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1. Introduction 
 

Scientists are persistently working to accomplish more 

comfortable life for human and to establish modern applied 

sciences. Thus, the requirement for smart and advanced 

materials has grown, and existent technologies are 

frequently exchanged by progressive technologies (Feng et 

al. 2017, Zhang et al. 2017, Dong et al. 2018, Safaei et al. 

2019, Mirjavadi et al. 2017, 2018, 2019, Azimi et al. 2017, 

2018). A polymeric material has already replaced ordinary 

materials including metals and ceramics because of its low 

weight, easy manufacturing, and low costs (Thanh et al. 

2019, Ahmed et al. 2019). Therewith, a polymer possesses 

prominent corrosion stability and promising mechanical 

character. But, there are some disadvantages related to 

polymeric components, including slight thermal stability, 

downscale stiffness and environmental stability. In order to 

eschew such sorts of disadvantages, polymeric composites 

were manufactured via reinforcement of matrices based on 

an extensive range of filler materials (Vo et al. 2017, Houari 

et al. 2018). According to the desirable performances of the 

conclusive material, the polymeric matrix may be 

reinforced via different kinds of macro to nano size fillers 

including fibers, particles and even platelets (Wu et al. 

2017, Zhao et al. 2017). The performances of produced 

composite rely on the properties of both host material and 

filler. However, the performances of polymeric materials 

will decrease by passing time because of diverse factors 

including subjecting to UV, high temperatures or moisture. 

Composites which contain polymeric matrix and fiber 
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reinforcement are produced to prevail such problems and 

enhance the overall performances of composite materials. 

Fibers in reinforced polymeric materials represent 

remarkable characteristics including desired flexibility, 

aspect ratio and stability while the matrix defends the fibers 

against unfair conditions and retains their location. 

Nowadays, diverse sorts of artificial and synthetic fibers 

have been employed for reinforcing the polymeric matrices 

and then improving the performances of the final product. 

Such reinforced composites are applied in a variety of 

engineering fields such as aerospace, ocean and even 

automobiles, owning to the their desired cost and weight 

together with notable strength. For improving the out-of-

plane performances of a composite, more than one filler 

element is needed. Note that weight is a very vital 

parameter in several applications including space vehicles 

and automobiles, and large size fillers yield higher to 

weights. Accordingly, nano scale fillers are often prior to 

macro scale counterparts. Multiple investigations have 

proved the elevated mechanical, thermal, and electrical 

characteristics of a nanoparticle reinforced composite. An 

advanced composite made from embedded fibers and 

reinforcing nano-dimension fillers (graphene, carbon 

nanotube, ant etc.) is introduced as a multi-scale composite 

(Marynowski 2017, Wattanasakulpong and Chaikittiratana 

2015, Barati and Zenkour 2017). Such kind of composite is 

also defined as a multi-function composite due to 

possessing conventional load-sharing character of fiber 

reinforced material and also the extra functional 

characteristics (stiffness, strength, conductivity) related to 

the specific nanomaterials. Also, there are some researches 

on multi-phase composites with piezo-magnetic 

constituents (Mahesh et al. 2018, 2019, Mahesh and 

Kattimani 2019, Vinyas and Kattimani2017, 2018, Vinyas 

et al. 2019,2020, Vinyas 2020, Ebrahimi et al. 2019). 
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According to recent studies, the multi-scale composite 

can be modeled via several approaches including Halpin-

Tsai and Eshelby-Mori-Tanaka forms (Mori and Tanaka 

1973). Although the Eshelby–Mori–Tanaka approach has 

high efficacy for multi-scale material modeling, it 

sometimes yields an asymmetric stiffness tensor for the 

composites, whereas, the 3D Mori-Tanaka's stiffness tensor, 

is always symmetric (Kazakov et al. 2019). The later can be 

used as an efficient tool for elastic properties definition of 

multi-scale composite. Also, there are many publications on 

vibration analysis of multi-scale composite structures, there 

is no investigation on nonlinear vibrations of annular 

sectors made of hybrid epoxy/fiberglass/CNT material. 

It must be stated that annular plates possess remarkable 

applications in diverse engineering sections including 

defense industry, semi-conductors, space vehicle, chemical 

plants and bio-medical sectors. Recently, few studies are 

devoted to examine mechanical characteristics of annular 

plates made of composite materials. Dai et al. (2019) 

examined vibrational behavior of annular plates reinforced 

by functional gradation of nanotubes in hygro-thermal 

environments. An investigation on vibrations of graphene 

reinforced annular plates is performed by Liu et al. (2019). 

Also, Keleshteri et al. (2019) studied nonlinear bending 

behavior of carbon nanotube reinforced annular plates with 

variable thickness. Safarpour et al. (2020) researched linear 

vibrations of graphene reinforced annular plates based on a 

numerical approach. Based on a higher order theory, Wang 

et al. (2020) researched free vibrations of graphene 

reinforced annular plates under thermal load. According to 

the best of our knowledge, nonlinear forced vibrations of 

multi-scale epoxy/CNT/fiberglass annular sector plates 

under external harmonic loads is not studied before. 

Studied in this paper is nonlinear forced vibration 

behavior of a multi-scale epoxy/CNT/fiberglass annular 

sector plate subjected to transverse harmonic load and 

rested on elastic foundation. A 3D Mori-Tanaka model is 

employed for evaluating multi-scale material properties. 

Therefore, all of glass fibers are assumed to have uni-

direction alignment and CNTs have random diffusion. The 

geometry of annular sector plate can be described based on 

the open angle and the value of inner/outer radius. In order 

to solve governing equations and derive exact forced 

vibration curves for the multi-scale annular sector, Jacobi 

elliptic functions are used. Obtained results demonstrate the 

significance of CNT distribution, geometric nonlinearity, 

applied force, fiberglass volume, open angle and fiber 

directions on forced vibration characteristics of multi-scale 

annular sector plates. In this paper, classic plate/shell theory 

has been used. However, there are many papers based on 

higher order theories (Abualnour et al. 2019, Addou et al. 

2019, Balubaid et al. 2019, Berghouti et al. 2019, 

Bouamoud et al. 2019, Boulefrakh et al. 2019, Draiche et 

al. 2019, Draoui et al. 2019, Hellal et al. 2019, Hussain et 

al. 2019, Kaddari et al. 2020, Karami et al. 2019, Khiloun 

et al. 2019, Khosravi et al. 2020, Mahmoudi et al. 2019, 

Medani et al. 2019, Meksi et al. 2019, Refrafi et al. 2020, 

Rahmani et al. 2020, Sahla et al. 2019, Semmah et al. 2019, 

Soltani et al. 2019, Tlidji et al. 2019, Tounsi et al. 2020, 

Zarga et al. 2019, Zaoui et al. 2019). 

2. Properties of multi-scale CNT/fiberglass/epoxy 
composite 
 

In this research, a 3D Mori-Tanaka model is employed 

for evaluating multi-scale material properties. Also, all of 

glass fibers are assumed to have uni-directional alignment 

and CNTs have random diffusion (Fig. 1). The first issue is 

calculating material properties of a nano-composite 

(epoxy+ CNTs) which are elastic moduli (E11, E22), shear 

moduli (G12, G23) and bulk modulus (K23) as (Kazakov et 

al. 2019) 
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(5) 

in which cnt mG G G    ; Gcnt and Gm denote nanotube 

and matrix shear modulus, respectively. In addition, Em and 

m denote Young’s modulus and Poisson ratio of matrix 

material; Vcnt defines CNT volume fraction which is 

associated with CNTs weight fraction (Wcnt), matrix density 

( m ) and CNT density ( cnt ) as 
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Moreover, the parameters Ai (i=1, 2, 3, 4, 5) should be 

determined by 
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Next, the parameters in above relations may be defined as 
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(8) 

in which Sijkl denote the components of Eshelby’s tensor 

which are introduced in the Appendix and 
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(9) 

It must be stated that m  and cnt  define Lame’s 

constants of matrix and CNT, respectively determined by 
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Next, it must be stated that the nano-composite material 

has below definitions for the bulk modulus K̂ and shear 

modulus Ĝ  as 
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Table 1 Material properties of hybrid multi-scale composite 

material (Kazakove et al. 2019) 

Material property Value 

Young modulus of matrix (Em) 3.45 GPa 

Young modulus of CNTs (Ecnt) 1 TPa 

Young modulus of fiberglass (Ef) 73.1 GPa 

Density of matrix (ρm) 1270 kg/m3 

Density of CNTs (ρcnt) 110 kg/m3 

Poisson's ratio of the matrix (µm) 0.35 

Poisson's ratio of the CNTs (µ cnt) 0.17 

Poisson's ratio of the fiberglass (µ f) 0.22 

 

 

In the case of multi-scale materials, the nano-composite  

part is defined as host material (matrix) and the glass fibers 

are macro scale fillers. Therefore, Young’s modulus Ê and 

Poisson ratio ̂  of host material are defined as 

1
ˆ

ˆ
ˆ  ,

ˆˆ

ˆˆ
ˆ 




G2

E

GK3

KG9
E   (13) 

For incorporating the effect of glass fiber as infinite 

filler with , Eqs. (1)-(5) may be employed again. 

However, these equations should be modified by 

considering fiber volume fraction (Vf) instead of Vcnt and 

also all properties related to nano-composite material 

should be considered as the properties of matrix material. 

All properties of the ingradients are presented in Table 1. 

 

 

3. Formulation for annular sector plates 
 

Considering inner radius (r0), outer radius (r1) and open 

angel (ψ), Fig. 2 illustrates the geometry of an annular 

sector plate. Also, an annular sector subjected to transverse 

uniform harmonic load is shown in Fig. 3. For a thin 

annular sector plate, components of strain field are (Barati 

and Zenkour 2019) 

 

Fig. 1 A multi-scale composite element reinforced with fibers and CNTs 
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Sector deflection is denoted by w and in-plane 

displacements are denoted by u and v. As mentioned, the 

annular sector is made of fiber-reinforced multi-scale 

material for which the stresses σp (p=r, φ, rφ) can be 

determined as 
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in which Qij may be introduced by 
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Fig. 2 Geometry of the annular sector plate 

 

Fig. 3 An annular sector plate exposed to external harmonic load 
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where  denotes orientation of fibers about r-axis and 
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Annular sector plate contains stresses which result in below 

forces and moments via integrating Eq. (16) over sector 

thickness 
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Finally, one may express the governing equations for an 

annular sector plate rested on elastic foundation with 

parameters (kw, kp) as 
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/2

0
/2

h

h
I dz


  . Note that 

F is force amplitude and ω is excitation frequency. By 

substituting Eqs. (19)-(20) into Eqs. (22) and (24), 

nonlinear governing equations in terms of strain 

components can be expressed as follows 
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4. Solution procedure 
 

Herein, the solution of nonlinear governing equations of 

multi-scale annular sector plate has been presented. Firstly, 

it should be noted that the edges of annular sector plate are 

simply-supported based upon following conditions 

00  at r=r

0  at =0,

r r

r

w M N

w M N



   

  

  
 (28) 

According to the thin sector plate formulation, the 

displacement field may be selected as 
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where (U ,V ,W ) are the displacements amplitudes and 

the functions iH and jR are the test functions which are 

selected as 

0
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 (32) 

Arranging the governing equations as Yi (u, v, w)=0 with 

(i=1,2,3) and inserting field components presented as Eqs. 

(29)-(31) into Yi yields following equations with the use of 

Galerkin’s technique 
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After solving Eqs. (33)-(35) by neglecting in-plane inertias, 

three governing equations will be derived 
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 (38) 

in which Kij are stiffness matrix components; M is mass 

matrix and Gi are nonlinear stiffness matrices. With the use 

of Eqs. (36) and (37), U and V are calculated as 
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Therefore, Eq. (38), with the aid of Eq. (39) can be reduced 

to below equation 
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for which 
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(41) 

Exact solution of above equation can be introduced based 

on Jacobi elliptic function (cn) as (Feng and Meng 2017) 

2( , )W Wcn t k  (42) 

Note that k2 is the modulus of the elliptic function; W  

is vibration amplitude. It should be pointed out that   is 

the frequency of elliptic function. Based on the Fourier 

expansion, the Jacobi elliptic function (cn) can be expressed 

as a series of corresponding trigonometric function as 

 

1

2
2

2 1
0

2
( , ) cos 2 1

1 2

r

r
r

q t
cn t k r

kK q K

 








 
  

  
  (43) 

Then, inserting Eq. (42) into Eq. (40) and with the use 

of series expansion for 
3

0 1cn cn a cn a cn   one can 

express that 
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Table 2 Validation of vibration frequency of nano-

composite annular plates for various ratios of inner to outer 

radius (h/r1=0.05) 

 Liu et al. (2019) Present 

r0/r1=0.1 0.0228 0.0228 

r0/r1=0.2 0.0264 0.0265 

r0/r1=0.3 0.0332 0.0334 
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(44) 

Equating the terms having same orders of the elliptic 

function cn, yields two coupled algebraic equations. Form 

obtained equation one can get to 
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(45) 

The vibration frequency depends on the period of 

elliptic function, 2 /T in which 

4 ( )K k
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  (46) 
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Also, some normalized parameters can be introduced in 

this paper such as 
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5. Results and discussions 
 

Presented in this section is nonlinear forced vibration 

characteristics of a multi-scale epoxy/CNT/fiberglass 

annular sector plate subjected to transverse harmonic load. 

In previous sections, a Mori-Tanaka model was employed 

for evaluating multi-scale material properties. Also, Jacobi 

elliptic functions were used for solving the governing 

equations and deriving forced vibration curves of the multi-

scale annular sector. This section provide new findings for 

demonstrating the significance of CNT distribution, 

geometric nonlinearity, applied force, fiberglass volume, 

open angle and fiber directions on forced vibration 

characteristics of multi-scale annular sector plates. 

Based on various values of inner to outer radius ratio 

(r0/r1) of nano-composite annular plate, Table 2 presents the 

validation of vibration frequency with that of Liu et al. 

(2019). In this table it is assumed that r0/r1=0.1, 0.2 and 0.3 

and plate thickness is h/r1=0.05. Also, uniform dispersion of 

carbon-based inclusion within the matrix is assumed. One 

can see the excellent agreement among obtained 

frequencies and the results provided by Liu et al. (2019). 

Forced vibration curves of multi-scale annular sector for 

various CNT weight fraction (Wcnt) are shown in Fig. 4 

when the open angle is considered as ψ=π. Also, the 

normalized value of applied for is considered as 𝐹̃=0.0001. 

This figure shows the normalized deflection ( /W h ) 

variation of annular sector with excitation frequency. It is 

obvious that deflection value is increasing with respect to 

excitation frequency and resonance occurs at a particular 

value of excitation frequency. It is also seen that frequency-

amplitude curves of annular sector moves to the right by 

increase of CNT weight fraction. This means that resonance 

occurs at higher values of excitation frequency when the 

CNT weight fraction increases. So, adding CNT into the 

matrix will improve forced vibration characteristics of the 

annular sector plate.  

Based on various values of fiberglass volume (Vf), Fig. 5 

illustrates the variation of frequency-deflection curves of 

annular sector plate with open angle ψ=π. The weight 

fraction of CNTs is chosen to be Wcnt=0.2%. Outer radius of 

the sector is considered as r1=100h while inner radius is 

r0=0.2r1. This figure indicates that higher values for 

fiberglass volume result in greater excitation frequencies 

due to increased stiffness of the annular sector. Therefore, it 

can be concluded that both fiberglass and CNT content can 

affect forced vibration behavior of annular sector.  

Forced vibration curves of multi-scale annular sector for 

various open angles are plotted in Fig. 6 by assuming that 

Wcnt=0.2% and Vf=0.1. Annular sectors with different values 

of open angle have diverse nonlinear vibration behaviors. 

Actually, annular sector with lower open angle has more 

deviation to the right due to increase of nonlinear effects. 

Thus, as the open angle increases the nonlinear effects 

become less prominent and frequency-amplitude curves 

have less deviations. In this figure, the most notable 

influence of nonlinearity is obtained when ψ=30 degree.  

Based on various values of fiber orientation (θ), Fig. 5 

depicts the variation of normalized deflection of annular 

sector with respect to excitation frequency. It is assumed 

that Wcnt=0.2% and Vf=0.1. It must be pointed out that θ=0 

results in fiber direction parallel to radial axis. One can see 

that increasing in orientation angle yields lower excitation 

frequency. Accordingly, as the value of fiber orientation is 

greater, the structural stiffness of annular sector is decreased. 

Hence, the forced vibration behaviors of annular sectors 

made of multi-scale composites rely on the orientations of 

included fibers.  

Fig. 8 highlights that the ratio of length to diameter 

(α=l/D) of CNTs has a major role in forced vibration 

behavior of multi-scale annular sectors. The weight fraction 

of CNTs is chosen to be Wcnt=0.2%. Outer radius of the 

sector is considered as r1=100h while inner radius is 

r0=0.2r1.  
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It can be seen that by increasing the magnitude of CNT 

length-to-diameter ratio, the excitation frequency increases. 

It means that larger CNTs are added to the matrix. 

Therefore, as l/D becomes greater, each CNT is longer and 

the composites become more influenced by CNT geometry.  

 

 

 

 

In Fig. 9, the variation of normalized deflection of 

annular sector with respect to excitation frequency is plotted 

according to diverse values for normalized force amplitude 

𝐹̃. Foundation parameters are set as Kw=0.01, Kp=0.001. It 

is clear that force amplitude has no impact on the magnitude  

 

Fig. 4 Forced vibration curves of multi-scale annular sector for various CNT weight fraction (r1=100h, r0=0.2r1, Vf=0, 

Kw=0.01, ψ=π, 𝐹̃=0.0001, α=50) 

 

Fig. 5 Forced vibration curves of multi-scale annular sector for various fiberglass volume (r1=100h, r0=0.2r1, Wcnt=0.2%, 

Kw=0.01, Kp=0.001, ψ=π, α=50) 
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of excitation frequency, but it greatly affects the values of 

deflections. Indeed, higher values for normalized force 

amplitude yield larger deflections, but un-varied resonance 

frequency location. So, in nonlinear analysis of forced  

 

 

 

 

 

vibrations of annular sector plates, the magnitude of force 

amplitude has a key load in determining the response 

branches.  

 

 

Fig. 6 Forced vibration curves of multi-scale annular sector for various open angles (r1=100h, r0=0.2r1, Wcnt=0.2%, 

Kw=0.01) 

 

Fig. 7 Forced vibration curves of multi-scale annular sector for various fiber angles (r1=100h, r0=0.2r1, Wcnt=0.2%, Vf=0.1, 

Kw=0.01, Kp=0.001, ψ=π) 
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Fig. 10 depicts forced vibration properties of multi-scale 

annular sector plate affected by diverse values of outer 

radius (r1) at fixed values of r0=0.2r1, Wcnt=0.2%, Vf=0.1, 

Kw=0.01, Kp=0.001 and ψ=π. Outer radius of the sector has  

 

 

 

 

a great influences on deviation of frequency-amplitude 

curves. Actually, more deviation is observed for lower 

values of outer radius which means that nonlinear effects 

are more announced. So, the geometry of annular sector is  

 

Fig. 8 Forced vibration curves of multi-scale annular sector for various CNT length-to-diameter ratio (r1=100h, r0=0.2r1, 

Wcnt=0.2%, Vf=0.1, Kw=0.01, Kp=0.001, ψ=π) 

 

Fig. 9 Forced vibration curves of multi-scale annular sector for various force amplitude (r1=100h, r0=0.2r1, Wcnt=0.2%, 

Vf=0.1, Kw=0.01, Kp=0.001, ψ=π) 
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very important for determining the forced vibration 

properties. 

 

 

6. Conclusions 
 

Based on an analytical trend, the presented article 

examined nonlinear forced vibrations of annular sector 

plates made of multi-scale materials. The multi-scale 

composite is consist of epoxy, random CNTs and glass 

fibers which were included into the calculations based on 

Mori-Tanaka scheme. Jacobi elliptic functions were 

employed for determining the frequency-amplitude curves 

of annular sector. In the below statements, new findings are 

introduced: 

 The resonance occurs at higher values of excitation 

frequency when the CNT weight fraction increases. 

 Higher values for fiberglass volume result in 

greater excitation frequencies due to increased 

stiffness of the annular sector.  

 As the open angle increases the nonlinear effects 

become less prominent and frequency-amplitude 

curves have less deviations.  

 Increasing in fiber orientation angle yields lower 

excitation frequency.  

 By increasing the magnitude of CNT length-to-

diameter ratio, the excitation frequency increases.  

 Nonlinear effects become more prominent as the 

value of sector outer radius reduces.  
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