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1. Introduction 
 

Perforated materials are a reliable method which can be 

applied in many practical applications in modern society 

and industrial applications. Perforation is a very common 

procedure in MEMS fabrication. The release of beams and 

plates is often obtained by sacrificial etching through a 

pattern of holes fabricated on these structures. Perforations, 

though introduced for a technological reason, affect the 

behavior of MEMS structures in various ways. However, 

their effect on the mechanical behavior of beams and plates 

has been extensively investigated only for specific cases 

and applications, Luschi and Pieri (2014). 

Elements structure such as, beams, plates and shells are 

widely used in real applications, ranging from macro-scale 

applications (i.e., aerospace, civil, mechanical and nuclear  
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structures), to micro-scale applications (i.e., actuators, 

resonators, switches, and RF MEMS), and to nano-scale 

applications (i.e., AFM, nanoprobes, nanoactuators, and 

nanoswitches), Abdelrahman et al. (2019). Nowadays, 

perforation is a geometric procedure widely used in 

advanced technologies to develop sensitive structures such 

as in the heat exchangers and nuclear power plants 

applications (Jeong and Amabili 2006), in ships and 

offshore structures Kim et al. (2015), and in optomechanics 

and photonics Chan et al. (2009).  

As a macro-scale structure, Luschi and Pieri (2012) 

introduced closed forms for equivalent bending stiffness in 

the filled and the perforated sections of perforated beam to 

examine bending properties of beams with regular 

rectangular perforations. Xiao et al. (2012) exploited wave 

expansion method to study the flexural wave propagation in 

locally resonant beams with multiple periodic arrays of 

attached spring-mass resonator. Sun et al. (2017) carried out 

experiments to reveal cutout effects on stress 

concentrations, failure styles, natural frequencies and mode 

shapes of conical carbon fiber reinforced composite lattice-

core sandwich cylinder. Sivakumar et al. (2018) 
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Abstract.  In nanosized structures as the surface area to the bulk volume ratio increases the classical continuum mechanics 

approaches fails to investigate the mechanical behavior of such structures. In perforated nanobeam structures, more decrease in 

the bulk volume is obtained due to perforation process thus nonclassical continuum approaches should be employed for reliable 

investigation of the mechanical behavior these structures. This article introduces an analytical methodology to investigate the 

size dependent, surface energy, and perforation impacts on the nonclassical bending behavior of regularly squared cutout 

nanobeam structures for the first time. To do this, geometrical model for both bulk and surface characteristics is developed for 

regularly squared perforated nanobeams. Based on the proposed geometrical model, the nonclassical Gurtin-Murdoch surface 

elasticity model is adopted and modified to incorporate the surface energy effects in perforated nanobeams. To investigate the 

effect of shear deformation associated with cutout process, both Euler-Bernoulli and Timoshenko beams theories are developed. 

Mathematical model for perforated nanobeam structure including surface energy effects are derived in comprehensive procedure 

and nonclassical boundary conditions are presented. Closed forms for the nonclassical bending and rotational displacements are 

derived for both theories considering all classical and nonclassical kinematics and kinetics boundary conditions. Additionally, 

both uniformly distributed and concentrated loads are considered. The developed methodology is verified and compared with 

the available results and an excellent agreement is noticed. Both classical and nonclassical bending profiles for both thin and 

thick perforated nanobeams are investigated. Numerical results are obtained to illustrate effects of beam filling ratio, the number 

of hole rows through the cross section, surface material characteristics, beam slenderness ratio as well as the boundary and 

loading conditions on the non-classical bending behavior of perforated nanobeams in the presence of surface effects. It is found 

that, the surface residual stress has more significant effect on the bending deflection compared with the corresponding effect of 

the surface elasticity, Es. The obtained results are supportive for the design, analysis and manufacturing of perforated 

nanobeams. 
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investigated 3D static bending of a perforated beam due to 

applied loading and electrostatic forces together. Choudhary 

et al. (2019) exploited global optimization Genetic 

Algorithm tool to optimize the location of cutout within 

laminated cantilever beam for maximum lateral buckling 

load. Chaabane et al. (2019) studied analytically bending 

and free vibration responses of FG beams resting on elastic 

foundation. Zhang et al. (2019) presented mixed 

experimental-numerical analysis to simulate modal 

characteristics of micro-perforated sandwich beams with 

square honeycomb-corrugation hybrid cores. Abdelrahman 

et al. (2019) and Almitani et al. (2019) studied the free and 

forced vibration of perforated beam with regular array of 

squares by using analytical method and derived closed 

forms for resonant frequencies, corresponding Eigen-mode 

functions. Ansari et al. (2019, 2020) studied buckling and 

vibration of functionally graded (FG) carbon nanotube-

reinforced composite plates with the arbitrarily shaped 

cutout using a numerical approach. 

In a nanoscale system, the dimensions of the structures 

are akin to their inter-atomic distances, which means that 

classical continuum models are incapable to incorporate 

size-scale effects in the solution, Eltaher et al. (2013a). So, 

modified continuum models such as micromorphic, 

micropolar theory, Cosserat theory, nonlocal elasticity 

theory, couple stress theory and surface energy effects have 

been proposed to include micro/nano-scale effects and 

encompass classical continuum mechanics at macroscale, 

Eltaher et al. (2014a). Ansari and Sahmani (2011) studied 

bending and buckling behaviors of nanobeams including 

surface stress effects corresponding to different beam 

theories. Mahmoud et al. (2012) and Eltaher et al. (2013a) 

studied the coupled effects of surface energy properties and 

nonlocal elasticity on static and vibration of nanobeams by 

using finite element method. Khater et al. (2014) examined 

impact of surface energy and thermal loading on the static 

stability of curved nanowire. Eltaher et al. (2016) exploited 

two scale size dependent model including material scale and 

size-scale to investigate the nonlinear bending of nonlocal 

nanobeam. Agwa and Eltaher (2016) investigated the 

influence of surface elasticity and residual surface tension 

on the natural frequency of nanomechanical mass sensor 

using a carbyne resonator. Ebrahimi et al. (2017) presented 

influenced surface energy on vibration and buckling 

behavior of embedded nanoarches. Phung-Van (2017a, b) 

developed nonlinear transient isogeometric analysis of 

smart piezoelectric FG plates under thermo-electro-

mechanical loads. Bellifa et al. (2017) developed a nonlocal 

zeroth-order shear deformation theory to study nonlinear 

postbuckling of nanobeams. Ebrahimi and Barati (2018) 

studied surface and flexoelectricity effects on size-

dependent thermal stability of smart piezoelectric 

nanoplates. Ebrahimi and Barati (2018) investigated 

stability of porous multi-phase nanocrystalline nonlocal 

beams based on a general higher-order couple-stress beam 

model. Li et al. (2018) developed nonlocal strain gradient 

beam model incorporating the thickness effect in buckling 

analysis of nanobeams, and derived closed-form solutions 

for post-buckling configuration and critical buckling force. 

Phung-Van et al. (2018) and Thanh et al. (2018, 2019a) 

investigated nonlinear transient isogeometric analysis of 

FG-CNTRC damped and undamped nanoplates in thermal 

environments. Ebrahimi et al. (2019a, b) and Vinyas (2020) 

and Vinyas et al. (2019a, b) studied frequency response of 

porous FG magneto-electro-elastic plates and beams. 

Ebrahimi et al. (2019c, d, e) studied scale-dependent 

vibration behavior of flexoelectric nanobeams by using 

surface energy and nonlocal strain gradient elasticity 

theories. Based on finite element method, Vinyas and 

Kattimani (2017a, b, c, d) investigated the elastostatic 

behavior the coupled magneto-electro-elastic smart beams 

and plate structures under different mechanical or 

thermomechanical loading conditions. Extensions of these 

works to study the vibration behavior of these smart 

structures have been developed by Mahesh et al. (2018); 

Vinyas and Kattimani (2018a, b), Vinyas et al. (2018a, b).  

Eltaher et al. (2019a) illustrated coupled effects of nonlocal 

elasticity and surface properties on static and vibration 

characteristics of piezoelectric nanobeams using thin beam 

theory and finite element method. Karimiasl et al. (2019a, 

b) investigated postbuckling and nonlinear vibration of 

piezoelectric multiscale sandwich composite doubly curved 

porous shallow shells. The frequency response and the 

coupled evaluation of the vibrations characteristics as well 

as the damping effect on the coupled vibration response 

were investigated and analyzed by Mahesh and Kattimani 

(2019), Mahesh et al. (2019) and Vinyas et al. (2019). 

Comprehensive review and dynamic investigations of 

functionally graded smart structures have been reported in 

Vinyas (2020a, b) and Vinyas et al. (2020a, b). Benahmed 

et al. (2019) studied buckling of FG nanoscale beam with 

porosities using nonlocal higher-order shear deformation. 

Khatir et al. (2019) proposed new technique based on 

Artificial Neural Network (ANN) combined with Particle 

Swarm Optimization (PSO) for damage quantification in 

laminated composite plates using Cornwell indicator (CI). 

Hamed et al. (2019) presented effects of porosity models on 

static behavior of size dependent functionally graded beam. 

Phung-Van et al. (2019) and Thanh et al. (2019b) studied 

porosity effects on nonlinear transient responses and 

stability of FG nanoplates using isogeometric analysis. 

Thanh et al. (2019c, d) studied mechanical behaviors of 

composite laminate microplate based on new modified 

couple stress theory and isogeometric analysis. Mohamed et 

al. (2019, 2020) studied postbuckling of nanotube modeled 

as thin beam by using energy equivalent method. Eltaher 

and Mohamed (2020a) developed an analytical solution to 

study nonlinear stability and vibration of imperfect CNTs 

by doublet mechanics.  

Material distribution greatly affects the mechanical 

behavior of functionally graded structures, Alimirzaei et al. 

(2019) developed a nonlinear finite element analysis to 

investigate the coupled bending, buckling, and vibration 

behaviors of micro composite beams. Karami et al. (2019) 

investigated the buckling behavior of functionally graded 

(FG) nanoplate. Stability and frequency analysis of curved 

cantilevered microtubule were exactly investigated by 

Shariati et al. (2020). Rayleigh-Ritz's method was applied 

by Hussain et al. (2020) to simulate vibration of single-

walled carbon nanotube. Using nonlocal two variables 
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integral refined plate theory, the free vibration response of 

FG nanoscale plate was investigated by Balubaid et al. 

(2019). Effects of nonlocality on the vibration of different 

configurations of carbon nanotubes was investigated by 

Hussain et al. (2019). Based on simple nonlocal quasi 

3Dhigher shear deformation theory, Boutaleb et al. (2019) 

studied the dynamic analysis of nanosized FG plates.  

Berghouti et al. (2019) studied the vibration behavior of 

porus FG nanoplates. Karami et al. (2019) analyzed the 

prestressed FG anisotropic nanoshell. Vibrations of FG 

microbeams with different material distributions was 

investigated by Tlidji et al. (2019). Thermal buckling 

behavior of zigzag single-walled boron nitride (SWBNNT) 

embedded in an elastic medium modeled as Winkler type 

foundation were investigated using a nonlocal first order 

shear deformation theory, Semmah et al. (2019). Bedia et 

al. (2019) analyzed both bending and buckling analysis of a 

nonlocal strain gradient nanobeams. Constitutive boundary 

conditions and paradoxes in nonlocal elastic nanobeams 

were adressed by Romano et al. (2017). This work was 

extended to discuss these constitutive boundary conditions 

for for nonlocal strain gradient elastic nano-beams, Barretta, 

and de Sciarra (2018). Barrett et al. (2019) developed a 

stress-driven local-nonlocal mixture model for Timoshenko 

nano-beams. 

For perforated nanobeams, Luschi and Pieri (2014, 

2016) developed closed expressions for the equivalent 

bending and shear stiffness of clamped–clamped beams 

with regular square perforations and determined their 

resonance frequencies. Bourouina et al. (2016) investigation 

of thermal loads and small-scale effects on free dynamics 

vibration of slender simply supported nonlocal perforated 

nanobeams with periodic square holes network. Eltaher et 

al. (2018a, b) presented a modified comprehensive model to 

investigate static bending, buckling and resonance 

frequencies of nonlocal perforated nanobeam. Kerid et al. 

(2019) explored the magnetic field, thermal loads and 

small-scale effects on the dynamic vibration of Euler–

Bernoulli nanobeam structure composed of a rectangular 

configuration perforated with periodic square holes network 

and subjected to axial magnetic field. Eltaher and Mohamed 

(2020b) and Hamed et al. (2020) investigated mechanical 

behaviors of nonlocal perforated Euler-Bernoulli and 

Timoshenko nanobeams under general boundary conditions. 

Eltaher et al. (2020a, b) studied bending and vibration of 

piezoelectric nonlocal preforated nanobeam with and 

without surface effects by using finite element method. 

Almitani et al. (2020) investigated buckling stability of 

perforated nanobeams incorporating surface energy effects.  

According to author’s knowledge and literature review, 

the investigation of the nonclassical bending behavior of 

perforated nanobeam with the presence of surface energy 

effect has not been analyzed before. So, this manuscript 

tends to fill this gap and present a unified nonclassical 

continuum model for bending analysis of regularly squared 

perforated nanobeams including the surface stress effects. 

To investigate the shear deformation effect due to 

perforation process, both Euler Bernoulli and Timoshenko 

beams theories are considered. The nonclassical theory of 

elasticity is coupled with the classical elasticity theory to 

incorporate the surface stress effects. The Gurtin-Murdoch 

surface elasticity model is modified and applied to simulate 

the surface energy effects in perforated nanobeams. 

Equivalent geometrical model for both bulk and surface 

parameters is developed. Considering both classical and 

nonclassical boundary conditions, closed forms for the 

nonclassical bending profiles throughout beam span are 

derived for both concentrated and uniformly distributed 

loading patterns. The rest of this article is organized as 

follows: section 2 presents equivalent geometrical and 

material properties of beams perforated by regularly 

squared array. Displacement field, strain-displacement 

relations, surface elasticity constitutive equations, and 

equilibrium equations of thin and thick perforated 

nanobeam are presented and derived in detail through 

section 3. The analytical solution procedure and the closed 

for expressions for different perforated nanobeams are 

derived in section 4. Model verification with the available 

analytical solutions is proved in section 5. Numerical results 

and comprehensive discussion are presented in section 6, to 

present influences of filling ratio, the number of hole rows, 

surface material characteristics, beam slenderness ratio as 

well as the boundary conditions. Section 7 discusses and 

illustrates main points and outcomes. 

 

 

2. Equivalent geometrical model 
 

Consider a regularly squared perforated nanobeam, 

shown in Fig. 1. The nanobeam has the following 

geometrical characteristics: length L, thickness h, and width 

w. The regular squared perforation pattern has the following 

characteristics: the spatial perforation period ls, hole side ls -

ts, and the number of holes throughout the cross section is 

N. The perforated beam filling ratio; α defined by the ratio 

of the spatial period, ts to the spatial perforation period, ls 

which can be expressed as 

𝛼 =
𝑡𝑠
𝑙𝑠
,    0 ≤ 𝛼 ≤ 1,   𝛼

= {
0          Artifitial case
1  Fully filled solid beam

 
(1) 

Assume that the total induced stress throughout the 

cross section is the same for both fully filled solid 

nanobeam and the corresponding perforated one. Also, the 

stress distribution throughout the filled segment in the 

perforated nanobeam is assumed to be linear and continuous. 

Based on these assumptions, following the procedure 

presented in Luschi and Pieri (2014) and Abdelrahmaan et 

al. (2019), the equivalent bending stiffness and shear 

stiffness of the bulk material of the perforated nanobeam 

can be expressed as 

(𝐸𝐼)𝑃𝑒𝑟𝑓 = (𝐸𝐼)𝑆𝑜𝑙𝑖𝑑  

{
𝛼(𝑁+1)(𝑁2+2𝑁+𝛼2)

(1−𝛼2+𝛼3)𝑁3+3𝛼𝑁2+(3+2𝛼−3𝛼2+𝛼3)𝛼2𝑁+𝛼3
}   

(2) 

(𝐺𝐴)𝑝𝑒𝑟𝑓 = (𝐸𝐴)𝑠𝑜𝑙𝑖𝑑 [
𝛼3(𝑁 + 1)

2𝑁
] (3) 
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Fig. 1 Geometry of a perforated beam Luschi and Pieri 

(2014) 

 

 

where, E is the elasticity modulus, I is the area moment of 

the fully filled beam.  (𝐸𝐴)𝑠𝑜𝑙𝑖𝑑is axial extension stiffness 

of the full beam. The equivalent cross-sectional area of 

perforated nanobeam can be expressed as  

(𝐴)𝑃𝑒𝑟𝑓 =
(𝜌𝐴)𝑠𝑜𝑙𝑖𝑑
(𝜌)𝑃𝑒𝑟𝑓

{
[1 − 𝑁(𝛼 − 2)]𝛼

𝑁 + 𝛼
}

= (𝐴)𝑠𝑜𝑙𝑖𝑑  {
[1 − 𝑁(𝛼 − 2)]

(𝑁 + 𝛼)(2 − 𝛼)
} 

(4) 

where (𝐴)𝑃𝑒𝑟𝑓 is the equivalent cross-sectional area of the 

perforated beam, (𝐴)𝑠𝑜𝑙𝑖𝑑  is cross sectional area of the 

fully filled solid beam. Consequently, the equivalent 

geometrical characteristics of the surface layer can be 

expressed as 

(𝐴𝜏𝑠)𝑝𝑒𝑟𝑓 = (𝐴𝜏𝑠)𝑠𝑜𝑙𝑖𝑑  {
[1 − 𝑁(𝛼 − 2)]

(𝑁 + 𝛼)(2 − 𝛼)
}  (5) 

where 𝜏𝑠 is the surface residual stress. Then the equivalent 

2nd moment of area of the perforated beam can be expressed 

as 

 

(6) 

where (𝐼)𝑝𝑒𝑟𝑓 is the equivalent 2nd moment of area of the 

perforated beam, (𝐼)𝑠𝑜𝑙𝑖𝑑  is the 2nd moment of area of the 

fully filled solid beam. 

 

 

3. Mathematical formulation 
 

The mechanical behavior of beams can be modeled with 

different theories depending on the beam slenderness ratio. 

In this section, the mathematical formulation of perforated 

nanobeams considering surface energy effects is presented. 

Both Euler Bernoulli beam theory (EBBT) and Timoshenko 

beam theory, (TBT) are considered throughout this study. 

 

 

3.1 Displacement field 
 

Consider a straight uniform beam with the following 

geometrical parameters; the beam length, L and the 

rectangular cross-section, A and depth, h. Assuming that the 

deformation of the beam takes place in the x-z plane, the 

displacement field can be expressed in a general form as 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢𝑜(𝑥, 𝑡) − 𝑧
∂𝑤(𝑥, 𝑡)

𝜕𝑥

+ 𝛾(𝑧) (
∂𝑤(𝑥, 𝑡)

𝜕𝑥
+ Φ(𝑥, 𝑡))   

          𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) 
 

(7) 

where (ux, uz) are the total displacements along the 

coordinate directions (x, z), and uo, w, and Φ denote the 

axial, transverse and angular displacements of a point on the 

neutral axis. While γ(z) is the beam shape function which 

can be written as, Ansari and Sahmani (2011)  

𝛾(𝑧) = {
0                 𝐸𝐵𝐵𝑇
𝑧                  𝑇𝐵𝑇

  (8) 

 

3.2 Strain-displacement relation 
 

Using the linear strain-displacement relations, the 

components of the infinitesimal normal strain εxx, shear 

strain, εxz are related to the displacement and rotation 

vectors as, Ansari and Sahmani (2011), Yang et al. (2002) 

𝜀𝑥𝑥(𝑥, 𝑡)

=

{
 

 
𝜕𝑢𝑥

𝜕𝑥
 =  

𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥, 𝑡)

𝜕2𝑥
    (𝐸𝐵𝐵𝑇)  

𝜕𝑢𝑥

𝜕𝑥
 =

𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥, 𝑡)

𝜕𝑥
   (𝑇𝐵𝑇)

 (9) 

𝜀𝑥𝑧(𝑥, 𝑡)

= {

0                                           (𝐸𝐵𝐵𝑇)

  
1

2
(
𝜕w(𝑥, 𝑡)

𝜕𝑥
+   Φ(𝑥, 𝑡))   (𝑇𝐵𝑇)

 (10) 

 

3.3 The constitutive relations  

 

Considering the Poisson’s effect, the constitutive 

equations are given by, Yang et al. (2002) 

𝜎𝑥𝑥

=

{
 
 

 
 (1 − 𝜈)𝐸

(1 + 𝜈)(1 − 2𝜈)
(
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2w(𝑥, 𝑡)

𝜕𝑥2
) (𝐸𝐵𝐵𝑇)

(1 − 𝜈)𝐸

(1 + 𝜈)(1 − 2𝜈)
(
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥, 𝑡)

𝜕𝑥
)  (𝑇𝐵𝑇)   

  (11) 

𝜎𝑦𝑦 = 𝜎𝑧𝑧

=

{
 
 

 
 𝜆 (

𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2w(𝑥, 𝑡)

𝜕𝑥2
) = (

𝜈

1 − 𝜈
)𝜎𝑥𝑥      (𝐸𝐵𝐵𝑇)

𝜆 (
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥, 𝑡)

𝜕𝑥
) = (

𝜈

1 − 𝜈
)𝜎𝑥𝑥          (𝑇𝐵𝑇)    

 (12) 
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𝜎𝑥𝑧 = {

2𝜇𝜀𝑥𝑧 = 0                             (𝐸𝐵𝐵𝑇)

2𝜅𝜇𝜀𝑥𝑧 =
𝜅𝐸

2(1 + 𝜈)
  (

𝜕w(𝑥, 𝑡)

𝜕𝑥
+   Φ(𝑥, 𝑡))    (𝑇𝐵𝑇) 

 (13) 

with �̂� = 2𝜇 + 𝜆 is the equivalent modulus of elasticity. 

Where E is the modulus of elasticity, v is the Poison’s ratio, 

k is the shear correction factor, σxx and σxz denote to the 

components of the Cauchy normal and shear stress 

components, respectively, λ and μ are Lame's constants in 

classical elasticity which are related to the elasticity 

modulus and Poisson’s ratio as 

𝜇 =
𝐸

2(1 + 𝜈)
,       𝜆 =

𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
  (14) 

 

3.4 The surface elasticity theory 

 

According to the surface elasticity theory, Gurtin and 

Murdoch (1975, 1978), the surface layer of an elastic 

material satisfies distinct constitutive equations involving 

surface elastic constants and surface residual stress. The 

non-zero components of the surface stresses are related to 

the displacement as follows, Gurtin and Murdoch (1975, 

1978) 

𝜏𝑥𝑥 =

{
 
 

 
 𝜏𝑠 + (2𝜇𝑠 + 𝜆𝑠) (

𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2w(𝑥, 𝑡)

𝜕𝑥2
)         (𝐸𝐵𝐵𝑇)

𝜏𝑠 + (2𝜇𝑠 + 𝜆𝑠) (
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥, 𝑡)

𝜕𝑥
)             (𝑇𝐵𝑇)

 (15) 

𝜏𝑧𝑥 = 𝜏𝑠𝑛𝑧  
𝜕w(𝑥, 𝑡)

𝜕𝑥
            (𝐸𝐵𝐵𝑇 𝑎𝑛𝑑 𝑇𝐵𝑇) (16) 

where nz is the z-component of the unit outward normal 

vector to the beam lateral surface. μs and λs are the surface 

elastic constants and τs is the residual surface stress (i.e., the 

surface stress at zero strain). These three constants μs, λs and 

τs can be determined from atomistic simulations, Miller and 

Shenoy (2000). τzx is the out-of-plane components of the 

surface stress tensor. Since the stress component σzz is small 

as compared to σxx it is neglected in the classical beam 

theories. By such assumption, the surface conditions cannot 

be satisfied. Thus, in order to satisfy the surface conditions 

of the Gurtin Murdoch model, it is assumed that σzz varies 

linearly through the thickness of nanobeam and satisfies the 

balance conditions on the surfaces Wang and Feng (2007) 

and Lu et al. (2018). Therefore, σzz is given for both EBBT 

and TBT as follows 

𝜎𝑧𝑧 =
1

2
(𝜎𝑥𝑧

𝑠+ − 𝜎𝑥𝑧
𝑠−) +

𝑧

ℎ
(𝜎𝑥𝑧

𝑠+ + 𝜎𝑥𝑧
𝑠−)  (17) 

𝜎𝑥𝑧
𝑠+ and 𝜎𝑥𝑧

𝑠− are the top and bottom fibers’ stresses, 

respectively. By substituting Eqs. (12) and (13), σzz can be 

obtained as 

𝜎𝑧𝑧 =
1

2
(𝜏𝑛𝑥,𝑥

+ + 𝜏𝑛𝑥,𝑥
− ) +

𝑧

ℎ
(𝜏𝑛𝑥,𝑥

+ − 𝜏𝑛𝑥,𝑥
− )   (18) 

𝜎𝑧𝑧 =
1

2
(𝜏𝑠𝑤𝑧,𝑥𝑥

+ − 𝜏𝑠𝑤𝑧,𝑥𝑥
− ) +

𝑧

ℎ
(𝜏𝑠𝑤𝑧,𝑥𝑥

+ + 𝜏𝑠𝑤𝑧,𝑥𝑥
− ) (19) 

Eq. (19) can be rewritten as  

𝜎𝑧𝑧 =
2𝑧

ℎ
(𝜏𝑠

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
)  (20) 

By using the expression for σzz, the components of stress for 

the bulk of nanobeam can be modified a 

𝜎𝑥𝑥 = �̂�𝜀𝑥𝑥 + 𝜈𝜎𝑧𝑧 = 

{
�̂� (

𝜕𝑢𝑜(𝑥,𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
) +

2𝜈𝑧

ℎ
(𝜏𝑠

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
)  (𝐸𝐵𝐵𝑇)

�̂� (
𝜕𝑢𝑜(𝑥,𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥,𝑡)

𝜕𝑥
) +

2𝜈𝑧

ℎ
(𝜏𝑠

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
)     (𝑇𝐵𝑇)

 
(21) 

  

3.5 Perforated beam equilibrium equations  
 

According to EBBT the equilibrium equations of 

perforated nanobeams with surface energy effects can be 

written as  

[(�̂�𝐼)
𝑒𝑞
−
2𝜈ℎ

12
(𝐴𝜏𝑠)𝑒𝑞 + (𝐸𝑠𝐼𝑝)𝑒𝑞]

𝑑4𝑤

𝑑𝑥4

− [
2(𝐴𝜏𝑠)𝑒𝑞

ℎ
− 𝑃𝑜]

𝑑2𝑤

𝑑𝑥2
+ 𝑞 = 0  

(22a) 

  As illustrated in Eq. (22(a)), the surface effects on the 

perforated Euler Bernoulli nanobeams is attributed to two 

terms; the surface elasticity (Es) and surface residual 

stresses (surface tension), s. Neglecting the surface residual 

stress effect, the equilibrium equation can be expressed as 

[(�̂�𝐼)
𝑒𝑞
+ (𝐸𝑠𝐼𝑝)𝑒𝑞]

𝑑4𝑤

𝑑𝑥4
+ 𝑃𝑜

𝑑2𝑤

𝑑𝑥2
+ 𝑞 = 0  (22b) 

While if the surface elasticity effect is neglected, the 

equilibrium equation can be expressed for perforated Euler 

Bernoulli nanobeam PEBNB with surface tension only can 

be written as 

[(�̂�𝐼)
𝑒𝑞
−
2𝜈ℎ

12
(𝐴𝜏𝑠)𝑒𝑞]

𝑑4𝑤

𝑑𝑥4
− [
2(𝐴𝜏𝑠)𝑒𝑞

ℎ
− 𝑃𝑜]

𝑑2𝑤

𝑑𝑥2
+ 𝑞 

= 0 
(22c) 

Neglecting the surface elasticity effects leads to the 

classical EBB equilibrium equation which can be written as 

[(�̂�𝐼)
𝑒𝑞
]
𝑑4𝑤

𝑑𝑥4
+ 𝑃𝑜

𝑑2𝑤

𝑑𝑥2
+ 𝑞 = 0  (22d) 

Considering the TBT, the equilibrium equations can be 

expressed as 

2𝜈

ℎ
(𝐼𝜏𝑠)𝑒𝑞

𝑑3𝑤

𝑑𝑥3
+ [(�̂�𝐼)

𝑒𝑞
+ (𝐸𝑠𝐼𝑝)𝑒𝑞]

𝑑2Φ

𝑑𝑥2
−

𝜅(𝐺𝐴)𝑒𝑞 (Φ +
𝑑𝑤

𝑑𝑥
) = 0   

(23a) 

(
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞 + 𝜅(𝐺𝐴)𝑒𝑞 − 𝑃0)

𝑑2𝑤

𝑑𝑥2
+ 𝜅(𝐺𝐴)𝑒𝑞

𝑑Φ

𝑑𝑥
+ 𝑞

= 0 
(24a) 

Neglecting the surface elasticity effect, the equilibrium 

equations of perforated Timoshenko nanobeam (PTNB) 

with the presence of surface residual stress only can be 

written as.  
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2𝜈

ℎ
(𝐼𝜏𝑠)𝑒𝑞

𝑑3𝑤

𝑑𝑥3
+ [(�̂�𝐼)

𝑒𝑞
]
𝑑2Φ

𝑑𝑥2
− 𝜅(𝐺𝐴)𝑒𝑞  

(Φ +
𝑑𝑤

𝑑𝑥
) = 0    

(23b) 

(
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞 + 𝜅(𝐺𝐴)𝑒𝑞 − 𝑃0)

𝑑2𝑤

𝑑𝑥2
+ 𝜅(𝐺𝐴)𝑒𝑞

𝑑Φ

𝑑𝑥
+ 𝑞

= 0 
(24b) 

On the other hand neglecting the surface residual stress and 

considering the surface elasticity effect only leads to the 

following equilibrium equations 

[(�̂�𝐼)
𝑒𝑞
+ (𝐸𝑠𝐼𝑝)𝑒𝑞]

𝑑2Φ

𝑑𝑥2
− 𝜅(𝐺𝐴)𝑒𝑞 (Φ +

𝑑𝑤

𝑑𝑥
) = 0    (23c) 

(𝜅(𝐺𝐴)𝑒𝑞 − 𝑃0)
𝑑2𝑤

𝑑𝑥2
+ 𝜅(𝐺𝐴)𝑒𝑞

𝑑Φ

𝑑𝑥
+ 𝑞 = 0 (24c) 

Neglecting the two effects of the surface elasticity lead to 

the well known classical TBT with the following 

equilibrium equations 

[(�̂�𝐼)
𝑒𝑞
+ (𝐸𝑠𝐼𝑝)𝑒𝑞]

𝑑2Φ

𝑑𝑥2
− 𝜅(𝐺𝐴)𝑒𝑞 (Φ +

𝑑𝑤

𝑑𝑥
) = 0    (23d) 

(𝜅(𝐺𝐴)𝑒𝑞 − 𝑃0)
𝑑2𝑤

𝑑𝑥2
+ 𝜅(𝐺𝐴)𝑒𝑞

𝑑Φ

𝑑𝑥
+ 𝑞 = 0 (24d) 

Assuming rectangular cross-sectional area of the perforated 

nanobeam  

(𝐸𝑠𝐼𝑝)𝑒𝑞 = 𝐸𝑠 (
(𝐴)𝑒𝑞ℎ

2
+

ℎ3

6
)  𝑎𝑛𝑑    (𝐼𝜏𝑠)𝑒𝑞 =

ℎ2

12
 (𝐴𝜏𝑠)𝑒𝑞   

(25) 

 

 

4. Analytical solution 
 

In this section, closed form solutions for static 

deflection profile throughout the perforated nanobeam with 

different nonclassical boundary conditions considering both 

PEBBT and PTBT theories are presented. Introducing the 

nondimensional quantities; �̅� =
𝑤

𝐿
  and �̅� =

𝑥

𝐿
. 

additionally, �̅�, Φ̅ and �̅� are defined in terms of the 

nondimensional quantities �̅� and �̅�  the quantities. The 

considered boundary conditions shown in Table (1). 

 

4.1 Perforated Euler Bernoulli nanobeams (PEBNBs) 
 
To obtain closed form solution for static deflection of 

PEBNBs, the following non-dimensional quantities are 

defined 

�̅� =
𝑤

𝐿
,        �̅� =

𝑥

𝐿
    and       

𝜕𝑤

𝜕𝑥
=
𝜕�̅�

𝜕�̅�
  (26) 

The governing equation of PEBNBs subjected to uniformly 

distributed load of intensity q, the bending moment (ME) 

and the shear force (QE), in terms of the non-dimensional 

quantities, �̅� and  �̅� can be written as 

Table 1 The different boundary conditions for both 

distributed and central point loads 

BCs Distributed load  

S-S �̅�(0) = �̅�(1) = �̅�(0) = �̅�(1) = 0 

C-C �̅�(0) = Φ̅(0) = �̅�(1) = Φ̅(1) = 0 

C-F �̅�(0) = Φ̅(0) = �̅�(1) = �̅�(1) = 0 

BCs Point load of intensity P 

S-S �̅�(0) = �̅�(0) = Φ̅(1/2) = 0,   �̅�(1/2)  =
−𝑃

2
 

C-C �̅�(0) =  Φ̅(0) =  Φ̅(1/2) = 0,   �̅�(1/2) =
−𝑃

2
 

C-F �̅�(0) =  Φ̅(0) = 0,    �̅�(1) = 0,   �̅�(𝑙) = −𝑃 

 

 

𝑑4�̅�

𝑑�̅�4
− 𝛽𝐸

2
𝑑2�̅�

𝑑�̅�2
= −

𝑞 𝐿3

𝐾𝑏
𝐸   (27a) 

𝑀𝐸 = −
𝐾𝑏
𝐸

𝐿

𝜕2�̅�

𝜕�̅�2
,    𝑄𝐸

= −
𝐾𝑏
𝐸

𝐿2
𝜕3�̅�

𝜕�̅�3
+
2(𝐴)𝑒𝑞

ℎ
𝜏𝑠
𝜕�̅�

𝜕�̅�
 

(27b) 

Where 

𝐾𝑏
𝐸 = [(�̂�𝐼)

𝑒𝑞
−
2𝜈ℎ

12
(𝐴𝜏𝑠)𝑒𝑞 + 𝐸𝑠 (

(𝐴)𝑒𝑞ℎ

2
+
ℎ3

6
)]    

  𝛽𝐸
2 =

2(𝐴)𝑒𝑞
ℎ

𝜏𝑠 × 𝐿
2

𝐾𝑏
𝐸  

 

The general solution of Eq. (27(a)) for both the static 

deflection and rotation can be written as 

�̅�(�̅�) = 𝐶1 exp(𝛽𝐸�̅�) + 𝐶2 exp(−𝛽𝐸�̅�) +
𝑞𝐿3 

 2𝛽𝐸
2𝐾𝑏

𝐸 �̅�
2

+ 𝐶3�̅� + 𝐶4 
(28a) 

Φ̅(�̅�) = �̅�′(�̅�) = 𝐶1𝐿𝛽𝐸 exp(𝛽𝐸�̅�) −

𝐿𝛽𝐸𝐶2 exp(−𝛽𝐸 �̅�) +
𝑞𝐿4 

 𝛽𝐸
2𝐾𝑏

𝐸 �̅� + 𝐶3𝐿  
(28b) 

The bending moment and the shear force can be written as 

𝑀𝐸(�̅�) = −
𝐾𝑏
𝐸

𝐿
(𝐶1𝛽𝐸

2 exp(𝛽𝐸 �̅�) +

𝐶2𝛽𝐸
2 exp(−𝛽𝐸 �̅�) +

𝑞𝐿3 

 𝛽𝐸
2𝐾𝑏

𝐸)  

(29a) 

  𝑄𝐸(�̅�) = −
𝐾𝑏
𝐸

𝐿2
(𝐶1𝛽𝐸

3 exp(𝛽𝐸�̅�) −

𝐶2𝛽𝐸
3 exp(−𝛽𝐸 �̅�)) +

2(𝐴)𝑒𝑞

ℎ
𝜏𝑠 (𝐶1𝛽𝐸 exp(𝛽𝐸�̅�) −

𝐶2𝛽𝐸 exp(−𝛽𝐸 �̅�) +
𝑞𝐿3 

 𝛽𝐸
2𝐾𝑏

𝐸 �̅� + 𝐶3) 

(29b) 

Apply the different boundary conditions shown in Table 

1. The following explicit formulas can be obtained for the 

static deflection profile throughout the beam span 
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Bending behavior of squared cutout nanobeams incorporating surface stress effects 

 

4.1.1 Simply Supported (S -S) beams 
For the simply supported beam (S-S) under uniform 

distributed load of intensity q, the nonclassical static 

bending deflection, [�̅�(�̅�)]𝑁𝐶𝐿can be expressed as 

[�̅�(�̅�)]𝑁𝐶𝐿 = −
𝑞𝐿3 

 𝛽𝐸
4𝐾𝑏

𝐸 (
exp(𝛽𝐸�̅�)

1+exp(𝛽𝐸)
+

exp(𝛽𝐸) exp(−𝛽𝐸�̅�)

1+exp(𝛽𝐸)
−

𝛽𝐸
2

 2
�̅�2 +

𝛽𝐸
2

 2
�̅� − 1)  

(30a) 

Neglecting the surface energy effects, the classical bending 

deflection [�̅�(�̅�)]𝐶𝐿can be written as 

[�̅�(�̅�)]𝐶𝐿 =
𝑞𝐿3�̅� 

 24𝐾𝑏
𝐸 [−�̅�

3 + 2�̅�2 − 1 ]  (30b) 

By the same way, the nonclassical static bending deflection 

for S-S beam under central point load of intensity p, 
[�̅�(�̅�)]𝑁𝐶𝐿  can be expressed as 

[�̅�(�̅�)]𝑁𝐶𝐿 =
𝑃𝐿2

2𝛽𝐸
2 ×𝐾𝑏

𝐸 [
exp(0.5𝛽𝐸)×exp(𝛽𝐸�̅�)

𝛽𝐸(1+exp(𝛽𝐸))
−

exp(0.5𝛽𝐸)×exp(−𝛽𝐸�̅�)

𝛽𝐸(1+exp(𝛽𝐸))
− �̅�]    

(31a) 

The classical solution can be obtained when the surface 

energy effects are neglected and can be expressed as 

[�̅�(�̅�)]𝐶𝐿 =
𝑃𝐿2�̅�

48𝐾𝑏
𝐸 (4�̅�

2  − 3)  (31b) 

 
4.1.2 Clamped-Clamped (C-C) beams   
Considering the clamped-clamped beam under uniform 

distributed load of intensity q, the nonclassical bending 

deflection can be obtained as 

[�̅�(�̅�)]𝑁𝐶𝐿 =
−𝑞𝐿3

2𝛽𝐸
2 ×𝐾𝑏

𝐸 [
exp(𝛽𝐸�̅�)

𝛽𝐸 (exp(𝛽𝐸)−1)
+

exp(𝛽𝐸)×exp(−𝛽𝐸�̅�)

𝛽𝐸(exp(𝛽𝐸)−1)
− �̅�2 + �̅� −

(exp(𝛽𝐸)+1)

𝛽𝐸 (exp(𝛽𝐸)−1)
]  

(32a) 

While the classical bending deflection can be obtained as 

[�̅�(�̅�)]𝐶𝐿 =
−𝑞�̅�2𝐿3 

 24𝐾𝑏
𝐸 (1 − �̅� )2  (32b) 

By the same way, the nonclassical static bending deflection 

for C-C beam under central point load can be obtained as 

[�̅�(�̅�)]𝑁𝐶𝐿 =
𝑃𝐿2

2𝛽𝐸
2 ×𝐾𝑏

𝐸 [
exp(𝛽𝐸�̅�)

𝛽𝐸 (1+exp(0.5𝛽𝐸))
−

exp(0.5𝛽𝐸)×exp(−𝛽𝐸�̅�)

𝛽𝐸(1+exp(0.5𝛽𝐸))
− �̅� +

(𝑒𝑥𝑝(0.5𝛽𝐸)−1)

𝛽𝐸(1+exp(0.5𝛽𝐸))
]  

(33a) 

The classical bending deflection can be expressed as 

[�̅�(�̅�)]𝐶𝐿 =
𝑃𝐿2�̅�2

48𝐾𝑏
𝐸 (4�̅�  − 3)  (33b) 

 
4.1.3 Clamped- Free(C-F) beams    
The nonclassical bending deflection of cantilever beam 

(C-F) under uniformly distributed load can be expressed as 

[�̅�(�̅�)]𝑁𝐶𝐿 =
−𝑞𝐿3

𝛽𝐸
2 ×𝐾𝑏

𝐸 [
(1−𝛽𝐸 exp(−𝛽𝐸)) exp(𝛽𝐸�̅�)

𝛽𝐸
2 (exp(𝛽𝐸)+exp(−𝛽𝐸))

+ (34a) 

(1+𝛽𝐸 exp(𝛽𝐸)) exp(−𝛽𝐸�̅�)

𝛽𝐸
2 (exp(𝛽𝐸)+exp(−𝛽𝐸))

−
�̅�2 

2
+ �̅� −

(2−𝛽𝐸 exp(−𝛽𝐸)+𝛽𝐸 exp(𝛽𝐸))

𝛽𝐸
2 (exp(𝛽𝐸)+exp(−𝛽𝐸))

]  

The classical bending deflection can be expressed as 

[�̅�(�̅�)]𝐶𝐿 =
𝑞�̅�2𝐿3 

 24𝐾𝑏
𝐸 (−�̅�

2 + 4�̅� − 6)  (34b) 

By the same way, the nonclassical static bending deflection 

of cantilever beam under tip point load can be obtained as 

[�̅�(�̅�)]𝑁𝐶𝐿 =
𝑃𝐿2

𝛽𝐸
2 ×𝐾𝑏

𝐸 [
exp(𝛽𝐸�̅�)

𝛽𝐸 (exp(2𝛽𝐸)+1)
−

exp(2𝛽𝐸) exp(−𝛽𝐸�̅�)

𝛽𝐸 (exp(2𝛽𝐸)+1)
− �̅� +

(𝑒𝑥𝑝(2𝛽𝐸)−1)

𝛽𝐸 (exp(2𝛽𝐸)+1)
]  

(35a) 

Neglecting the surface energy effects, the classical bending 

deflection can be obtained as 

[�̅�(�̅�)]𝐶𝐿 =
𝑃�̅�2𝐿2

6𝐾𝑏
𝐸 (�̅�  − 3)  (35b) 

 

4.2 Perforated Timoshenko nanobeams (PTNBs) 
 

The equilibrium equations of PTNBs subjected to 

uniformly distributed load of intensity q, the bending 

moment (MT) and the shear force (QT) can be written a 

2𝜈

ℎ
(𝐼𝜏𝑠)𝑒𝑞

𝑑3𝑤

𝑑𝑥3
+ [(�̂�𝐼)

𝑒𝑞
+ (𝐸𝑠𝐼𝑝)𝑒𝑞]

𝑑2Φ

𝑑𝑥2
−

𝜅(𝐺𝐴)𝑒𝑞 (Φ +
𝑑𝑤

𝑑𝑥
)  = 0  

(36a) 

(
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞 + 𝜅(𝐺𝐴)𝑒𝑞 − 𝑁0)

𝑑2𝑤

𝑑𝑥2
+ 𝜅(𝐺𝐴)𝑒𝑞

𝑑Φ

𝑑𝑥
+

𝑞 = 0  
(36b) 

The bending moment can be expressed as 

𝑀𝑇 = ∫ 𝜎𝑥𝑥𝑧𝑑𝐴𝐴
+ ∮ 𝜏𝑥𝑥𝑧𝑑𝑠𝑆

= ((𝐸𝑠𝐼𝑠)𝑒𝑞 +

(�̂�𝐼)
𝑒𝑞
)
𝜕Φ(𝑥,𝑡)

𝜕𝑥
+ (

2𝜈(𝐼𝜏𝑠)𝑒𝑞

ℎ
)
𝜕2𝑤𝑜(𝑥,𝑡)

𝜕𝑥2
+ 𝜏𝑠𝑃𝐴  

(36c) 

where 

𝐼 = ∫ 𝑧2𝑑𝐴
𝐴

,        𝐼𝑠 = ∮𝑧2𝑑𝑠
𝑠

 ,     

  𝑃𝐴 = ∮𝑧𝑑𝑠𝑠
    𝑆𝑃 = ∮ 𝑛𝑧

2𝑑𝑠
𝑆

   
(36d) 

The shear force can be expressed as 

𝑄𝑇 = ∫ 𝜎𝑥𝑧𝑑𝐴𝐴
+ ∮ 𝜏𝑥𝑧𝑛𝑧

2𝑑𝑠
𝑆

= 𝜅(𝐺𝐴)𝑒𝑞 (
𝜕w(𝑥,𝑡)

𝜕𝑥
+

  Φ(𝑥, 𝑡)) + (𝑆𝑝𝜏𝑠)𝑒𝑞
𝜕𝑤𝑜(𝑥,𝑡)

𝜕𝑥
  

(36e) 

Using Eqs. (39(a)) and (39(b)), the PTNBs equilibrium 

equation can be expressed in a single equation in terms of 

the transverse deflection. Neglect the effect of the 

compressive force, N0, integrating Eq. (39(b)), the rotation, 

Φ can be obtained as 

Φ = −
1

𝜅(𝐺𝐴)𝑒𝑞
[(
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞 + 𝜅(𝐺𝐴)𝑒𝑞)

𝑑�̅�

𝑑�̅�
− 𝑞�̅�𝐿 + 𝐶3 ]  (36f) 

The 1st and the 2nd derivatives of the rotation can be 

expressed as 
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𝑑Φ

𝑑𝑥
= −

1

𝜅(𝐺𝐴)𝑒𝑞
[(
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞 + 𝜅(𝐺𝐴)𝑒𝑞)

𝑑2�̅�

𝐿𝑑�̅�2
− 𝑞 ]  (36g) 

𝑑2Φ

𝑑𝑥2
= −

1

𝜅(𝐺𝐴)𝑒𝑞
[(
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞 + 𝜅(𝐺𝐴)𝑒𝑞)

𝑑3�̅�

𝐿2𝑑�̅�3
 ]  (36h) 

Substitute into Eq. (39(a)) yield 

[[(�̂�𝐼)
𝑒𝑞
+ (𝐸𝑠𝐼𝑝)𝑒𝑞] (

2

ℎ
(𝐴𝜏𝑠)𝑒𝑞

𝜅(𝐺𝐴)𝑒𝑞
+ 1) −

2𝜈

ℎ
(𝐼𝜏𝑠)𝑒𝑞]

𝑑3�̅�

𝑑�̅�3
−

(
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞) 𝐿

2 𝑑�̅�

𝑑�̅�
+ 𝑞𝐿3�̅� − 𝐶3𝐿

2  = 0  

(36i) 

Eq. (39(i)) can be written as 

𝑑3�̅�

𝑑�̅�3
− 𝛽𝑇

2 𝑑�̅�

𝑑�̅�
+

𝑞𝐿3

𝐾𝑠
𝑇 �̅� −

𝐶3𝐿
2

𝐾𝑠
𝑇 = 0  (36j) 

Integrating yields 

𝑑2�̅�

𝑑�̅�2
− 𝛽𝑇

2�̅� = −
𝑞𝐿3

2𝐾𝑠
𝑇
�̅�2 +

𝐶3𝐿
2

𝐾𝑠
𝑇
�̅� + 𝐶4 (36k) 

Where 

𝐾𝑠
𝑇 = {𝛾𝑇 × [(�̂�𝐼)𝑒𝑞 + (𝐸𝑠𝐼𝑝)𝑒𝑞] −

2𝜈

ℎ
(𝐼𝜏𝑠)𝑒𝑞}, 

   𝛽𝑇
2 =

𝐿2
2
ℎ
(𝐴𝜏𝑠)𝑒𝑞

𝐾𝑠
𝑇

   

 𝛾𝑇 = [
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞

𝜅(𝐺𝐴)𝑒𝑞
+ 1]  

(36i) 

 

The general solution of Eq. (39.k) can be written as 

�̅�(�̅�) = 𝐶1 exp(𝛽𝑇�̅�) + 𝐶2 exp(−𝛽𝑇�̅�) +
𝑞𝐿3

2𝛽𝑇
2𝐾𝑠

𝑇 �̅�
2 −

𝐶3𝐿
2

𝐾𝑠
𝑇𝛽𝑇

2 �̅� + 𝐶4  
(37a) 

Φ(�̅�) = [−(
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞

𝜅(𝐺𝐴)𝑒𝑞
+ 1) (𝐶1𝛽𝑇 exp(𝛽𝑇�̅�) −

𝛽𝑇𝐶2 exp(−𝛽𝑇�̅�) ) −
𝑞𝐿3�̅�

𝛽𝑇
2𝐾𝑠

𝑇 +
𝐶3𝐿

2

𝐾𝑠
𝑇𝛽𝑇

2]  

(37b) 

 

The bending moment and the shear force can be written as 

𝑀𝑇(�̅�) = − [𝐾𝑠
𝑇(𝐶1(𝛽𝑇)

2 exp(𝛽𝑇�̅�) +

(𝛽𝑇)
2𝐶2 exp(−𝛽𝑇�̅�) ) + 𝐾𝑏

𝑞𝐿3

𝛽𝑇
2𝐾𝑠

𝑇]  

(37c) 

𝑄𝑇(�̅�) = 𝑞𝐿�̅� − 𝐶3  (37d) 

 

Neglecting the surface tension (βT
2 = 0) 

𝜕3�̅�

𝜕�̅�3
= −

𝑞𝐿3

𝐾𝑠
𝑇 �̅� +

𝐶3𝐿
2

𝐾𝑠
𝑇     (38a) 

where  

𝐾𝑠
𝑇 = [(�̂�𝐼)

𝑒𝑞
+ (𝐸𝑠𝐼𝑝)𝑒𝑞] 

(38b) 

 

Integrating Eq. (41(a)) yields 

�̅�(�̅�) = −
𝑞𝐿3

24𝐾𝑠
𝑇 �̅�

4 +
𝐶3𝐿

2

6𝐾𝑠
𝑇 �̅�

3 +
𝐶2

2
�̅�2 + 𝐶1 �̅�  (38c) 

Φ(�̅�) = −  [−
𝑞𝐿3

6𝐾𝑠
𝑇 �̅�

3 + 𝐶3 (
𝐿2

2𝐾𝑠
𝑇 �̅�

2 +
1

𝜅(𝐺𝐴)𝑒𝑞
) +

𝐶2�̅� + 𝐶1    −
𝑞�̅�𝐿

(𝐺𝐴)𝑒𝑞
]  

(38d) 

The bending moment and the shear force can be written 

as 

𝑀𝑇(�̅�) = 𝐾𝑠
𝑇 𝜕Φ

𝜕𝑥
= −

𝐾𝑠
𝑇

𝐿
[
𝜕2�̅�

𝜕�̅�2
−

𝑞𝐿

𝜅(𝐺𝐴)𝑒𝑞
] ==

−
𝐾𝑠
𝑇

𝐿
[−

𝑞𝐿3

2𝐾𝑠
𝑇 �̅�

2 + 𝐶3 (
𝐿2

𝐾𝑠
𝑇 �̅�) + 𝐶2 −

𝑞𝐿

(𝐺𝐴)𝑒𝑞
]  

(38e) 

𝑄𝑇 = 𝜅(𝐺𝐴)𝑒𝑞 (
𝑑𝑤

𝑑𝑥
+ 𝜑) = 𝑞𝐿�̅� − 𝐶3  (38f) 

Apply the different boundary conditions shown in Table 1. 

Explicit formulas can be obtained for the static deflection 

profile throughout the beam span. 

 

4.2.1 Simply Supported (S -S) beams 
For the simply supported beam (S-S) under uniform 

distributed load of intensity q, the nonclassical static 

bending deflection, [�̅�(�̅�)]𝑁𝐶𝐿
𝑇 can be expressed as 

[�̅�(�̅�)]𝑁𝐶𝐿
𝑇 = −

𝐾𝑏𝑞𝐿
3 

 𝛽𝑇
4(𝐾𝑠

𝑇)
2 ([

1−exp(−𝛽𝑇)

exp(𝛽𝑇)−exp(−𝛽𝑇)
] exp(𝛽𝑇�̅�) +

[
exp(𝛽𝑇)−1

exp(𝛽𝑇)−exp(−𝛽𝑇)
] exp(−𝛽𝑇�̅�) −

𝐾𝑠
𝑇𝛽𝑇

2  

2×𝐾𝑏
�̅�2 +

𝐾𝑠
𝑇 𝛽𝑇

2 

2×𝐾𝑏
�̅� − 1)  

(39a) 

Neglecting the effect of surface energy effects, the classical 

bending deflection [�̅�(�̅�)]𝐶𝐿can be written as 

[�̅�(�̅�)]𝐶𝐿
𝑇 =

𝑞𝐿3�̅�

24𝐾𝑠
𝑇
(−�̅�3 + 2�̅�2 −  1) +

𝑞�̅� 𝐿

2𝜅(𝐺𝐴)𝑒𝑞
(�̅�2 − 1 )  (39b) 

By the same way, the nonclassical static bending deflection 

for S-S beam under central point load of intensity p, 
[�̅�(�̅�)]𝑁𝐶𝐿  can be expressed as 

[�̅�(�̅�)]𝑁𝐶𝐿
𝑇 =

𝑃𝐿2[exp(𝛽𝑇�̅�)−exp(−𝛽𝑇�̅�)]

2𝐾𝑠
𝑇𝛽𝑇

3 𝛾𝑇(exp(0.5𝛽𝑇)+exp(−0.5𝛽𝑇) )
−

𝑃𝐿2

2𝐾𝑠
𝑇𝛽𝑇

2 �̅�    
(40a) 

The classical solution can be obtained when the surface 

energy effects are neglected and can be expressed as 

[�̅�(�̅�)]𝐶𝐿
𝑇 =

𝑃�̅�𝐿2

48𝐾𝑏
𝐸 (4�̅�

2  − 3) −
𝑃�̅�

2𝜅(𝐺𝐴)𝑒𝑞
  (40b) 

 
4.2.2 Clamped-Clamped (C-C) beams   
Considering the clamped-clamped beam under uniform 

distributed load of intensity q, the nonclassical bending 

deflection can be obtained as 

[�̅�(�̅�)]𝑁𝐶𝐿
𝑇 =

−𝑞𝐿3 

 2𝛽𝑇
3𝐾𝑠

𝑇 ([
exp(𝛽𝑇�̅�)+exp(𝛽𝐸) exp(−𝛽𝑇�̅�)−(exp(𝛽𝑇)+1)

 𝛾𝑇(exp(𝛽𝑇)−1)
] −

𝛽𝑇�̅�(�̅� − 1))  

(41a) 
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While the classical bending deflection can be obtained as 

[�̅�(�̅�)]𝐶𝐿
𝑇 =

−𝑞�̅�2𝐿3 

 24𝐾𝑠
𝑇 (1 − �̅� )2 +

𝑞𝐿

2(𝐺𝐴)𝑒𝑞
(�̅�2 − 1)  (41b) 

By the same way, the nonclassical static bending deflection 

for C-C beam under central point load can be obtained as 

 

[�̅�(�̅�)]𝑁𝐶𝐿
𝑇 =

𝑃𝐿2

2𝐾𝑠
𝑇𝛽𝑇

3𝛾𝑇 (exp (
𝛽𝑇
2
) − exp (

−𝛽𝑇
2
))

 

[(1 − exp (
−𝛽𝑇

2
)) exp(𝛽𝑇�̅�) + (1 −

exp (
𝛽𝑇

2
)) exp(−𝛽𝑇�̅�) + exp (

𝛽𝑇

2
) + exp (

−𝛽𝑇

2
) − 2] −

𝑃𝐿2

2𝐾𝑠
𝑇𝛽𝑇

2 �̅�  

(42a) 

 

 

 
Fig. 2 Variation of the normalized deflection with the normalized coordinate for EBBT for different loading and boundary 

conditions 
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The classical bending deflection can be expressed as 

[�̅�(�̅�)]𝐶𝐿
𝑇 =

𝑃�̅�2𝐿2

48𝐾𝑠
𝑇 (4�̅�  − 3) −

𝑃 �̅�

2𝜅(𝐺𝐴)𝑒𝑞
  (42b) 

 
4.2.3 Clamped- Free(C-F) beams    

The nonclassical bending deflection of cantilever beam 

 

 

 

 

(C-F) under uniformly distributed load can be expressed as 

[�̅�(�̅�)]𝑁𝐶𝐿
𝑇 =

(
𝑞𝐿3

𝐾𝑠
𝑇𝛽𝑇

2)

(exp(𝛽𝑇)+exp(−𝛽𝑇))
{[
exp(−𝛽𝑇)

𝛽𝑇 × 𝛾𝑇
−

𝐾𝑏

𝛽𝑇
2(𝐾𝑠

𝑇)
] exp(𝛽𝑇�̅�) − [

exp(𝛽𝑇)

𝛽𝑇 × 𝛾𝑇
+

𝐾𝑏

𝛽𝑇
2(𝐾𝑠

𝑇)
] exp(−𝛽𝑇�̅�) +

[
exp(𝛽𝑇)−exp(−𝛽𝑇)

𝛽𝑇 × 𝛾𝑇
+

2𝐾𝑏

𝛽𝑇
2(𝐾𝑠

𝑇)
]} +

𝑞𝐿3�̅� 

2𝛽𝑇
2𝐾𝑠

𝑇 (�̅� − 2)  

(43a) 

 

 

 
Fig. 3 Variation of the normalized deflection with the normalized coordinate for TBT for different loading and boundary 

conditions 
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While the classical bending deflection can be obtained as 

[�̅�(�̅�)]𝐶𝐿
𝑇 = −

𝑞�̅�2𝐿3

24𝐾𝑠
𝑇 (�̅�

2 − 4�̅� + 6   ) +
𝑞𝐿�̅�

2𝜅(𝐺𝐴)𝑒𝑞
(𝑥 − 2)    (43b) 

By the same way, the nonclassical static bending deflection 

of cantilever beam under tip point load can be obtained as 

 [�̅�(�̅�)]𝑁𝐶𝐿
𝑇 =

𝑃𝐿2[exp(−𝛽𝑇) exp(𝛽𝑇�̅�)−exp(𝛽𝑇) exp(−𝛽𝑇�̅�)+exp(𝛽𝑇)−exp(−𝛽𝑇)]

𝐾𝑠
𝑇𝛽𝑇

3× 𝛾𝑇(exp(𝛽𝑇)+exp(−𝛽𝑇))
−

𝑃𝐿2

𝐾𝑠
𝑇𝛽𝑇

2 �̅�  

(44a) 

Neglecting the surface energy effects, the classical bending 

deflection can be obtained as 

[�̅�(�̅�)]𝐶𝐿
𝑇 =

𝑃�̅�2𝐿2

6𝐾𝑠
𝑇 (�̅�  − 3) − 

𝑃 �̅�

𝜅(𝐺𝐴)𝑒𝑞
   (44b) 

 
 
5. Model verification 

 
To verify the developed procedure to investigate the 

nonclassical deflection for nanoscale beam, consider a 

nanoscale beam made of aluminum silicon (Si) having the 

following bulk and surface properties; Liu and Rajapakse 

(2009): E=107 GPa, ν=0.33, and ρ=2330 kg/m3. The surface 

characteristics are; τs= 0.6056 N/m, us= - 2.7779 N/m, λs=- 

4.4939 N/m. The dimensions for thin beams are L =120 nm, 

H = 6 nm and w = 3 nm, and those for thick beams are L = 

50 nm, H = 6 nm and w = 3 nm. Based on both EBBT and 

TBT the problem is solved under different loading and 

boundary conditions for both nonclassical and classical 

theories. The same problem was analytically solved by Liu 

and Rajapakse (2009) under the same boundary and loading 

conditions.  The obtained results are compared with that 

obtained by Liu and Rajapakse (2009). As depicted in Figs. 

2 and 3, it is illustrated that an excellent agreement is found. 
 
 
6. Numerical results 

 

To demonstrate the salient features of the mechanical 

behavior of perforated nanobeams incorporating the surface 

energy effect for different geometry, loading and boundary 

conditions. Beams are made of silicon (Si); Liu and 

Rajapakse (2009). The dimensions for thin beams are h = 

6nm, b = 3nm, L = 60 nm and =0.33 for both buckling and 

static bending analyses.  

The dependency of the maximum nondimensional 

transverse deflection (ωmax=w/L) on the perforated beam 

filling ratio due to distributed (WQmax) and concentrated 

(WPmax) loads for both PEBBT and PTBT for different BCs 

is illustrated in Fig. 4. It is noticed that both the maximum 

nondimensional transverse deflection is decreased with 

increasing the perforated beam filling ratio due to 

increasing the beam rigidity. Moreover, the difference 

between the nonclassical and classical transverse deflection 

is also decreased due to increasing the bulk volume 

compared to the perforated beam surface area.  

Incorporating the shear deformation effect in PTBT 

increases the perforated beam flexibility consequently 

higher values of ωmax is detected compared with the 

corresponding PEBBT. Moreover, the applied loading 

pattern significantly affects the maximum nondimensional 

transverse deflection, higher value of ωmax is detected for 

the concentrated load pattern compared with the 

corresponding distributed load pattern. 
The beam aspect ratio (L/h) significantly affects the 

investigated values of the maximum nondimensional 

transverse deflection. Increasing the perforated beam aspect 

ratio results in higher values of ωmax. Also, the deviation 

between the classical and nonclassical values is increased 

due to increasing the surface are to bulk volume ratio. As 

shown in Fig. 5, although the perforated beam aspect ratio 

reaches 40 considerable deviation between the detected 

values of ωmax for both PEBBT and PTBT is noticed for 

both C_C and S_S BCs especially at lower values of filling 

ratio while almost the same response is noticed for C_F 

BCs. 
Variations of ωmax with the number of hole rows (N) 

beam filling ratio (α=0.5) for both thick and thin perforated 

beams are illustrated in Figs. (6) and (7), respectively for 

distributed and concentrated load patterns for different 

boundary conditions. It is depicted that ωmax increases with 

increasing the number of hole rows due to increasing the 

perforated beam flexibility. Moreover more increase in ωmax 

is detected for PTBT due to the shear deformation effect 

which increases the beam flexibility. Increasing the beam 

aspect ratio results in higher values of both ωmax and the 

difference between the classical and nonclassical values of 

ωmax. On the other hand, although the beam aspect ratio 

reaches 4, a noticeable deviation between the detected 

values of ωmax for both PTBT and PEBBT C_C BCs while 

almost the same response is detected for C_F and S_S BCs. 
 
 
7. Conclusions 

 

An analytical methodology capable of investigating the 

nonclassical bending deflection for perforated nanobeams 

incorporating the surface stress effects is presented. An 

equivalent geometrical model for both bulk and surface 

characteristics is developed. Based on the developed 

geometrical model, the Gurtin-Murdoch (GM) surface 

elasticity theory is adopted to incorporate the surface energy 

effects. Regularly squared cutout configuration is 

considered through perforation process. Both PEBBT and 

PTBT are considered to explore the shear deformation 

effect associated with the perforation process. Considering 

both classical and nonclassical boundary conditions, 

explicit closed forms for the nonclassical bending deflection 

are developed relevant to each type of beam theory 

considering both concentrated and uniformly distributed 

loading patterns. The proposed non-classical procedure is 

verified by comparing the obtained results with the 

available analytical and solution and an excellent agreement 

is obtained. The obtained numerical results revealed the 

following concluding remarks: 
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Fig. 4 Variation of the maximum nondimensional deflection with the filling ratio for both PEBBT and PTBT for different 

BCs at L/H=10 
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Fig. 5 Variation of the maximum nondimensional deflection with the filling ratio for both PEBBT and PTBT for different 

BCs at L/H=40 
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Fig. 6 Variation of the maximum nondimensional deflection with the number of hole rows for both PEBBT and PTBT for 

different BCs at L/H=10 
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Fig. 7 Variation of the maximum nondimensional deflection with the number of hole rows for both PEBBT and PTBT for 

different BCs at L/H=40 
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 Surface stresses significantly effects on maximum 

bending deflection, this effect is mainly size 

dependent. The difference of the obtained results 

obtained based on the nonclassical surface elasticity 

model and the corresponding results based on 

classical models relies on the magnitudes of the 

surface properties.  

 An intrinsic length parameter controlled by both 

surface elastic properties and the nanobeam bulk 

material properties can be established to characterize 

the surface energy effects for beam bending. 

Increasing the perforated nanobeam aspect ratio 

results in increasing the difference between the 

classical and nonclassical values of bending 

deflection. 

 The surface residual stress, s has more significant 

effect on the bending deflection compared with the 

corresponding effect of the surface elasticity, Es.  

 As the number of holes throughout the cross section 

of the perforated nanobeams increases the maximum 

nondimensional bending deflection increases due to 

increasing the beam flexibility. 

 The perforated nanobeams filling ratio significantly 

affects the bending behavior of perforated 

nanobeams. As the filling ratio increases the 

maximum nondimensional bending deflection 

decreases due to decreasing the beam flexibility.   

 For perforated nanobeams with lower aspect ratio 

(L/h) the Euler Bernoulli beam theory can’t 

effectively investigate the bending behavior of 

perforated nanobeams especially at lower values of 

filling ratio (α<0.5). 

 The nonclassical boundary conditions significantly 

affect bending behaviors of perforated nanobeams. 

Although the perforated nanobeams aspect ratio 

reaches (L/h=40), a remarkable difference is detected 

between bending behaviors investigated based on 

PEBBT and the corresponding behaviors 

investigated based on PTBT for C_C boundary 

conditions especially at lower values of filling ratio.  
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