermoelastic 

diffusion in the context of (G-L) theory in the absence of 

body forces are as Othman et al. (2009) 

 

2.1 The constitutive relations 
 

0 , 1 12 [ (1 ) (1 ) ] ,ij ij kk i ije e T C
t t

       
 

     
 

  (1) 

1 1 0 1 1(1 ) (1 ) .kkP e a T b C
t t

  
 

     
 

  (2) 

 

 
2.2 The equation of motion 

 

, , 0 , 1 1 ,( ) (1 ) (1 ) .i j ij i jj i iu u u T C
t t

       
 

      
 

 (3) 

 

2.3 The equation of heat conduction  
 

, 0 0 1 0 1(1 ) (1 ) .ii E kkKT C T T e aT C Q
t t

    
 

     
 

 (4) 

 

2.4 The equation of mass diffusion 
 

1 , 1 0 , 1 1 ,(1 ) (1 ) 0.kk ii ii iid e d a T C db C
t t

  
 

     
 

 (5) 

 

2.5 The strain-displacement relation 
 

, ,

1
( ).

2
ij i j j ie u u   (6) 

In the preceding equations, ,   are  Lame' constants,  

ρ is the density, 0  and 0  are the thermal relaxation times 

such that 0 0 0   , 1  and 1  are the diffusion 

relaxation times such that 1 1 0   ,  1a  is the measure of 

thermo-diffusion effect, 1b  is the measure of diffusive 

effect, d  is the thermoelastic diffusion constant, C  is the 

concentration of diffusive material in the elastic, P  is the 

chemical potential, ij  are the components of the stress 

tensor, t  is the time variable,   is a material constant given 

by
 

(3 2 ) ,T     where T is the coefficient of linear 

thermal expansion, 1 (3 2 ) ,c      where c  is the 

coefficient of linear diffusion expansion, K  is the thermal 

conductivity, EC  is the specific heat at constant strain, T  is 
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the absolute temperature, and 0T  is the temperature of the 

medium in its natural state, assumed to be such that 

0 0( ) / 1T T T - , Q  is the heat input of the laser pulse. 

We will consider that the plate surface is illuminated by 

a laser pulse given by the heat input as Al-Qahtani and 

Datta (2008) and Tang and Araki (1999) 

0 ( ) ( ) ( ),Q I f t g y h x  (7) 

where 0I  is the energy absorbed, the temporal profile ( )f t  

is represented as 

2
00

( ) exp( ),
t t

f t
tt

   (8) 

where 0t  is the pulse rise time. The pulse is also  

2

2 2

1
( ) exp( ),

2

y
g y

r r
   (9) 

where r  is the beam radius, and as a function of the depth 

x the heat deposition due to the laser pulse is assumed to 

decay exponentially within the solid 

( ) e .xh x            (10) 

From Eqs. (6)-(8) in Eq. (5) we get 
2

0

2 2 2
00

exp( )exp( ).
2

I t y t
Q x

tr t r





   

 

(11) 

We can rewrite the equation of motion as 

2
2

12
( ) ,T c

u e T C
u

x x xt
     
   

     
  

 (12) 

2
2

12
( ) ,T c

v e T C
v

y y yt
      
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     
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(13) 

2
2

12
( ) ,T c

e T C
w

z z zt

w
     
   

     
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(14) 

where 0(1 )T
t

 


 


 and 1(1 ),c
t

 


 


 and the 

conduction equation takes the form 

2
0 1 0 ,E T c

T e C
K T C T aT Q

t t t
    

  
    
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    (15) 

where 0(1 )T
t

 


 


 and 1(1 ).c
t

 


 


 

The constitutive equations can be written as 

12 ,xx T c

u
e T C

x
     


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
 (16) 

12 ,yy T c

v
e T C

y
    


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  
(17) 

12 ,zz T c

w
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z
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
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
 

(18) 

( ),xy

u v

y x
 

 
 

   
(19) 

( ),xz

u w

z x
 

 
 
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(20) 

( ),yz
v w

z y
 

 
 

   
(21) 

.
u v w

e
x y z

  
  
    

(22) 

For simplifications we will use the following non-

dimensional variables 

1

1 0

( , , ) ( , , ), ( , , ) ( , , ),
C

x y z x y z u v w u v w
C T
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
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 
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1
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2
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T
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
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 
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1
0 0 1 1 0 0 1 1
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C
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2

1
0

( 2 )
, ,

E
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T C

 

 


   

2
1 .EC C

K


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(23) 

Eqs. (12)-(21) in the non-dimensional forms (after 

suppressing the primes) reduce to 
2

2

2
(1 ) ,T c

e T C u
u

x x x t
   
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2
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(33) 

where
2 2 2

2 1 0
22 2 2

1

,  ,  .
( 2 ) E

a T

Cx y z


 

   

  
     
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From Eqs. (28)-(30) by addition, we get 

,T ce T C       (34) 

where  ( ) 3,        (3 4 ) 3.xx yy zz           

From (23) into (2) and (5) we get 

3 4 ,c TP e C T        (35) 
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C
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
      

  
(36) 

where 
2
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E
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
 

 
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From Eqs. (24)-(26) after using Eq. (22) we can get 

2
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   .T c

e
e T C

t
 
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(37) 

Eliminating e  from Eqs. (27), (36) and (37) by using Eq. 

(34), we obtain 
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(40

) 

 

 

3. The solution of the problem 
 

The solution of the considered physical variables can be 

written in terms of normal modes as in the following form 

( , , , , , , , )( , , , )iju v w e T C P x y z t

 
* * * * * * **( , , , , , , , )( )exp[ ( )],iju v w e T C P x t i ay bz       

 

(41) 

where  1,    i   is the angular frequency and a, b are 

the wave numbers in the y and z-directions respectively. 

Using Eq. (41) into Eqs. (38)-(40), we can obtain the 

following equations  

2 * * *
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Eliminating * *,T  and *C  between Eqs. (42)-(44), we get 

the following two sixth order ordinary differential equations 
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21 2 12 1 4 10 ,A A A A A A   2

22 11 12( ).A A A   

Eq. (38) can be factored as 

2 2 2 2 2 2 *

1 2 3(D )(D )(D ) ( )k k k T x    

1 0 ( , , )exp( ),B Q f y z t x               
(47) 

where ( 1,2,3)ik i   are the roots of the characteristic 

equation of Eq. (45). 

We can consider the general solution of Eqs. (45) and (46) 

bound at infinity in the form 

2
*

1 0
1

( ) exp( ) ( , , )exp( ),i i
i

T x M k x AB Q f y z t x


     (48) 

2
*

2 0
1

( ) exp( ) ( , , )exp( ),i i i
i

x H M k x AB Q f y z t x 


   

 

(49) 

where   
6 4 2

1 2 3

1
A

L L L  


  
,   

4 2
8 15 16

2
14 13

;i i
i

i

A k A k A
H

A A k

 



 

( 1,2,3).i   

From Eqs. (48), (49) into (42) we get 

3
*

3 0
1

( ) exp( ) ( , , )exp( ),i i i
i

C x G M k x B Q f y z t x


      (50) 

where   

8 19 13 9 15 18 11 14
1

18 8 11 13

,
A A A A A A A A

L
A A A A

  



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2 2
2 1 3 2 2 3

3
4 4

1 ( )
,  ,  ( 1,2,3).i i

i

A AB A AB k A A H
B G i

A A

    
     

From Eqs. (48)-(50) into (34), (35) we obtain 

3
*

4 0
1

( ) exp( ) ( , , )exp( ),i i i
i

P x R M k x B Q f y z t x


     (51) 

3
*

5 0
1

( ) exp( ) ( , , )exp( ),i i
i

ie x N M k x B Q f y z t x


   

 

(52) 

where   

23 22 , , ( 1,2,3),i i i c i T
i i

H A G A H G
R N i  

 

    
     

2 1 22 23 3 2 1 3
4 5,  ,T cAB AB A A B AB AB B

B B   

 

    
 

 

22 4A (1 ) ,T   23 3A (1 ) .c    

 
 

4. Applications 
 
In order to complete the solution we have to know the 

parameters ,iM so we will consider the following boundary 

conditions at 0 :x   

 

4.1 Mechanical boundary condition that the bounding 

plane to the surface has no traction anywhere and has no 

variation of concentration, so we have 

(0, , , ) (0, , , ) (0, , , ) 0,xx yyy z t y z t y z t      

(0, , , ) 0, 0.zz

C
y z t

x



 


      

(53) 

4.2 The thermal boundary condition is that the surface 

of the half-space is subjected to a thermal shock 

*(0, , , ) (0, , , ) exp[ ( )].T y z t s y z t s t i ay bz      (54) 

From the above boundary conditions together with Eqs. 

(48)-(50), we get 

*
1 2 3 ,M M M s    (55) 

1 1 2 2 3 3 0,H M H M H M  
 (56) 

1 1 1 2 2 2 3 3 3 0.k G M k G M k G M    (57) 

Solving Eqs. (55)-(57), we obtain  

31 2
1 2 3   ,       ,       ,M M M

 
  
  

 (58) 

where  

2 3 3 3 2 2 3 1 1 1 3 3 1 2 2 2 1 1.H k G H k G H k G H k G H k G H k G        
* *

1 2 3 3 3 2 2 2 3 1 1 1 3 3( ),  ( ),s H k G H k G s H k G H k G       

*
3 1 2 2 2 1 1( ).s H k G H k G    

From Eqs. (48)-(50) into (24) after using (41) we get 

2 3
2 *

42
1

d
( ) exp( ) exp( )
d

u i i
i

u k x x
x

   


      (59) 

Where

 2
2 22( )u a b





    and

 

(1 )
[ ] ,i T c i

i i i

N G
k M   




  
  

5 1 3
4 0

(1 )
[ ] ( , , ).T cB AB B

Q f y z t   
 



  
  

The solution of the ordinary differential equation (59) takes 

the form 

3
*

4 5
1

( ) exp( ) exp( ) + exp( ).i i u
i

u x r k x r x r x 


      (60) 

Where 4
42 2 2 2

,   ,  i
i

i u u

r r
k

 

  
 

 
and 5r  is a constant 

to be determined from the boundary conditions. 
From Eqs. (34), (48), (50) and (60) after using the boundary 

condition (53) we get 

3 3

5 4
1 1

1 (1 2 )
[ ( ) ],

2
T c i i i i

i iu

r G M k r r 

 
  

   

 
    

 

(61

) 

with the same manner, we can get the other components of 

the displacement (v*,w*).  

Then, the final solutions for the dimensionless of the 
displacement u, stress σ, strain e, temperature T, mass 
concentration C, and chemical potential P can be deduced 

as follows 
2

4
1

( , , , ) [ exp( ) exp( )i i
i

u x y z t r k x r x


     

5+ exp( )]exp[ ( )],ur x t i ay bz                       

(62) 

2

1

( , , , ) [ exp( )i i i
i

x y z t H M k x


   

2 0 ( , , )exp( )]exp[ ( )],AB Q f y z t x t i ay bz    
 

(63) 

3

1

( , , , ) [ exp( )i i i
i

e x y z t N M k x


   

5 0 ( , , )exp( )]exp[ ( )],B Q f y z t x t i ay bz      

(64) 

2

1

( , , , ) [ exp( )i i
i

T x y z t M k x


   

1 0 ( , , )exp( )]exp[ ( )],AB Q f y z t x t i ay bz      

(65) 

3

1

( , , , ) [ exp( )i i i
i

C x y z t G M k x


   

3 0 ( , , )exp( )]exp[ ( )],B Q f y z t x t i ay bz    
 

(66) 

3

1

( , , , ) [ exp( )i i i
i

P x y z t R M k x


   

4 0 ( , , )exp( )]exp[ ( )].B Q f y z t x t i ay bz      

(67) 

 

 

 

5. Numerical calculation and discussion 
 

In order to illustrate our theoretical results obtained in 

the preceding section, we now present some numerical 

results. In the calculation, we take the copper as the material 
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subjected to mechanical thermal disturbances. Since  is 

complex, we take 0 i    , where i is the imaginary 

number. The numerical constants of the problem were taken 

at 0 293 ?T k as Othman et al. (2009): 

10 1 2 10 1 2 3 37.76 10  ,  3.86 10  ,  8.954 10  ,kg m s kg m s kg m           

 
1 3 5 1386 ,? .78 10 ,TK kg mk s k       

3 2 1 20.3831 10 ,EC m k s   4 2 1 2
1 1.2 10 ,a m k s    

6 5 1 2 4 3 1 8 3
1 0.9 10 , 1.98 10 ?  0.85 10 ,cb m kg s m kg d kgm s            

0 0 1 1 00.05 , ? .05 ,  ? .04 , ? .04 ,  2.5,s s s s        

0.2,a 

* 1
01.2,  10,  100 ,  8 . ,  5 .b s r m t nan s m         

The numerical technique, outlined above, was used for 

the distribution of the real part of the displacement 

component ,u  stress ,  strain ,e  the temperature ,T  

mass concentration C and chemical potential P  for the 

problem. Here, all the variables are taken in non-

dimensional form. 

Figs. 1-6 represented 2D curves for the distributions of 

the physical quantities against  the distance x at 

0.1y z   and 0.1t   in the case of the absence and 

presence of laser pulse effect 
9 10

0( 0,  10 ,  10 )I  . In these 

figures, the solid line, dashed line and dotted line 

correspond forrespectively, which is  1010 910 ,  0 0,I   

furthermore precisely explained in each figure in the legend. 

Fig. 1 illustrates the variations of the displacement 

component u  with a distance .x  This figure shows that 

the displacement component u  increases with the increase 

of the distance x  and finally all curves terminate at the 

zero value at 1.5x   approximately. It can be observed 

from this figure that the laser pulse value has a decreasing 

effect on the displacement component .u   

 

 

 

Fig. 1 Displacement distribution at 0.1,y z  0.1t   

 

 

Fig. 2 Stress distribution at 0.1,y z  0.1t   

 

 

 

Fig. 3 Strain distribution at 0.1,y z  0.1t   

 

 

Fig. 2 describes the variations of the stress   with a 

distance  .x  This figure shows that stress   decreases 

with the increase of the distance x  and has a minimum 

value at 0.36,x   0.34x  and 0.30x   for 0 0,I 
 

910 ,
1010  respectively, and then all curves increase tending 

to zero for 2.x   From this figure, it can be seen that the 

laser pulse value has a decreasing effect on the stress .   

Fig. 3 exhibits the variations of the strain ,e  with 

distance .x  This figure shows that the strain ,e  

decreases with the increase of the distance x and finally all 

curves converge to zero for 1.5x   approximately. 

It can be observed from this figure that the laser pulse 

value has an increasing effect on the strain e. Fig. 4 depicts 

the variations of the temperature T  with a distance .x  

We can see from this figure that the temperature T starts 

from a positive value in the case of the absence of laser 

pulse effect ( 0 0I  ) and then decreases with the increase 

0.1, 
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of the distance ,x  while it starts from negative values in 

the case of the presence of laser  pulse effect 

(
9 10

0 10 ,  10I  ) and then increases with the increase of the 

distance x and finally all curves terminate at the zero 

value at 1.5x   approximately. It is clearly observed that 

the laser pulse value has a decreasing effect on the 

temperature distribution.   Fig. 5 displays  the variations  

of  the mass concentration C  with a distance x  and 

shows that the mass concentration  C  decreases  with 

the increase of the distance x for all values of 0I  and 

finally all curves converge to zero for 1.5.x   It is noticed 

from this figure that the laser pulse value has an increasing 

effect  on the mass concentration.  

 

 

 

Fig. 4 Temperature distribution at 0.1,y z  0.1t   

 

 

 

Fig. 5 Mass concentration distribution at 0.1,y z 

0.1t   

 

 

 

Fig. 6 Chemical potential distribution at 0.1,y z 

0.1t   

 

 

 

Fig. 7 Displacement distribution at
 

0.1,y z 

10
0 10 .I   

 

 

Fig. 6 explains the variations of the chemical potential 

P  with a distance .x  We can see from this figure that 

the chemical potential starts from a negative value in the 

case of the absence of laser pulse effect ( 0 0I  ) and then 

increases with the increase of the distance ,x  while it 

starts from positive values in the case of the presence of 

laser pulse effect   (
9

0 10 ,I 
 

1010 ) and then decreases 

with the increase of the distance x  and finally all curves 

vanish identically for 1.5x   approximately. It is clearly 

observed that the laser pulse value has a decreasing effect 

on the temperature distribution. 

Figs. 7-12 represent 2D curves for the distributions of 

the physical quantities against the distance x at 

0.1y z   (with a fixed value of 10
0 10I  ) taking three 

values of the dimensionless time, namely 0.1,  0.2,  0.3t  .  
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Fig. 8 Stress distribution at 0.1,y z 
10

0 10 .I   

 

 

 

Fig. 9 Strain distribution at 0.1,y z 
10

0 10 .I   

 

 

In these figures, the solid line, dashed line and dotted line 

correspond for 0.1,  0.2,  0.3t   respectively, which is 

furthermore precisely explained in each figure in the legend. 

Figs. 7 and 10 illustrate the variations of the displacement 

component u  and temperature  e  with a distance .x  

These figures show that the displacement component u  

and temperature T increase with the increase of the 

distance x and finally all curves terminate at the zero value 

at 1.5x   approximately and it is observed from these 

figures that the dimensionless time t  has a decreasing 

effect on the displacement component u  and temperature 

.T  

Fig. 8 describes the variations of the stress   with a 

distance .x  We can see from this figure that stress   

decreases with the increase of the distance x and has a 

minimum values at 0.30,x  0.25x  and 0.22x   for 

0.1,t  0.2, 0.3  respectively and then all curves increase 

tending to zero for  2.x   From this figure, it can be 

seen that the dimensionless time t  has a decreasing effect 

on the stress .  Figs. 9, 11, 12 display the variations of 

the strain ,e  the mass concentration C and the chemical 

potential P with a distance x  and it is clear that these 

figures show that the above mentioned physical quantities 

decrease with the increase of the distance x  for all  

values of  t  and  finally all curves converge to zero for 

1.x   It is noticed from these figures that the 

dimensionless time t  has an increasing effect on the strain 

,e  the mass concentration C  and the chemical potential 

.P  

Figs. 13-18 represent 3D curves for the variations of the 

physical quantities against the distance x at 0.1,z   

0.1t   and 10
0 10I  . 

 

 

Fig. 10 Temperature distribution at 0.1,y z 

10
0 10 .I   

 

 

 

Fig. 11 Mass concentration distribution at 0.1,y z 

10
0 10 .I   
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Fig. 12 Chemical potential distribution at 0.1,y z 

10
0 10 .I   

 

 

These figures are very important to study the 

dependence of the physical quantities on both components 

of distance , .x y  It can be clearly seen that the curves 

obtained are highly depending on both distance components 

and we can see that some quantities increase on the negative 

direction of the distance, while some on a positive direction. 

 
 
6. Conclusions 
 

A three-dimensional model of the generalized thermo-

elasticity with diffusion under the influence of thermal 

loading due to laser pulse was established and according to 

the results the following conclusions can be obtained: 

* The results indicate that the effect of the thermal loading  

 due to laser pulse on the components of the displacement,  

 stress, strain, temperature, mass concentration and 

 chemical potential distributions is very pronounced.   

* It was observed that the time has a significant effect on 

 the distributions of all physical quantities. 

* The normal mode analysis, used in this article to solve 

 the problem, is applicable to a wide range of problems 

 in thermodynamics and thermoelasticity. This method 

 gives exact solutions without any assumed restrictions on 

 either the temperature or stress distributions. 

* The values of the distributions of all physical quantities 

 converge to zero with increasing distance x. Using these 

 results; it possible to investigate the disturbance caused 

 by more general sources for practical applications. 

* The physical applications are found in the mechanical 

 engineering, geophysical, and industrial sectors. 
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Fig. 13 Displacement distribution at 0.1,  0.1,z t 

10
0 10I   

 

 

Fig. 14 Stress distribution at 0.1,  0.1,z t 
10

0 10I   

 

 

 

Fig. 15 Strain distribution at 0.1,  0.1,z t 
10

0 10I   
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Fig. 16 Temperature distribution at 0.1,  0.1,z t 

10
0 10I   

 

 

Fig. 17 Mass concentration distribution at 

0.1,  0.1,z t 
10

0 10I   

 
 

 

Fig. 18 Chemical potential distribution at 

0.1,  0.1,z t 
10

0 10I   
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