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1. Introduction 
 

A column is a continuous structural compression 

member whose vibrations are described by nonlinear partial 

differential equations (Kumar and Pratiher 2019) for which 

exact analytical solutions cannot be determined 

(Awrejcewicz et al. 2015). According to Uzny (2011), the 

resistance of a column can be quantified in several ways, 

which are not exclusively based on the cross-section 

capacity as they must also account for buckling in slender 

members. A slender column reaches the ultimate limit state 

(ULS) due to loss of stability before it reaches the resistance 

of the section. Thus, the critical buckling load is an 

important design parameter for slender columns and was 

first investigated by Euler (1744), complemented by 

Greenhill (1881), and confirmed by Timoshenko and Gere 

(1961). Euler buckling, defined as the phenomenon wherein 

an elastic member bends under the action of a compressive 

axial load, has also been studied by Lubbers et al. (2017). 

According to Johnston (1983), who proposed a 

mathematical process for the historical development of the 

critical buckling load, the Euler load is defined as the 

critical force whereby a slender elastic column can be held 

in a bent configuration under only axial loading. Essentially, 

the currently accepted solution for buckling, which is very 

widely used in engineering problems, is based on the static 

equilibrium of forces at the most-used section of the column  
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under the assumption of a specific bending type. Even 

though Euler’s formula has been used up to now, its 

application to actual members with cross-section geometries 

that change along the length is extremely difficult. This fact 

has been highlighted by Bert (1984), who confirmed that 

applying the Euler process to stepped columns (symmetric 

or non-symmetric) and tapered (smooth) columns for 

determining the buckling load is extremely difficult. In two 

studies, Bert (1984, 1987) solved a series of buckling 

problems using Euler’s (1744) and Rayleigh’s (1877) 

principles but without considering the self-weight of the 

elements. The difficulty of including the self-weight of a 

column lies in the fact that the mathematical development 

relies on solving elliptic integrals. Hence, the self-weight of 

a cantilever column reduces the critical buckling load by 

one-third of the column’s self-weight, Timoshenko and 

Gere (1961), and should not be disregarded in cases of 

slender columns. An enhanced description of the stability of 

slender columns under its own weight can be found in 

Murawski (2017). 

As can be seen, the mathematical procedure for 

determining the critical buckling load was initially defined 

in the field of statics in rational mechanics. However, the 

loss of stability due to buckling is essentially a dynamic 

phenomenon whose solution is based on the stiffness and 

mass of the system. In this case, the structural stiffness must 

be composed of two terms, one corresponding to the 

conventional stiffness and another to the geometric 

stiffness. For columns made of reinforced concrete (RC), a 

composite material formed of a combination of steel and 

concrete, the procedure for calculating the critical buckling 
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load should take into account the properties of each 

material, including the rheological behavior of concrete. For 

these cases, it is possible to introduce in the first portion of 

the stiffness, a variable modulus of elasticity over time that 

allows accompanying the deformation increase according to 

the adopted criterion. Thus, the total stiffness takes the form 

in which the mathematical model used to represent the 

creep is introduced in the first part, and the second part is 

geometric and a function of the normal force acting on the 

system. The geometric stiffness is the one that univocally 

imposes buckling because it depends exclusively on the 

applied axial load and system geometry. 

Due to concrete creep, some of the stresses that were 

initially resisted by this material are gradually transferred to 

the longitudinal reinforcement in the cross-sections, 

attributable to the hypothesis of perfect bonding between 

the concrete and the reinforcement steel at the interface so 

that no slip can occur between the two materials. With that, 

the translation of the referred sections is made equally for 

both materials. For this reason, it is necessary to apply the 

equilibrium equations of forces and displacement 

compatibility to obtain the induced stresses in each 

material. Some studies showed the possibility of the steel 

bars yielding due to the portion of stress transferred by 

concrete creep to the reinforcement. To evaluate this 

phenomenon, an analytical mathematical procedure was 

employed to investigate a real, reinforced concrete column 

for which the critical buckling load was dynamically 

determined. 

In the dynamics field, columns are continuous systems, 

and their analysis can be reduced to an analogous system 

containing a single-degree-of-freedom. The buckled 

configuration modes are restricted to a configuration 

established using a mathematical function describing the 

vibratory movement, and the properties of the system can 

be expressed as generalized coordinate functions. Rayleigh 

(1877) investigated the vibration of elastic systems and 

applied this technique by considering that the function is 

valid throughout the problem domain. As pointed out by 

Banerjee and Ananthapuvirajah (2019) the results obtained 

for this method depend directly on the shape function used 

to derive the dynamic matrix. The dynamic matrix derived 

in this way contains both the mass and stiffness properties 

of the element, unlike a discretization method such as the 

finite element method (FEM), for which the accuracy of 

results is tied to the number of elements used in the 

analysis. However, it is important to note that, in actual 

cases, where the properties of the structural elements vary 

along their length, the formulation for calculating the 

stiffness and mass using Rayleigh’s method must be solved 

by observing the intervals existing in the geometry.  

To analytically define the critical buckling load for the 

case modeled in this study, all stiffness components were 

considered in the calculation, including conventional 

stiffness, which depends on the material behavior, and 

geometric stiffness, which depends on the normal force 

acting on the structure and must include the self-weight of 

the element under analysis. The soil beneath the foundation 

was also considered, accounting for soil-structure 

interaction. Therefore, this procedure entails geometric and 

material nonlinear analysis, with solutions obtained directly 

in the continuum without applying any interactive process. 

However, the analysis of the buckling load in an RC 

circular section using an interactive process considering 

short- and long-term action has been carried out by 

Bradford and Gilbert (1992), who confirmed that, along 

with the second-order effect in the creep of a slender 

column, an additional loss of stiffness also occurs. 

Therefore, they homogenized the reinforcement at the 

cross-section and used the age-adjusted effective modulus 

method for the time effects, as has been proposed by Bazant 

(1972). Additionally, Bazant (1972) applied a variable 

modulus of elasticity to consider the unbounded creep 

phenomenon of concrete, which can be calculated using the 

superposition principle for the deformations over time, 

wherein there exists a linear relationship between the time 

deformation and creep coefficient. Subsequently, these 

principles were incorporated into the analysis of creep for 

RC structures post hoc (Kawano and Warner 1996, Maru et 

al. 2001, Sharma et al. 2004). 

 

 
2. Motivation and relevance  

 

Studies existing in the technical literature indicate the 

possibility of the steel bars yielding due to the portion of 

stress transferred by concrete creep to the reinforcement. 

Madureira et al. (2013) and Kataoka et al. (2014) 

investigated the occurrence of creep transfer to the 

reinforcement inside the compressive columns. The former 

study pointed out that slow deformation can be prolonged 

for 3000 days after the loading is applied. Madureira et al. 

(2013) investigated prismatic pieces with sections having a 

reinforcement ratio () between 0.40% and 1.58% using the 

Maxwell-Chain Model to represent concrete creep. They 

adopted in their analysis a convergence period after loading 

has been applied also of 3000 days. Although Kataoka et al. 

(2014) investigated short pillars with reinforcement ratios 

of 1.4% and 2.8%, they observed the existence of stress 

transfer to the reinforcement through experimental and 

numerical evaluations. However, the results obtained by 

modeling using the FEM did not agree with the 

experimental results. 

In terms of time effect of the concrete strain, 

Fragiacomo et al. (2002) studied the influence of creep on 

steel-concrete composite beams, and Dezi et al. (2006) 

investigated premature cracking in a slab of tapered 

prefabricated bridge deck considering a linear viscoelastic 

function for concrete creep in early ages. By assuming a 

linear elastic theory for materials, Dezi et al. (2006) used an 

analytical formulation based on virtual displacements for 

predicting the evolution of a structure that undergoes 

complicated changes of geometry. In the previous studies, 

the hypothesis of a perfect bond between concrete and 

reinforcement was adopted. Creep overstresses the 

reinforcement until it eventually yields but relieves the 

concrete portion of the structure. Under sustained loading, 

there is a gradual transfer of load from the concrete to the 

reinforcement in the concrete columns, which may lead to 

the steel yielding in very slender columns, as confirmed by 
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Samral (1995), who also considered an RC section by 

homogenizing the steel-reinforced area. A similar procedure 

of homogenizing a section composed of different materials 

was used by Mirmiran (2001) when studying the bucking of 

concrete-filled fiber-reinforced polymer columns. 

To evaluate aspects related to designing reinforced 

concrete structures, this study analyzes the limit state of 

longitudinal strains and stresses induced in the longitudinal 

reinforcement of cross-sections of a structure subjected to 

concrete creep. These aspects were mathematically 

evaluated using a model that consists of a very slender 

column, clamped at the base, and free at the upper end, 

which had a variable cross-section along the height. The 

study was carried out for an axial loading varying from 

zero, structure exclusively under its self-weight, to near the 

loss of stability by bifurcating equilibrium, using the critical 

buckling load defined by the concepts of vibration of 

structural systems.  

A slender RC pole with variable geometry, for which the 

critical buckling load was calculated using a structural 

dynamic criterion was studied. The nonlinearity of the 

material was calculated by reducing its flexural stiffness, 

which reflects the development of cracks in the concrete, in 

combination with the mathematical model for creep, which 

complies with the guidelines of the American Concrete 

Institute (ACI 209R, 2008). Additionally, the geometric 

nonlinearity was mainly considered and solved by 

calculating the second-order geometric stiffness matrix. 

Therefore, the present analysis is a linearization of a 

nonlinear analysis. The importance of these nonlinear 

aspects in calculating the buckling load and analyzing the 

vibration of one-dimensional elements was highlighted by 

Wang et al. (2006), Afefy et al. (2016), and Awrejcewicz et 

al. (2019). 

Although some studies existing in the technical review 

related to the subject reveal the possibility of reinforcement 

yield, at the end of the present study, it was possible to 

conclude that the stresses induced in the reinforcement, 

including the additional portions due to concrete creep, do 

not produce the yielding of the material. 

 

 
3. Preliminary concepts 

 

Creep represents an increase of deformation due to long-

term loads (Jung et al. 2007). Even under constant stress, 

creep occurs in concrete structures due to their viscoelastic 

nature (Mehta et al. 1994). Slow deformation, or creep, is a 

time-dependent phenomenon related to loading and strain, 

and it is defined as the increase of deformation over time 

under the action of permanent loads or stresses. Creep 

produces permanent deformation, which can potentially 

alter the material characteristics and their mechanical 

properties and can even result in structural collapse. From a 

practical viewpoint, technical standards consider the 

phenomenon of creep in sizing structures from two aspects, 

either by proposing a coefficient of increasing or decreasing 

stiffness or by proposing a coefficient of increasing or 

decreasing resistance, according to the load duration and 

moisture condition. Finally, it is important to obtain a 

function describing the deformation of the element over 

time, which differs according to the calculation process. 

However, stress and strain analysis of a viscoelastic 

material can present many difficulties for real problems of 

complex geometry, Zienkiewicz et al. (1968). 

In an analysis, structural elements, such as beams or 

columns, are characterized as continuous systems and can 

occasionally be subjected to the action of axial compressive 

forces. When these elements are slender, they can reach the 

ULS, defined as the loss of stability, without having 

exhausted the capacity of their cross-sections. This 

condition is called buckling and is defined as a phenomenon 

whereby a structural element loses its equilibrium or is bent 

under the action of a compressive axial force that is 

sufficiently large to displace the element from its initial 

straight configuration. This is the best-known criterion for 

verifying the safety of slender members, and its solution 

originated in the field of statics within the broader field of 

mechanics. However, buckling is essentially a dynamic 

problem because it involves the equilibrium (or vibration) 

of mechanical systems, which depends on stiffness and 

mass. Regardless of this being a static or dynamic problem, 

the stability verification of slender elements should consider 

all changes undergone by the material, including creep, 

throughout the lifetime of the material. 

This inclusion, either by the static or dynamic path, can 

be made by observing the stiffness of the structure, which 

must comprise two terms, the conventional stiffness 

component (or matrix) and the geometric stiffness 

component (or matrix). Thus, it is possible to adapt the 

former term by introducing a modulus of elasticity that 

varies over time to accompany the increase of deformations 

according to the adopted criterion, whether normative or 

mathematical rheological models based on spring and 

dashpot, as suggested by Szyszkowski and Glockner (1985), 

who used rheological models for representing the concrete 

creep effect in column buckling analyses. Therefore, the 

total stiffness takes a form where the mathematical model 

used to represent the viscoelastic behavior of the material 

can be introduced into the first stiffness component through 

the modulus of elasticity. The latter term is a function of the 

normal force acting on the system.  

Hence, in the ULS, it is important to consider the effect 

of creep on the stability of slender and compressed 

structural elements because the stiffness of these members 

is modified as a function of the material’s rheology. For the 

correct analysis of these systems in any field, all aspects 

involving the stiffness of structural elements and the 

material variations, including the viscoelastic behavior, 

must be considered. Consequently, the problem of stability 

becomes a function of time and can be solved at any time 

instant. 

The model chosen for considering the temporal variation 

of the modulus of elasticity of concrete in the present 

analysis is that specified by ACI 209R (2008), which 

recommends using a creep coefficient (t) in the increase of 

the initial elastic deformations. The creep coefficient is 

associated with a temporal modulus of elasticity of concrete, 

becoming a time-dependent problem, Eq. (1) 
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 
 
0

1

mctE
E t

t



 (1) 

where Emct0 is the modulus of elasticity at the beginning of 

loading. To define the creep coefficient, ACI 209R (2008) 

provides the necessary parameters to the case specifically 

studied. Using a temporal modulus for the concrete has 

been used as a valid strategy for static and dynamic 

structural analysis. For example, Abderezak et al. (2017) 

employed this concept for studying stress on the interface of 

fiber-reinforced beams, considering creep in a time-

dependent analysis. 

 

 

4. Time-dependent dynamic solution near the loss 
of stability 

 

4.1 Principle of virtual work 

 

Fig. 1 shows the bar model of a structure in undamped 

free vibration, where t indicates the time dependency; this 

model represents the practical problem proposed in this 

analysis or any other similar unidimensional problem, 

where m0 is a lumped mass at the tip, u(t) and q(t) denote 

the vertical and horizontal displacements of the free end, 

respectively, g is the acceleration of gravity, Gr indicates 

ground, Spr means spring, L is the length of the column, x 

represents the position of a generic section along the length, 

v(x,t) is the local displacement to this reference, s is a 

segment defined between ordinates Ls and Ls-1, for which 

Ns(x) is the force axially distributed, kSos(x) is the spring 

stiffness, ( )sm x  is the mass per unit length, Es(t) is the 

viscoelastic modulus of the material with respect to time, 

and Is(x,t) is the variable moment of inertia of the section 

along the segment and relative to the considered movement. 

To approximate the motion of this system using an 

SDOF model, it is assumed that the system deflected in a 

single manner that is adequately chosen to represent the 

vibratory movement of the first mode of buckling. The 

shape function describing this deflection is defined as (x), 

where x is an independent variable representing the location 

along the height of the column, and the amplitude of the 

motion is represented by the generalized coordinate q(t). 

The shape function was then obtained by calculating the 

following dimensionless ratio 

( , )
( ) ( , ) ( ) ( )

( )

v x t
x v x t x q t

q t
     (2) 

The equation of motion for this generalized system can 

be conveniently formulated using Hamilton’s principle. 

Hence, the external virtual work done by the forces of 

inertia, WE, can be expressed as 

1
1

0

( ) ( , ) ( , )

( , ) ( , ).

s

s

Ln

E s

s L

W m x v x t v x t dx

m v x t v x t








     (3) 

The internal virtual work done by the flexural 

deformation, WI(t), is given by 

1
1

( ) ( ) ( , )
s

s

Ln

I s s

s L

W t E t I x t v v dx




    (4) 

and the work done by the deformation of the foundation 

springs, WSpr, is given by 

1
1

( ) ( , ) ( , )
s

s

Ln

Spr Sos

s L

W k x v x t v x t dx




   (5) 

To calculate the work done by the axially directed 

normal force, whose direction and amplitude remained 

unchanged during the response, it is necessary to evaluate 

the vertical component of the motion of the column tip. 

Following the procedure described by Timoshenko and 

Gere (1961), the total displacement u(t) along the column is 

given by 

2

0

0

1
( ) ( , )

2

( , ) ( , ) .

L

L

u t v x t dx

u v x t v x t dx 

 
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



 (6) 

Thus, the potential energy of the axial load can be 

derived from 

1

0 1

1

1

( )

( , ) ( , ) ,

s

s

n
Ln

s s

sN

s L

N N N x
W

v x t v x t dx







 
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  

 


   (7) 

where 

0 0N m g , 

1

( )



 
s

s

L

s s

L

N m x gdx , and

 ( ) ( )s s sN x m x L x g     . 

(8) 

Therefore, the external and internal virtual work obeys 

the following relationships 

E N I SprW W W W    (9) 

which leads to 

 

(10) 

considering that 
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Fig. 1 Frame element model in free vibration 
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where ( )v x  and ( )v x  represent the first- and second-

order derivatives, respectively, with respect to the 

independent variable of the lateral displacement, whereas 

( )v t  and ( )v t represent the first- and second-order 

derivatives, respectively, with respect to the time elapsed 

during the lateral displacement. The real and virtual 

displacements and their derivatives, expressed as functions 

of generalized coordinates, as well as the shape functions 

used to represent the considered vibration modes, can be 

calculated using the following group of equations 

 
(12) 

Substituting the appropriate terms from Eq. (12) into Eq. 

(10) yields 
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Because the variation, q(t), can assume any value, the 

term in brackets becomes zero and Eq. (12) can be rewritten 

as 

( ) ( ) ( ) 0Mq t K t q t   (14) 

where the generalized mass, M, of the system, including the 

mass at the tip, is given by 

1

2

0

1

( ) ( )
s

s

Ln

s

s L

M m x x dx m




    (15) 

and total stiffness, K(t), is composed of three terms as 

follows 

0( ) ( ) g SoK t K t K K    (16) 

where the first term is the generalized conventional 

stiffness, K0(t), given by 

1
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s s
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the second term is the geometric stiffness, Kg, given by 
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and the third term is the elastic stiffness of the spring, KSo, 

given by 

1

2

1

( ) ( )
s

s

Ln

So Sos

s L

K k x x dx



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4.2 Finite element method 
 

According to Bathe and Wilson (1973), in terms of near 

the loss of stability, the relevant eigenvalues and 

eigenvectors can be obtained by solving the following 

secular equation 

      0 0So gK K K     (20) 

where the stiffness matrix includes the geometric stiffness 

term, Kg, formulated similarly to Eq. (33), having K0, and 

KSo as the conventional and spring matrices, respectively. 

The last one is those that represent the soil-structure 

iteration,  and  are the eigenvalues and eigenvectors 

related to the critical loads and their buckling shapes. The 

matrices present in Eq. (20) are defined for one single frame 

element of area A and length l, as indicated in Eqs. (21)-

(23). The spring matrix is a six by six symmetric matrix of 

coefficients, kij, related to all translational and rotational 

degrees of freedom of a frame element. These matrices 

consider only one frame element and should be extrapolated 

to the global stiffness matrix, as proposed by the method. If 

a temporal problem is considered, a time variation of the 

parameter in the matrices should be introduced. A detailed 

development of the process for obtaining these matrices was 

presented by Wahrhaftig and Brasil (2017). 

 

 
2

2

( )
, ( ) ( ); ( , ) ( ) ( ); ( , ) ( ) ( );   ( ) ;

( )
( , ) ( ) ( ); , ( ) ( ); ( , ) ( ) ( );   ( ) ;

( , ) ( ) ( ); ( , ) ( ) ( ); ( , ) ( ) (

q t
v x t x q t v x t x q t v x t x q t q t

t

q t
v x t x q t v x t x q t v x t x q t q t

t

v x t x q t v x t x q t v x t x q

    

    

      


    




      



    ).t
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5. Application case 

 

5.1 Generalized procedure 
 

Let us consider the following trigonometric function, 

which is valid throughout the structure’s domain 

( ) 1 cos
2

x
x

L




 
   

 
 (24) 

where x is the location of the calculation and its origin is at 

the base of the cantilever, L is the length of the column, and 

 (x) is a function describing the vibratory movement. The 

trigonometric function in Eq. (24) was considered to be a 

function of x only, thereby effectively reducing the 

cantilever column to an SDOF system. The technique of 

using a shape function for describing a vibratory movement 

was introduced by Rayleigh (1877). As seen, the basic 

concept behind the Rayleigh method is the principle of 

conservation of energy in mechanical systems; therefore, it 

applies to linear and nonlinear structures. The purpose is to 

determine the fundamental period of vibration and to 

analyze the stability of the elastic systems with the 

precision required for engineering problems, Clough and 

Penzien (1993). According to Temple and Bickley (1933), 

this technique can be applied both to systems with finite 

degrees of freedom and continuous systems. Leissa (2005) 

notes that the precision obtained depends entirely on that 

function. If the exact shape is assumed, the exact 

corresponding frequency, or critical buckling load, is found 

by this method. 

The method can be applied to any structure that can be 

converted in a unidimensional element, and sufficiently 

long to be bent. This model represents a column under an 

axial compressive load, with either constant or variable 

properties along its length, as seen in Fig. 1. These 

properties include geometry, elasticity/viscoelasticity, and 

density. Applied springs with variable stiffness act as lateral 

soil resistance at the foundation elevation. The system is 

under the action of gravitational normal forces, which 

originate from the mass distributed along the length of the 

column and the lumped mass at the tip. For the vibration of 

a cantilevered column that is clamped at its base but free at 

its tip, the shape function expressed by Eq. (24) satisfies the 

boundary conditions of the problem, i.e., when x = L (at the 

free extremity of the column), (L) = 1, and when x = 0 (at 

the base), (0) = 0. Using Eq. (24) as a shape function for 

an actual structure with varying geometry for vibratory 

movements in the vicinity of the undistorted configuration 

was evaluated by Wahrhaftig (2019). 

This evaluation involved a comparison to a 

computational solution obtained using computational 

modeling and other mathematical methods. 

The dynamic properties of the subject system can be 

obtained by applying the principle of virtual work and its 

derivations, as previously described, similar to that done by 

Li et al. (2014). The elastic/viscoelastic conventional 

stiffness is expressed as follows 

1

2

0 ( ) ( ) ( , ) ( )
s

s

L

s s s

L

k t E t I x t x dx



  , with 

0 0

1

( ) ( )
n

s

s

K t k t


 , 

(25) 

where, for a segment s=Ls-Ls-1 of the structure, Es(t) is the 

viscoelastic modulus of the material with respect to time, 

Is(x,t) is the variable moment of inertia of the section along 

the segment and relative to the considered movement, as 

obtained by interpolating the previous and following 

sections that are already homogenized with time (if it is 

geometrically constant along the length, it is simply denoted 

as Is(t)), k0s(t) is the temporal term for the stiffness; K0(t) is 

the final conventional stiffness varying over time, and n is 

the total number of segment intervals determined by the 

structural geometry. In Eq. (25), t vanishes when the 

analysis considers a material with purely elastic, time-

independent behavior.  

The geometric stiffness appears as a function of the 

axial load, including the self-weight contribution, and is 

expressed as a function of the lumped mass at the tip, m0, as 

follows 

 1

0 1 2
1

( )
( ) ( )

( )

s

s

n
L

o s

sgs o

L
s s

N m N
k m x dx

m x L x g









 
     

  


  (26) 

and 
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0 0

1

( ) ( )
n

g gs

s

K m k m


  (27) 

where kgs(m0) is the geometric stiffness in segment s, Kg(m0) 

is the total geometric stiffness of the structure with n being 

as defined previously, N0(m0) is the force concentrated at 

the top and is entirely dependent on the mass m0 at the tip 

expressed, according to Eq. (28) 

0 0 0( )N m m g  (28) 

and Ns is the normal force from the upper segments, as was 

already defined in Eq. (8) as follows 

1

( )
s

s

L

s s

L

N m x gdx



   (29) 

Then, the total generalized mass, seen in Eq. (15), can 

be expressed as a dependent parameter of the lumped mass 

at the top, m0, as follows 

0 0( )M m m m   (30) 

 

considering that the following relationship holds 

1

n

s

s

m m


 , with 

1

2( ) ( )
s

s

L

s s

L

m m x x dx



  , and

( ) ( )s s sm x A x   

(31) 

where ( )sm x is the distributed mass to each segment s and 

is obtained by multiplying the cross-sectional area, As(x), by 

the density, s, of the material in the respective interval. 

Therefore, ( )sm x is the mass per unit length and m is the 

generalized mass of the system, owing to the density of the 

material, with n being as previously defined. If the cross-

section has a constant area over the interval, As(x) will just 

be As; therefore, the distributed mass will also be constant. 

Similarly, if the mass, m0, does not vary, all other 

parameters depending on it will also be constant. 

One approach for considering the participation of the 

soil to the vibration of the system is to consider the soil as a 

series of vertically distributed springs acting as a restorative 

force on the system. Here, kSos(x) denotes the spring 

parameter; the effective soil stiffness as a function of the 

location, x, along the length is defined as follows 

( ) ( )Sos s opsk x D x S , what conducts to 

1

2( ) ( )
s

s

L

s Sos

L

k k x x dx



  , and 
1

n

So s

s

K k


  
(32) 

where parameter KSo is an elastic characteristic comprising 

the sum of ks along the foundation depth, which depends on 

the geometry of the foundation, Ds(x), and the soil 

parameter, Sops. Moreover, parameter Sops must be provided 

by a geotechnical engineer, and different methods are used 

by different geotechnical engineering specialists to 

determine this parameter. 

Considering that the normal force is positive, the total 

structural stiffness can be obtained as follows 

0 0 0( , ) ( ) ( )g SoK m t K t K m K    (33) 

 

 
(a) Distribution of bars (th exist only for hollow sections) 

 

 
(b) Generic position of an ith bar 

Fig. 2 Typical cross-section adopted for the RC column 

 

 

Finally, the natural frequency as a function of time and 

the mass at the tip is calculated in Hz, as follows 

0
0

0

( , )1
( , )

2 ( )

K m t
f m t

M m
  (34) 

The mathematical procedure described above 

determines not only the frequency of a structure but also the 

critical buckling load because all generalized parameters are 

expressed as a function of the mass at the top. After 

introducing creep, the frequency and critical buckling load 

become temporal functions because the modulus of 

elasticity varies over time. Therefore, once creep is 

introduced into the calculation, the frequency can be written 

in terms of time and the mass at the top, as expressed by Eq. 

(34). Hence, the resultant expression is sufficient for 

calculating the critical buckling load, which is determined 

when the frequency is zero at any arbitrary time after the 

structure comes into service. The details of this analytical 

procedure can be found in Wahrhaftig et al. (2013, 2019). It 

should be noted that the results from the previous process 

are obtained directly in the continuum, without using any 

iterative process, as opposed to the analyses performed by 

Chaudhary et al. (2007) and Yaghoobi et al. (2014). 

From the abovementioned considerations and by 

independently varying the lumped mass at the top of the 

structural pole, the force acting at the top and the frequency 

of the structure also vary. Thus, the critical buckling load, 

Ncb, is defined at zero frequency, as follows 
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0
0 0 ( , ) 0
( )cb f m t

N N m


  (35) 

The time dependence of the previous equations comes 

up due to the temporal nature of the homogenization factors 

between the elasticity moduli of steel and concrete, as seen 

in Eq. (1). To obtain these factors, consider the modulus of 

elasticity of the steel reinforcement, Est. There are a number 

of bars, nb, distributed along the periphery of the cross-

section S (S varies from 1 to n, n represents the numbers of 

sections), of diameter D and wall thickness th if it is a 

hollow section, if not it is a full section and th is not 

applicable. c is the concrete covering, and each bar has a 

diameter, dbi, stated in Fig. 2(a). Each reinforcement bar, bi, 

assumes a given position, i, in the cross-section domain, 

defined by Rbi and θi, as shown in Fig. 2(b). The variable Rbi 

describes the position of the barycenter of each bar, bi, 

relative to the barycenter of the cross-section. 

Because all the bars have the same radius, Rbi, Eq. (26) 

applies 

2 2

bi
bi

dD
R c    (36) 

where c is the covering of the section S and dbi is the 

diameter of the ith bar. 

Because θi is an independent variable that takes values 

between 0 and 2ℼ, the distance between the center of each 

bar and the axis of the cross-section can be expressed as in 

Eq. (37) 

( ) ( )i i biy sin R   (37) 

The spacing, sp, between the centers of adjacent bars is 

given by Eq. (38), where nb denotes the number of 

longitudinal bars. 

2 bi

b

R
sp

n


  (38) 

The angular phase shift, Δθ, between two adjacent bars 

is given by Eq. (39) 

bi

sp

R
   (38) 

The angular phase shift, Δθ, between two adjacent bars 

is given by Eq. (39) 

bi

sp

R
   (39) 

So, the moment of inertia of each bar about the cross-

section barycenter, ( )i iI  , can be calculated using Eq. (40) 

4 2
2( ) ( )

64 4

bi bi
i i i

d d
I y

 
    (40) 

The homogenized moment of inertia of the 

reinforcement steel over time, ( )st

hI t , can be expressed by 

Eq. (41) 

 ( ) ( ) ( ) 1
i

st

h i iI t I t


    
(41) 

where ( )t is the temporal rate of the modulus of elasticity 

of the reinforcement steel and concrete, given by 

( )
( )

stE
t

E t
   (42) 

where E(t) is the time-dependent modulus of concrete as 

previously defined. To calculate the total homogenized 

moment of inertia ( )h

SI t of the cross-section, it is 

necessary to consider Eq. (43) 

( ) ( )h st

S S hI t I I t   (43) 

where
SI is the non-homogenized geometric inertia of the 

cross-section, S, of concrete, calculated by Eq. (44) 

according to whether cross-section is hollow or full. 

   444 D
64

π
I or 2thDD

64

π
I   (44) 

Therefore, the factors, ( )h

IF t , that multiply the moment of 

inertia of the section computed using the total moment of 

inertia of the reinforcement steel, can be written as in Eq. 

(45). 

( )
( ) 1

st
h h

I

S

I t
F t

I
   (45) 

In the same direction, to homogenize the area of a cross-

section, S, the total area of reinforcement should be 

considered using Eq. (46) 

2

4

st b
S b

d
A n


  (46) 

which takes the net area of concrete using Eq. (47) 

c st

net S SA A A   (47) 

where AS is the area of the cross-section, S, calculated by Eq. 

(48) for each the type of section, hollow or full, as 

 
22 2

4
SA D D th

    
 

or 
2

4
SA D


  (48) 

The homogenized area of reinforcement is given by 

 ( ) ( ) 1st st

h SA t A t   (49) 

So, the temporal concrete homogenized area can be 

calculated using Eq. (50) 

( ) ( )h st

S S hA t A A t   (50) 

with ( )t defined as in Eq. (42). The area homogenizing 

factors, ( )h

AF t , of section S are obtained through Eq. 

(51). 
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( )
( ) 1

st
h h

A

S

A t
F t

A
   (51) 

 

5.2 Specific procedure 
 

The problem considered in this study entails calculating 

the critical buckling load for an actual extremely slender 

RC pole with variable geometry that exhibits geometrical 

and material nonlinearities. The structure is 46 m high, 

including a 40 m superstructure with a hollow circular 

section and a 6-m-deep, fully circular foundation. Here, the 

lateral soil resistance is represented by a unique elastic 

parameter, Sop, equal to 2669 kN/m3 for all soil layers. The 

moduli of elasticity, Ecmt0, for the superstructure and 

foundation are 38240 MPa and 24040 MPa, respectively, 

and the characteristic compression resistance of concrete 

was assumed as 45 MPa and 20 MPa, respectively. The 

geometric details of the analyzed column are shown Fig. 

3(a), where g and Gr were previously defined; s denotes 

each structural segment; S, D, and th are the type, external 

diameter, and wall thickness of the section, respectively; 

db represents the reinforcing bar diameter; nb is the number 

of reinforcing bars; and c´ is the reinforcing cover. The 

slenderness ratio of the concrete pole was 408, as calculated 

using a weighted average based on the geometry of the 

structure. A concentrated mass is commonly installed at the 

tip of the structure, whose value in relation to the loss of 

stability by buckling must be determined. An additional 

mass is also frequently installed along the entire length of 

the superstructure and joins a distributed mass, 
em , of 

40 kg/m to the system. The adopted densities for the 

superstructure and foundation were  = 2600 kg/m3 and f  

= 2500 kg/m3, respectively. 

It is important to be clear that in the present analysis, 

concrete creep will be being directly considered in the 

modulus of elasticity for concrete. Additionally, the moment  

 

 

of inertia and area for every cross-section was increased to 

account for the reinforcing bars, according to Eq. (43). The 

viscoelastic aspect of the concrete was considered with 

regard to the superstructure, according to the ACI creep 

criteria. To consider concrete cracking, the factored moment 

of inertia was computed for all sections, with a 0.5 

reduction factor for the gross moment of inertia (item ACI- 

6.6.3.1.2), although the possibility exists to use another 

reduction factor, as discussed by Marin and El Debs (2012). 

That factored moment of inertia was adopted considering 

that the structure will be under wind action, and for that 

reason, with forces acting laterally for bending it. This 

concept included the foundation, which was also considered 

in the vibratory movement, although confined in a certain 

way. If this factor is calculated according to ACI-Table  

6.6.3.1.1(b), Eq. (52) 

0.08 25
st

S
fact

S

A
I

A
   (52) 

where As is the gross concrete area of a section, S, and
st

SA  

is the reinforcement steel area, the factored averaged for 

cross-sections above terrain is 0.32 and 0.26 when are 

considering all cross-sections. However, it should be noted 

that the real cracking depends on the real forces acting on 

the structure. 

A finite element analysis (FEA) was conducted to 

independently evaluate the results obtained by the analytical 

procedure previously presented. The considered structure 

was modeled using unidimensional elements with constant 

or variable cross-sections, as appropriate. The forces with 

corresponding masses were applied to the system. The 

spring factor was assigned to the foundation frame element 

as a linearly distributed parameter. Only a lateral spring was 

used to model the foundation system, and the spring 

stiffness matrix was, thus, considered to be null at all 

positions corresponding to the axial and rotational degrees 

of freedom, while the values extrapolated from the interior 

   
(a) Geometry and sections (heights in cm) (b) FEM (c) Shape functions 

Fig. 3 Reinforced concrete pole 

 

Normalized Shape 
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of each element joint were considered to be active 

components of the matrix. Fig. 3(b) shows the discretization 

of the model constructed using SAP2000 (2019) structural 

analysis software, with the model discretized in 47 elements. 

Fig. 3(c) compares the shape function from FEA with that 

used in the analytical procedure, Eq. (24), which gives a 

relatively good agreement to the finite element solution, 

although there is a small difference at the middle of the 

height of the structure, can respond for some existent 

differences between methods. The processing was 

performed for each time, t, of interest. Therefore, the factors 

multiplying the nominal moment of inertia of the section in 

terms of the total moment of inertia in the homogenized 

sections were calculated according to parallel axis theorem, 

as specified previously, by Eq. (45). In the same way, the 

modulus of elasticity was calculated according to Eq. (1). 

To apply the time-dependent solution development to 

the present case, the following order, referring to the heights 

in the structure, were defined as (sub-indices serve to 

identify a segment, s, as a section, S) 
1 200 L mm , 

2 6000 L mm , 
3 12000 L mm , 

4 19000 L mm , 

5 46000 L L mm  . On the base foundation, 

1 140 D mm , 
2

1 1
4

A D


 , 
4

1 1
64

I D


 . On the shaft 

2 800 D mm , 2

2 2
4

A D


 , 
4

2 2
64

I D


 . The 

variable diameter between the base and the shaft is obtained 

by linear interpolation on the variable segment. So, the area 

and inertia of the section are given by 

2 1
1 1

1

( )
A A

A x x A
L


   and 2 1

1 1

1

( )
I I

I x x I
L


  . The 

external diameter and thickness of the third segment are 

3 800 D mm  and 
3 130 th mm . Then, the internal 

diameter, area, and inertia of the section are
3 3 32d D th  ,

 2 2

3 3 3
4

A D d


  , and  4 4

3 3 3
64

I D d


  . The next 

section has an external diameter of
4 700 D mm  and 

thickness equal to the previous one, 
4 3th th . The fourth 

structural segment has a tapered section, its diameter can be 

obtained by linear interpolation, similarly as done for the 

first one. Therefore,  4 3
4 3 3

4 3

( )
A A

A x x L A
L L


  


, and 

 4 3
4 3 3

4 3

( )
I I

I x x L I
L L


  


 are, respectively, the area and 

the inertia of the variable section on the corresponding 

segment. Similarly, the external diameter, thickness, area, 

and inertia for the last segment are given by: 

5 700 D mm , 
5 130 th mm , 

5 5 52d D th  , 

 2 2

5 5 5
4

A D d


  , and  4 4

5 5 5
64

I D d


  . After 

defining the geometry, the generalized properties of the 

problem can be calculated. 

The generalized mass is calculated by taking the 

following integrals and summing them to the end 

4

2

5 5 ( )

L

L

m m x dx  , with 5 5 em A m  ; 

4

3

2

4 4 ( ) ( )

L

L

m m x x dx  , with 4 4( ) ( ) em x A x m  ; 

3

2

2

3 3 ( )

L

L

m m x dx  , with 3 3 em A m  ; 

2

1

2

2 2 ( )

L

L

m m x dx  , with 2 2 fm A  ; 

1

2

1 1

0

( ) ( )

L

m m x x dx  , with 
1 1( ) ( ) fm x A x  ; and  

5

1

s

s

m m


 . 

(53) 

Adding the concentrated mass at the top, the total 

generalized mass, M(m0), is found using Eq. (30). The 

generalized geometric stiffness, Kg(m0), of the structure was 

obtained by summing these five terms 

 
4

2

5 0 0 5( ) ( ) ( ) ( )

L

g

L

K m N m m L x g x dx   , 

with 0 0 0( )N m m g ; 

 
4

3

2

4 0 0 5 4 4( ) ( ) ( )( ) ( )

L

g

L

K m N m N m x L x g x dx    , 

with 

4

5 5

L

L

N m gdx  ; 

 
3

2

2

3 0 0 5 4 3 3( ) ( ) ( ) ( )

L

g

L

K m N m N N m L x g x dx     ,  

with
4

3
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with
3

2

3 3

L
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N m gdx  ; 

 
1
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1 0 0 5 4 3 2 1 1
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L

gK m N m N N N N m x L x g x dx       ;  

and
5

0 0

1

( ) ( )g gs

s

K m K m


 . 

(54) 

By summing their components, the total generalized 

elastic stiffness, K0(t), is obtained by Eq. (55) 
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L
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K t E t I x t x dx  , with 

 4 3
4 3 3

4 3
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h h
hI t I t

I x t x L I t
L L
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1

( ) ( )s

s

K t K t


 , 

where Ef represents the modulus of the elasticity (Ecmt0) of 

the foundation, which is not a time-dependent parameter. 

 

The total spring stiffness, Kso, of the soil can be 

expressed in terms of the distributed spring stiffnesses in 

the first and second segments, as follows 
1

2

2 2

0

( ) ( )

L

Sok k x x dx   with 2 2( ) ( )So opk x D x S ; 

1

2

1 1

0

( ) ( )

L

Sok k x x dx  , with 
1 1( ) ( )So opk x D x S ; and 

2

1

So s

s

K k


  

(56) 

Once all terms of the generalized stiffness and mass are 

defined, the time-dependent vibration analysis can be 

performed according to Eqs. (34) and (35). Those equations 

represent the variation of the structural frequency in the 

time of interest as a dependent parameter of the force acting 

on the column top, for which its self-weight is already 

considered. By doing the concentrated mass in Eqs. (34) 

and (35) as the independent variable of the problem, this 

mass will be associated with the concentrated force acting 

on the free end, which can vary from zero up to the 

imminent loss of equilibrium. The loss of equilibrium is 

associated with the force that takes the structural frequency 

to null, as defined in Eq. (35). From there on, no more (even 

minimum) load can be applied, configuring a limit state. As 

the force on top varies, strain and stress on sections can be 

calculated until reaching their maximum possible values. 

 

 

6. Results and discussion 
 

The following conditions were assumed: cement type 

III, wet curing, slump standard (70 mm), 50% fine 

aggregate ratio, entrained air rate below 6%, and 70% 

environmental humidity. A study relating aggregate’s 

influence on creep in a column was carried out by B-

Jahromi et al. (2017). The variation of the effective 

modulus of elasticity over time is shown in Fig. 4(a). The 

continuous variation of the critical buckling load over time 

is described by the graph shown in Fig. 4(b). To obtain 

these results, a small programming routine was developed 

by considering a 0.1-kg increment for the mass at the top,  
 

 
(a) Modulus of elasticity  

 

(b) Critical buckling load 

Fig. 4 Modulus of elasticity of concrete and critical 

load over time 

 

 

using a 10-day time-step, and adopting a 10-3 Hz precision 

for the frequency and an initial value for the mass at the tip 

of 19000 kg. 

Under these conditions and using an Intel(R) Core (7M) 

7500U CPU, 2.70–2.90 GHz, i7 (7th Generation) Intel 

processor operating on Windows 10 (64 bit) with 8 GB of 

memory (RAM), the total processing time was 

approximately 1 hour to the critical buckling load, and 

5 hours to generate the graphic, for which a time-step of 

100 days was used. 

The variation of the structural frequency with the mass 

at the top of the structure is shown in Fig. 5(a), in which the 

critical buckling load can be obtained at any stage in the 

lifetime of the structure. In addition to the arbitrarily 

selected time intervals, the analysis could have been 

performed for any other moments of interest during the 

lifetime of the structure. However, 5000 days represents an 

appropriate  design horizon, consider ing that in  

approximately one decade and a half, the technology 

changes and maintenance operations are needed. Even if a 

double length of time, 10000 days (~27 years), is 

considered as the lifetime of the structure, the critical 

buckling decreases by only 4.23%. 

 

 
Time (day) 

 Time (day) 
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If that time is 15000 days (~42 years), a reduction of 

6.85% is found compared to 5000 days. Considering a later 

age, for instance, 20000 days (~55 years), the critical 

buckling load decreases just by 7.65%. In reality, the 

absolute convergence of results only occurs for an age that 

is out of the lifetime of the structure. The mass at the top 

can be obtained simply by dividing each buckling force by 

the acceleration of gravity. 

Frequencies for the self-weight only can be seen in Fig. 

5(a). From t = 0 (0.172 Hz) to 5000 days (0.147 Hz) there is 

a difference of around 2%. Fig. 5(b) shows the frequency 

variation of the structure over the considered time, as 

obtained by setting the normal force to the value 

corresponding to the critical buckling load. This graph is 

applicable for the case of temporary loading or use or even 

when the load to be applied is close to the maximum  

 

 

vertical loading structural capacity. The force corresponding 

to the point with coordinates (0,0) is 294 kN. In sequence, 

up to (0, 5000 days) the values of the critical load of 

buckling are 269, 248, 238, 227, 221, 217, and 214 kN, a 

variation corresponding to 27.27%. 

The strains related to the ULS and subject to an axial 

loading corresponding to the critical buckling load are 

shown in Fig. 6. Thus, it is possible to verify their linear (or 

monotonic) aspect and that all strains are below the 2‰ 

normative limit (Karimi et al. 2013), defined as the strain at 

which concrete begins to crack (Tamayo et al. 2015). The 

maximum strain value corresponding to the critical 

buckling load, which was investigated under the most 

unfavorable condition, was 0.094‰, representing just 

4.72% of that limit. These results were obtained by 

considering the total deformation of the structure, including  

  
(a) Dynamically obtained critical buckling load (b) Frequency of critical buckling load over time 

Fig. 5 Structural frequencies 

 

Fig. 6 Total structural strain over time according to the generalized normal force 
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(a) Section S3. 

  
(b) Section S4 

  
(c) Section S5 

Fig. 7 Inertia (left) and area (right) homogenized factors over time 
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its foundation, which was calculated segment by segment 

using to Eq. (57),  taking into consideration the  

homogenization of the concrete area. In Eq. (57), if creep in 

not considered in a specific cross-section, particularly S1 

and S2, t should vanish from the corresponding portion in 

the summation, which lets n = 5 to be adopted.  

1
0( , )

n

s
h s

L

m t
L

 






with sL   

1

0 0 1

1

( ) ( )( )

( ) ( )

s

s

n

L s s s

s

h

s SL

N m N m x L x g

dx
E t A t







 
   

 


  

(57) 

The evolution of the homogenizing factors for both 

inertia, Eq. (45), and area, Eq. (51), are depicted in Fig. 7. 

To calculate stress on cross-section areas, the 

homogenizing factor took into consideration the 

relationship between the modulus of elasticity and the 

existing areas and the evolution of the concrete’s strength. 

The non-dimensional axial load on homogenized concrete 

sections under creep effect can be obtained by 

0
0

( )
( , )

( ) ( )

h S
S h

S ctm

N m
m t

A t f t
   (58) 

where 

0 0 1

1

( ) ( )
n

j

S o s S

s

N m N m N N



    (59) 

is the normal force acting on the section S, with  

2
j s

S

N
N  , for s = 3 and 5;  

or 
4.5

j s
S

N
N  , for s = 4, 

(60) 

 

 

where Ns is the force related to the segment s as specified in 

Eq. (29), with s varying from 3 to 5, and n equal to 5, 

( )h

SA t is the homogenized cross-sectional area over time, 

given by Eq. (50), and fctm(t) is a function representing the 

gain of concrete resistance over time, which is expressed by 

Eq. (60). The reduced normal force represented in Eq. (58) 

is a bilinear function, as shown in Fig. 8, where the 

inflection point at different times indicates the position of 

critical buckling load, at which the structure is at imminent 

collapse and no further load can be applied. The critical 

buckling load depends on time and is obtained using Eq. 

(35). When the normal force at the top is equal to the 

critical buckling force (N0(m0)=Ncb(t)), the relative stress 

values, given by Eq. (58), in homogenized concrete sections 

3–5 are 3.64, 3.73, and 3.27%, respectively, at t = 0.  

Therefore, the maximum value found for the stress in the 

homogenizing concrete area is close to 4% of the resistant 

capacity of the section (section S4). 

When increasing the homogenized area of concrete, Eq. 

(51), the normalized stress decreases, as can be seen in Fig. 

8, where zero time is the black curve, 90 days is the blue 

one, and so on up to 5000 days. That means the creep drives 

down the stress on the sections in favor of the ULS of the 

capacity resistance for vertical force, Fig. 8(left), and the 

limit of strain, Fig. 8(right). In relation to these aspects, the 

self-weight of the structure imposes initial values to the 

system. Fig. 9 shows the characteristic strength capacity of 

the concrete obtained using Eq. (60), which considers the 

evolution of concrete strength over time (t), as follows 

 
0

28

0

( )ctm cm

t t
f t f

a b t t

 
  

   
, in MPa, (61) 

where a = 2.3 days, b = 0.917857, t0 is time zero at the 

beginning of loading, therefore t0 = 0 if this moment occurs 

28 days after the casting of the concrete, and fcm28 is the 

compression resistance of concrete 28 days after its  

Table 1 Results with respect to time 

Time E Ncb Ncb FEM FEM 
 Ncb 

FEM 
fctm 

h

S ; 
st

S  (%) 

(day) (MPa) (kN) (%) (kN) (%) (%) (MPa) 
S3 (= 0.83%) S4 ( = 0.99%) S5 ( = 1.10%) 

h

S  
st

S  
h

S  
st

S  
h

S  
st

S  

0 19121 293.89 - 260 - 11.6 45.00 3.64 3.52 3.73 3.60 3.27 3.16 

90 16964 269.11 - 8.43 232 -10.6 13.7 48.01 3.26 3.74 3.32 3.80 2.87 3.28 

500 15131 248.05 - 7.82 208 -10.5 16.2 48.80 3.08 3.98 3.11 4.01 2.65 3.42 

1000 14236 237.76 -4.15 196 -5.9 17.7 48.91 3.01 4.12 3.03 4.13 2.57 3.49 

2000 13314 227.17 - 4.46 183 -6.5 19.5 48.97 2.94 4.27 2.95 4.27 2.48 3.58 

3000 12784 221.08 - 2.68 175 -4.1 20.6 48.99 2.90 4.37 2.90 4.36 2.43 3.63 

4000 12419 216.89 - 1.89 170 -2.9 21.5 49.00 2.87 4.45 2.87 4.42 2.40 3.67 

5000 12145 213.74 - 1.45 166 -2.3 22.2 49.01 2.85 4.50 2.85 4.47 2.37 3.70 

 % = -36.48 -27.27 --- -36% --- --- 8.19 -15% 22% -17% 19% -21% 15% 

E = modulus of elasticity (Eq. (1)); Ncb  = critical buckling load (Eq. (35)); FEM = finite element method (Eq.(20)); fctm = resistance 

of concrete (Eq. (60)); = difference at next instant of time;  = normal reduced force (concrete, Eq. (58); reinforcement steel, Eq. 

(61));   = reinforcement ratio; S3, S4, and S5 = cross-sections 3, 4, and 5, respectively 
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(a) Section S3. 

  
(b) Section S4 

  
(c) Section S5 

Fig. 8 Stress (left) and strain (right) on homogenized areas 
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Fig. 9 Characteristic strength capacity of the concrete 

  
(a) Section S3 (b) Section S4 

 

 
 

(c) Section S5 

Fig. 10 Stress on reinforcement bar with normal force for each instant of time 
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production. The strength of the concrete stops growing at 

5000 days in relation to the initial time. 

 

In analogy to concrete, the relative force on the 

reinforcement steel is found as follows 

0
0

( , )
( , )

st
st S
S st

S y

N m t
m t

A f
   (62) 

where st

SA  is the area, fy is the yielding of steel, and st

SN

is force upon the steel area, which is given by Eq. (62) 

0
0

( )
( , )

1 1
1

( )

st S
S

S

N m
N m t

t 





 
(63) 

where NS(m0) is the normal force on section S given by Eq. 

(59), (t) is defined by Eq. (41), S represents the 

reinforcement rate of the considered section, with S varying 

from 3 to 5 for the present analysis. Eq. (62) represents the 

condition of force balance and the compatibility of 

displacements in a cross-section S. Fig. 10 plots Eq. (61) for 

a variation of the mass applied on top of the structure from 

zero up to the mass corresponding to the critical buckling 

load for each defined time. 

Additionally, an internal balance existed, which 

compensated for the increasing strains caused by the 

applied loading as the concrete’s modulus of elasticity 

decreased over time. Consequently, stress was transferred to 

the reinforcement in the sections as demonstrated in Fig. 11, 

which expresses the relationship between h

S  and st

S  as 

presented in Table 1. However, this additional stress, which 

was calculated over each bar according to Eq. (61), was far 

from producing the yielding of steel, as shown in Fig. 10. 

From the calculation with consideration to the self-weight 

of the superior segments, the following conclusions were 

drawn: in Section S3, the stress at the critical load was 

22.52 MPa (4.50% of fy); in Section S4, the same stress was 

22.35 MPa (4.47% of fy); in Section S5, the same stress was 

18.50 MPa (3.70% of fy); the stress required for the yielding 

of steel was fy = 500 MPa. These results were obtained 

through the equilibrium of forces and compatibility of 

displacements in the cross-sectional area, for which the 

reinforcement ratio was considered. In all simulations, the 

reinforcement’s modulus of elasticity was equal to 

205 GPa, standard conditions of concrete production were 

applied, and the acceleration of gravity was 9.807 m/s2. 

All the results are presented in Table 1. Table 1 shows 

that the variation over time can be considered as the 

modulus of elasticity of concrete (E), critical buckling load 

of the structure (Ncb), the difference between the successive 

values of the critical load (and the normal reduced force 

(or normalized) ( h

S ) of the homogenized concrete area 

defined by Eq. (58), the relative force on reinforcement  

( st

S ) defined by Eq. (61), and the reinforcement ratio () 

for the sections of interest. 

 

 

 

Fig. 11 Relationship between stresses on concrete and 

the reinforcement steel 

 

 

An average difference of 18% for the elapsed time 

between the analytical procedure and FEM was found. This 

difference derives from the intrinsic properties of each 

mathematical method. The first one offers a solution that 

can be obtained directly in the continuum while the second 

one needs to discretize it. The analytical method tends to 

stiffen the structural system more than the solution by FEM, 

so the difference increases as the structure becomes more 

flexible by decreasing the modulus of elasticity. However, 

because the soil springs are not contemplated by the 

analytical shape function, FEM stiffens the lower segments 

of the structure more. Differences between analytical results 

and FEM were also noticed by Zhou et al. (2019) when 

studying the elastic buckling of columns with complex 

geometry. It can also be noted that multiplying the inertia 

reduction factor of 0.5 by the residual value of the modulus 

of elasticity of 0.64, the final averaged effective stiffness for 

the modulus of elasticity of concrete is 0.32. To find a final 

effective stiffness of 0.26 at the end of the period of 

convergence of the creep coefficient, a reduction factor of 

0.4 should have to be applied to the modulus of elasticity of 

concrete at time zero. 

 

 

7. Conclusions 
 

The critical buckling force of an actual RC structure was 

analyzed using an analytical process based on vibration 

concepts for mechanical systems. The analyzed structure 

exhibited a geometrical variation throughout its height. The 

analysis considered all parameters required in the dynamic 

calculation. The geometric imperfections were considered 

with regard to the geometric stiffness. Cracks were 

considered with regard to the sections’ factored moment of 

inertia. Finally, the viscoelastic behavior of concrete (or 

creep) was considered according to the ACI guidelines. The 

following conclusions were drawn based on the obtained 

results: 
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 The critical buckling load was determined as a 

compressive force of 294 kN at time zero, and 214 kN 

after 5000 days of applied loading, both of which 

correspond to the nullification of the first natural 

frequency, which marks a reduction of 27%. 

 The modulus of elasticity exhibited a variation of 

36.48% over the considered time due to creep. 

 The strains exhibited linear behavior over time. 

 All strains remained below the allowed axial 

deformation design limit (2‰), even when the buckling 

load was considered for each time. The maximum strain 

represents only 4.72% of this limit. 

 The normal stresses exerted on the concrete 

homogenized cross-section decreased over time because 

the homogenizing factor increased. 

 A maximum value of approximately 4% was 

determined using the relationship between the critical 

buckling load and the compressive capacity of the 

concrete homogenized section. 

 Because part of the load was transferred to the 

reinforcement steel, the stresses reached a maximum of 

4.50% of the steel yielding stress. 

 The gain in the compressive strength of concrete 

over time was approximately 8.17% in the considered 

time span. 

 This study only considered dead loads, such as the 

self-weight of the column, and a sustained lumped load 

at the top. Only characteristic values were considered, 

safety coefficients were not used. 

 In the procedure described in this paper, an 

interactive or discretization process is not needed, and 

the solution of the critical buckling load can be 

accurately and directly obtained on the continuum. 

 The mathematical process can be adapted to consider 

different geometries, with one or more, or even no 

lumped masses (and forces) along the height, which 

makes it possible to obtain approximate solutions to 

problems that can be modeled as unidimensional 

elements, such as buildings. 

 In future work, comparative analyses with additional 

normative criteria for creep will be carried out for 

comparison, and the effects of transversal deformations 

and those induced by thermal variation will be 

considered along with creep. The effects of concrete 

shrinkage should also be studied. Moreover, further 

improvements will be made based on the reinforcement 

ratio of cross-sections and the structural slenderness 

ratio. 
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