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1. Introduction 
 

When the load frequency of the physical system is equal 

to the natural frequency of the system, the amplitude of the 

physical system will reach its maximum and resonance 

phenomenon will occur. The phenomena of resonance exist 

widely in nature and many engineering fields, which 

involve in the acoustic resonance of musical instruments, 

bridges and circuits. Scientists exploit or try to avoid 

resonance. In engineering, in most cases, resonance can be 

very destructive to the system. Machine tool, for example, 

when the moving parts of the machine tool are running, 

when the external excitation frequency is equal to the 

natural frequency of the machine tool, resonance will occur, 

which will affect the machining accuracy and aggravate the 

damage to the machine tool. In addition, the collapse of 

Bridges and the crash of airplanes are sometimes caused by 

resonance phenomena. Therefore, the study of resonance 

phenomena not only has important engineering background 

but also has important theoretical value. In addition, as 

common structures in engineering, the resonance 

characteristics of beams, plates and shells have attracted the 

attention of many scholars. For example, Du and Li studied 

the resonance behavior of FG cylindrical shells under pure 

bending loadings (Du and Li 2013) and combined bending 

and thermal loadings (Du and Li 2014) based on multiple 

scale method. Ahmadi et al. (2019) investigated the effect 

of damping and nonlinear elastic foundations on the 

resonance of imperfect spiral stiffened FG cylindrical 

shells. Sebastián et al. (2013) performed the resonance  
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analysis of the FG beams under combined harmonic 

transverse and thermal loadings. However, the resonance 

vibration of micro/nano structures is a new topic and has 

not yet been study enough. 

Nanomaterials have better mechanical properties than 

traditional materials (Marami et al. 2016) and have been 

widely used in nano electromechanical systems (NEMS). 

Recently, the dynamic characteristics of micro and nano 

structures have become a hot topic (e.g., Akgöz and Civalek 

2014, 2015, 2016, 2017, Amar et al. 2018, Apuzzo et al. 

2019, Attia and Rahman 2018, Barretta, Faghidian and 

Marotti de Sciarra, 2019, Barretta et al. 2020, Barretta and 

de Sciarra 2018, 2019, Civalek and Demir 2011, 2016, 

Civalek, Uzun, Yaylı, and Akgöz 2020, Demir and Civalek 

2013, Eltaher, Fouda, El-Midany, and Sadoun 2018, Fattahi, 

Safaei, and Moaddab 2019, Malikan et al. 2020, Fourn et 

al. 2018, Faleh et al. 2018, Gürses, Akgöz, and Civalek 

2012, Heydari 2018, Karami, Shahsavari, and Janghorban 

2019c, Khaniki 2018, Jandaghian and Rahmani 2017, 

Moradi-Dastjerdi and Behdinan 2019, Numanoğlu, Akgöz, 

and Civalek 2018, Zenkour 2018, Zenkour and Radwan 

2019). 

The resonance phenomenon of nanostructures is an 

important factor in the design of NEMS. Some scholars 

have carried out researches in this field. For example, based 

on Kirchhoff plate theory, Nami and Janghorban (2014) 

presented the resonance vibration of FG rectangular plate in 

micro and nano scale with simply-supported ends. 

According to nonlocal strain gradient (NSG) theory, Tang et 

al. (2018) analyzed the resonance behaviors of FG 

nanobeams surrounded by nonlinear elastic foundations. 

Based on modified couple stress theory (Farokhi et al. 

2015, Farokhi and Ghayesh 2015, Ghayesh et al. 2017), 

Farokhi and Ghayesh (2015) examined the nonlinear 
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resonance responses of Timoshenko microbeams, this work 

was then extended to the resonance responses of 

geometrically imperfect FG extensible microbeams by the 

same authors (Ghayesh et al. 2017). Farokhi et al. (2015) 

analyzed the effects of axial load and geometric 

imperfection on the resonance of Timoshenko mircobeams. 

Employing the third-order shear deformable plate theory, 

Ansari and Gholami (2016) predicted the resonance 

behaviors of the FG plates reinforced by carbon nanotubes. 

Karami et al. (2019a) discussed the resonance characteristic 

of FG nanoplates, in this work, the Kirchhoff plate theory 

are adopted. According to the nonlocal stress theory, 

Karami et al. (2019b) studied the resonance of FG polymer 

composite nanoplates reinforced with graphene 

nanoplatelets, their work shows that the reinforcement 

patterns can determine the resonance position.  

Curved beams are the basic structural elements of 

NEMS, and their design requires appropriate scale effect 

models (Barretta et al. 2019). At present, some scholars 

have studied the mechanical behavior of curved beams at 

micro/nano scale. For example, employing the stress-driven 

nonlocal model, Barretta et al. (2019) applied the nonlocal 

integral methodology to study the static bending of 

nanobeams. According to the strain gradient theory, Qi et al. 

(2018) investigated the static bending and free vibration 

characteristics of the flexoelectric curved micro beams. 

Employing the nonlocal stress theory and sinusoidal shear 

deformation theory, Arefi and Zenkour presented the 

thermal stress, deformation analyses (Arefi and Zenkour 

2018a) and vibrations (Arefi and Zenkour 2018b) of FG 

curved nanobeams. Based on NSG theory, Ebrahimi and 

Barati (2017) investigated the buckling characteristics of 

FG curved nanobeams with the help of various beam 

theories. Taking into the thickness stretching effect, 

Ganapathi and Polit (2017) performed the buckling and 

bending analyses of the curved nanobeams. Employing the 

nonlocal theory, Polit and his partners discussed the elastic 

stability (Polit, Merzouki, and Ganapathi 2018) and 

vibration (Ganapathi, Merzouki, and Polit 2018) analyses of 

curved nanobeam via finite element approach. Using the 

experimental method, Medina et al. (2014) presented the 

symmetric and asymmetric buckling of curved microbeam 

under axial and electrostatic force. Based on NSG theory, 

She and his partners performed the snap-buckling analyses 

of FG curved nanobeams subjected to combined bending 

and thermal loadings (She et al. 2019). 

From the literature survey, it is indicated that all of the 

existing valuable articles about curved micro/nano beams 

are limited to the buckling/bending problems or the free 

vibration of curved nanobeams, and the existing literature 

about forced resonance vibration are limited to flat 

micro/nano beams or shells. In addition, there is no works 

investigating the forced resonance vibration of the curved 

beams. Inspired this fact, this paper aims at predicting the 

forced resonance vibrat ion of porous FG curved 

nanobeams. To this end, based on NSG theory, the 

governing equations with simply-supported ends are 

derived and solved by Navier’s series. According to the 

numerical analysis, it is found that the material 

composition, nonlocal and strain gradient parameters,  

 

 
 

Fig. 1 Configuration of FG curved nanobeam (From 

Anirudh et al. 2020 and Lei et al. 2020) 

 

 

porosity, opening angle and length-to-thickness ratio have a 

crucial role to play in the frequency-deflection response of 

the porous FG curved nanobeam. 

 

 

2. Governing equations 
 

A curved nanobeam made from a mixture of ceramic 

(denoted by c) and metal (denoted by m) is considered in 

Fig. 1. The length and thickness of the nanobeam are 

denoted by L and h, respectively. Herein, the effective 

material properties (including mass density ρ(z), Poisson 

ratio ν(z), and Young’s modulus E(z)) of the nanobeams are 

approximated by a modified power-law rule as follows (She 

et al. 2019, Jalaei and Civalek 2019) 

 
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Here, ξ refers to the porosity volume fraction, n stands for 

the power law index. 

Here, we assume that the displacement field at any point 

of the nanobeam according to Timoshenko beam theory can 

be expressed as (Hosseini and Rahmani 2016) 
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Here, u and w are tangential and radial displacement of a 

point and φ represents the rotation. The non-zero strains are 
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To obtain the governing equations, the extended 

Hamilton principle is utilized 

2
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t
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T U W dt     (4) 

The strain energy’s variation U can be written as 

180



 
On resonance behavior of porous FG curved nanobeams 

 

0

( )

( ( )

( ))

ij ij
V

L

xx xx

xz

U dV

u w
N M

x R x

w u
Q dx

x R

  

  

 




 
  

 


  





  (5) 

where 
/2

/2

/2

/2

/2

/2

h

xx xx
h

h

xx xx
h

h

xz xz
h

N dz

M z dz

Q dz





 



















 (6) 

Κ=5/6 denotes the shear correction factor (Romano et al. 

2012, Faghidian 2017).  

Kinetic energy’s variation T is  
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The variation of the virtual work done W by the 

transverse load q can be obtained as 

dynamic
0

L

W q wdx    (9) 

Substituting Eqs. (5), (7) and (9) into Eq. (4), and 

integrating through the thickness, the following governing 

equations can be arrived at 
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It is noted that this Timoshenko beam theory can be 

appropriately disused from the classical elasticity 

formulation of the Saint-Venant flexure problem Faghidian 

(2016). Since classical continuum theories cannot predict 

the behavior of nanostructures, the non-classical theories 

have been put forward to overcome the shortcoming of 

classical theories. In the present work, based on the NSG 

theory (Lim et al. 2015, Ghayesh and Farajpour 2018, Lu et 

al. 2019), the stress-strain relation can be written as  
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Here, (ea) is the nonlocal parameter, and  denotes the 

strain gradient parameter. According to the stress resultants 

(Eq. (6)), then, we have 
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(18) 

By inserting the rewritten stress resultants (Eqs. (15)-

(17)) into the equilibrium equations (Eqs. (10)-(12)), we 

have the following governing equations 
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4. Solution method 
 

According to the suitable admissible functions, the 

forced resonance vibration of the curved nanobeams with 

simply-supported ends can be determined with the help of 

the Navier’s series. To this end, the displacements of 

Timoshenko nanobeam are selected as 
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where α=mπ/L; Ω denotes excitation frequency; 

, ,m m mU W  represent undetermined displacement 

amplitudes. Furthermore, for the simply supported ends,  
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Substituting Eq. (22) into Eqs. (19)-(21), and collecting 

the coefficients of displacement amplitudes, we can obtain 

the following matrix 
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in which [M], and [K] are, respectively, mass matrix, and 

the total stiffness matrix. In the current work, we assume 

that the applied load is distributed on the surface of the 

nanobeam, and the specific load frequency can be expressed 

as 

dynamic

1

sin sinm

m

q Q x t

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Herein, Qm is the load amplitude. 

 

 

5. Numerical results 
 

This work deals with the forced resonance vibrations of 

curved Al3O3/SUS304 nanobeam. The adopted material 

properties are (Ebrahimi and Barati 2017): ρc=2370 kg/m3, 

νc=0.24, Ec=348.43 GPa; ρm=8166 kg/m3, νm=0.3262, 

Em=201.04 GPa. To ensure the accuracy of present model, 

the free vibration of Steel/Alumina nanobeam is compared 

to the results of Ebrahimi and Barati (2017) and tabulated in 

Table 1, from which good agreement can be seen. It is 

worth noting that the curved nanobeam behave like a 

straight one when R=+∞. It is important to note that, in the 

following analysis, µ=(ea)2 and 2  . In addition, we 

define the following dimensionless notation (Karami et al. 

2019a,b): 

Deflection using nonloacl/strain gradient theory
Deflection raio=

Deflection using local theory
 

Figs. 2 and 3 depict the resonance phenomena of the 

curved nanobeams with different strain gradient and 

nonlocal parameters, respectively. From Fig. 2 it is 

observable that the resonance position is postponed by 

increasing the strain gradient parameter due to the fact that 

the totally stiffness of the curved nanobeams increases as 

the strain gradient parameter rises.  Furthermore, as seen 

in Fig. 3, the resonance position will move to the lower load 

frequency which is due to the reduction in total stiffness of 

the nanobeams. Clearly, the resonance position of 

nanostructures can be changed by the small-scale 

parameters. 

Fig. 4 shows the effect of opening angle on the 

resonance position of the curved porous nanobeams. 

Furthermore, the resonance position of straight beam is 

studied. It is found that increasing opening angle results in 

resonance position moves to lower-load frequencies and it’s 

because of decreasing the radius of curvature (R=L/α). 

The effect of length-to-thickness ratio L/h is illustrated 

in Fig. 5. It is observed that increasing the length-to-

thickness ratio leads to resonance position moves to lower-

load frequencies. 

 

 

 

Fig. 2 The effect of the strain gradient parameter on the 

resonance position of the curved nanobeam, (L=10nm, 

α=π/3, L/h=20, n=1, ξ=0.1, μ=0) 
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Fig. 3 The effect of the nonlocal parameter on the resonance 

position of the curved nanobeams, (L=10 nm, α=π/3, 

L/h=20, n=1, ξ=0.1, λ=0) 

 

 

 

Fig. 4 The effect of the opening angle on the resonance

 position of the curved nanobeam, (L=10 nm, L/h=20,

 n=1, ξ=0.1, μ=0, λ=1 nm2) 

 

 

 

Fig. 5 The effect of the length-to-thickness ratio on ther

esonance position of the curved nanobeam, (L=10 nm, 

α=π/3, n=1, ξ=0.1, μ=1 nm2, λ=0) 

 

 

Fig. 6 The effect of the power-law index on the resona

nce position of the curved nanobeam, (L=10 nm, α=π/

3, L/h=20, ξ=0.1, μ=0, λ=1 nm2) 

 

 

Fig. 7 The effect of the porosity coefficient on the reso

nance position of the curved nanobeam, (L=10 nm, α=

π/3, L/h=20, n=1, μ=1 nm2, λ=0) 

 

 

In other words, the resonance position is postponed by 

increasing the thickness of the nanobeams. From Fig. 5, it 

can be concluded that the vibration of nanostructures can be 

controlled by geometrical parameters. 

The effect of material composition considering power-

law index on the dynamical deflection ratio of the 

nanobeams is illustrated in Fig. 6. It is brightly shown that 

the rise of power-law indices yields to move resonance 

position to lower-load frequencies. It is because of 

increasing the metal phase which has lower value of 

Young’s modulus compared to ceramic one that leads to 

decrease the stiffness of the nanobeams. 

Porosity affected resonance poison of the nanobeam is 

depicted in Fig. 7. As seen, by increasing the porosity, the 

resonance position will move to lower-load frequencies. 

Furthermore, it worth mentioning that this coefficient has 

no valuable impact on the resonance phenomenon, but 

maybe propounding this factor leads to provide a better 

response compared to the nature of FGMs. 
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6. Conclusions 
 

This work aims at investigating the forced resonance 

phenomenon of a curved nano-size beam whose was made 

of FGMs. The influence of porosities was also considered. 

Timoshenko beam model and NSG theory were used to 

obtain the motion governing equations. Then, an analytical 

technique based Navier series was adopted to solve the 

dynamic problem and get the resonance position. Through 

the numerical examples, the conclusions can be summarized 

as below: 

 It was revealed that the resonance position will move to 

higher load frequencies by increasing the strain 

gradient size dependency. In other word, body 

stiffness’s growth has been observable for the 

nanobeam with the rise of gradient length scale 

parameter. 

 It was revealed that the resonance position will move to 

lower load frequencies by increasing the nonlocality. In 

other word, body stiffness’s reduction has been 

observable for the nanobeam with the rise of nonlocal 

parameter. 

 The resonance position will move to lower-load 

frequencies with increasing the opening angle. 

 The resonance position was postponed by increasing 

the thickness of the nanobeams. 

 The resonance position of the porous FG curved 

nanobeam will move to lower-load frequency by 

increasing the power-law indices. 

 It was revealed that the porosity doesn’t play an 

important role in the resonance phenomenon of the 

nanobeam. 
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