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1. Introduction 

 

In the field of materials science, there are various types 

of composite materials such as fiber reinforced composites, 

functionally graded (FG) material, nano-particle reinforced 

composites and etc (Abdelaziz et al. 2017, Addou et al. 

2019, Mirjavadi et al. 2017, 2018, 2019, Azimi et al. 2017). 

Each of the may represent specific properties is desirable 

directions (Boukhlif et al. 2019, Thanh et al. 2019, Zarga et 

al. 2019, Ahmed et al. 2019). Reinforcement of matrix 

materials is a key idea for enhancing their mechanical 

properties and this task can be done using different types of 

fibers or even nano-scale inclusions (Vo et al. 2017, Houari 

et al. 2018). Recently, nano-scale inclusions are shown to 

provide excellent interaction with the matrix material 

(Marami et al. 2016) leading to a novel type of material 

called nano-composite material.  

Due to remarkable stiffness and mechanical character of 

carbon nanotube and graphene, they are broadly employed 

as reinforcement particles (Wu et al. 2017, Zhao et al. 2017, 

Bakhadda et al. 2018). Graphene oxide powders are another 

type of nano inclusions which can be derived from graphite 

mass oxidation. Based on recent studies, it is proved that 

graphene oxide powders are compatible with different 

matrix materials such as polymeric and metallic materials. 

Graphene oxide composites demonstrate remarkable Young 

modulus and tensile strength as are carbon-based material 

with remarkable performances and low costs. Due to afore-

mentioned reasons, many authors devoted their efforts to 

examine mechanical properties of graphene reinforced 

structures. An investigation on post-buckling properties of  
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nano-composite beams reinforced by graphene sheets has 

been performed by Barati and Zenkour (2017). Ebrahimi 

and Dabbagh (2019) examined free vibrations of plates 

reinforced by combined fibers and nanotubes. Also, 

Ebrahimi et al. (2019) researched thermal effects on 

dynamic properties of a graphene oxide powder reinforced 

plate. Most recently, Zhang et al. (2020) explored bending 

and buckling of graphene oxide reinforced beams. Based on 

provided information, it can be concluded that post-

buckling analysis of graphene-oxide reinforced curved 

panels with variable thickness and geometric imperfections 

has not performed yet.  

In some cases including space structures and micro-

mechanical engineering for which the decrement in weight 

is of great importance, the panels with variable thickness 

are the best option. The employment of variable thickness 

could aid the engineers and researches diminish the weight 

of curved structure leading to shape optimization processes 

which allows to distribute and enhance the stiffness in the 

utmost stressed regions of the structure. Such structures 

having variable thickness, indeed, could represent better 

actions in deflection, buckling and vibrations when 

compared to a structure having un-varied thickness. This 

issue is studied by some researchers (Thang et al. 2016, 

Nguyen et al. 2020).  

Recent studies on micro-scale structures proved that the 

strain field at such scales may be not uniform and it must be 

considered as non-uniform due to strains gradients (Barati 

2018). Classic elasticity is not able to incorporate such non-

uniform strain fields since it is not designed for micro-

scales. By adding scale factors, strain gradient elasticity can 

include the effects of the strain gradient components. This 

theory is widely applied in mechanical analysis of micro-

size structures with different types of materials (Li et al. 

2017, Barretta et al. 2018, She et al. 2019). These studies 

reported additional stiffness of the micro-scale structure 
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compared to a macro-scale counterpart.  

Considering geometric imperfection effects, this 

article studies post-buckling behavior of geometrically 

imperfect tapered curved micro-panels constructed from 

GOP-reinforced composite. Classic shell theory has been 

utilized for modeling of the panel. The classical plate and 

shell models can be appropriately deduced form the 

classical elasticity formulation of the Saint-Venant flexure 

problem (Faghidian 2016). However, shear deformation 

effect is neglected in the classic shell theory (Ali Faghidian 

2017). In order to incorporate small scale influences, strain 

gradient theory has been utilized. The thickness of micro-

scale panel is assumed to be variable in longitudinal 

direction. Employing Halpin-Tsai micro-mechanical model, 

the material properties of nanocomposite material based on 

uniformly and linearly distributed GOPs have been 

obtained. Post-buckling curves have been determined based 

on both perfect and imperfect micro-panel geometries. It 

will be illustrated that post-buckling curves are affected by 

the values of GOP amount, strain gradient coefficient, 

variable thickness parameters, panel radius, geometric 

imperfection and also GOP distribution type. 

 

 
2. Elastic properties for GOP-reinforced composites 
 

Based on Halpin-Tsai micro-mechanic model, it is 

assumed that the Young modulus of the nano-composite 

( E ) is a function of GOPs volume (VGOP) and Young 

modulus of matrix phase (EM) as (Zhang et al. 2020) 
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so that dGPL and tGPL define GOP average diameter and 

thickness, respectively. In this study, two kinds of GOP 

distributions have been selected which are uniform and 

linearly graded. Accordingly, the volume of GOP based on 

the two kinds of distribution can be introduced as 

Uniform:  
*

GOP GOPV V  (3) 

Linear:  
*(1 2 )GOP GOP

z
V V

h
   (4) 

in which 
*

GOPV is a function of GOP weight fraction (WGOP) 

as well as densities of GOP and matrix (
GOP ,

M ) and can 

be calculated as 
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Another important factor which can be determined based on 

rule of mixture is Poisson’s ratio of GOP-reinforced 

composites ( v ) as a function of matrix volume (

1M GOPV V  ) and Poisson’s ratios of GOP and matrix 

( GOPv , Mv ) as 

GOP GOP M Mv v V v V   (6) 

 

 
3. Mathematical modeling for tapered curved panel 

 

Based on thickness variation from h0 to h1 in 

longitudinal direction, Fig. 1 illustrates a tapered curved 

micro-panel having curvature radius of R.  For describing 

longitudinal variation of the panel thickness, the below 

definition of thickness has been used 

2

0 1(1 )gh h g x   (7) 

in which g2 denotes non-uniform parameter of varied 

thickness. Selecting g2=0 the thickness has un-varied; g2=1 

defines the linear thickness variation and g2=2 defines the 

parabolic thickness variation. Moreover, g1 is a factor which 

evaluates the rate of changes in thickness 

0 1
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There are various plate/shell theories introduced in the 

literature (Abualnour et al. 2019, Balubaid et al. 2019, 

Batou et al. 2019, Belbachir et al. 2019, Bellal et al. 2020, 

Boulefrakh et al. 2019, Boutaleb et al. 2019, Semmah et al. 

2019, Tlidji et al. 2019, Zaoui et al. 2019, Abdulrazzaq et 

al. 2020, Ahmed et al. 2019, Ahmed et al. 2020, Alasadi et 

al. 2019, Al-Maliki et al. 2019, Faleh et al. 2018, Faleh et 

al. 2020, Fenjan et al. 2019, Hamad et al. 2019, Khalaf et 

al. 2019, Kunbar et al. 2019, Muhammad et al. 2019, 

Fenjan et al. 2020, Al-Maliki et al. 2020).  

The tapered curved micro-panel may be formulated 

employing thin shell model which represents the strain 

components as below forms 
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(10) 

Defined strains incorporates deflection (w) and in-plane 

(u, v) displacements. Also, w* defines the deflection due to 

imperfectness. In the case of micro-size structures, the 

relations for stresses σi (i=x, y, xy) may be defined in the 

context of strain gradient elasticity as 
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in which Qij may be introduced as 
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Here l is called strain gradient coefficient. From 

integration of Eq. (11) over panel thickness, it may be 

possible to express the below relations of forces and 

moments 

1

2 0 0

1 12

1 2

2

1 1 ]

[(1 )x x y

x y

N A e A e

B k B

l

k



 

 
 (13) 

1

2 0 0

2 22

1 2

2

2 2 ]

[(1 )y x y

x y

N A e A e

B k B

l

k



 

 
 (14) 

2 2 0

66 662 ](1 )[ xxy xyyN Al e B k    (15) 

1

2 0 0

1 12

1 1

2

1 2 ]

[(1 )x x y

x y

M B e B e

D k D

l

k



 

 
 (16) 

1

2 0 0

2 22

1 2

2

2 2 ]

[(1 )y x y

x y

M B e B e

D k D

l

k



 

 
 (17) 

2 2 0

66 662 ](1 )[ xxy xyyM Bl e D k    (18) 

in which 
2  is Laplacian operator in Cartesian 

coordinates and 
/2

/2

/2

/2

/2
2

/2

,

,

,

{11,12,22,66}

h

j j
h

h

j j
h

h

j j
h

A Q dz

B Q zdz

D Q z dz

j





















 

 
(19) 

 

 
Fig. 1 Geometry of curved micro-panel with variable thickness 
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A curved panel with curvature (R) owns three governing 

equations which may be calculated employing Hamilton’s 

rule 
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Note that Px is applied mechanical load in axial 

direction. Based on the information that Aj, Bj and Dj are 

functions of x, the governing equations can be re-written by 

inserting Eqs. (13)-(18) in Eqs. (20) and (22) as 
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4. Solution procedure 
 

In order to solve Eqs. (23)-(25), it is crucial to express 

the displacements in reliable forms to satisfy the boundary 

conditions which in the case of simply-support edges 

become (Barati 2018): 
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Then, according to above definitions one can use below 

approximations for displacement components based on their 

amplitudes (U ,V ,W ) as 
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where the functions sin[ / ]x

mf m x L and 

sin[ / ]y

nf n y b  are the applicable functions for 

satisfying the afore-mentioned conditions. Considering each 

governing equation as Ri (u, v, w)=0 with (i=1,2,3) and 

inserting displacement assumptions presented as Eqs. (28)-

(30) into Ri yields below equations based upon Galerkin’s 

technique 
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The weighted residual methods such as Galerkin’s 

method is well discussed in the works of Farrahi et al. 

(2009) and Faghidian et al. (2012). By substituting Eqs. 

(28)-(30) into Eqs. (23)-(25), and using the Galerkin’s 

method, one obtains 
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in which Sij are linear stiffness matrix components; Hi 

denotes nonlinear stiffness components and Yi are added 

stiffness due to geometric imperfection. With the aid of Eqs. 

(34) and (35) one can express that 
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(37) 

Then, applying Eq. (37) in Eq. (36) yields a single 

equation based on W and W* only. The solution of obtained 

for finding Px (GPa) will give post-buckling curves. 

 

 

5. Results and discussions 
 

Provided in the present section is post-buckling 

behavior of tapered curved micro-panels reinforced by 

graphene oxide powders (GOPs) containing epoxy as 

matrix and GOPs as inclusions. Material properties of the 

constituents are presented in Table 1. Geometric 

imperfectness of the micro-panel is also included. The 

elastic properties of GOP-reinforced materials were 

determined in the context of Halpin-Tsai scheme 

incorporating weight fraction of GOPs. The dependency of 

post-buckling loads on the GOP weight fraction (WGOP), 

thickness confidents (g1, g2), imperfectness (W*), 

normalized strain gradient coefficient (λ=l/L), and curvature 

radius will be evaluated in detail. 

 

Table 1 Material properties of the constituents 

 GOPs Matrix 

Young’s modulus

 (GPa) 

EGOP=444.8 Em=3 

Density (kg/m3) ρGOP=1090 ρm=1200 

Poisson ratio vGOP=0.165 vm=0.34 

Diameter (nm) dGOP=500 - 

Thickness (nm) tGOP=0.95 - 

Table 2 Comparison of post-buckling loads of perfect and 

imperfect panels for different normalized deflections 

W  
* / 0W h    * / 0.1W h    

 Chikh et al. 

(2016) 

present Chikh et al. 

(2016) 

present 

0 0.62411  0.62411  0 0 

0.1 0.62627  0.62627  0.31853  0.31853  

0.2 0.63274  0.63274  0.43334  0.43334  

0.3 0.64354  0.64354  0.50047  0.50047  

 

 

As the first step, post-buckling loads of perfect and 

imperfect panels are validated in Table 2 with those 

reported by Chikh et al. (2016) considering the gradation of 

material properties. According to this table, buckling loads 

have been calculated for both perfect (
* / 0W h  ) and 

imperfect (
* / 0.1W h  ) panel taking into account 

various normalized deflection ( /W W h ). Also, 

validation of the buckling load of a size-dependent micro-

panel with the work of Zhang et al. (2015) is presented in 

Table 3 based on different strain gradient coefficients 

(l/h=0.1, 0.2, 0.5, 1). Obtained buckling loads are in good 

agreement with those obtained by Zhang et al. (2015).  

Depicted in Fig. 2 is the variation of buckling load of 

micro-size curved panel versus normalized deflection 

( /W W h ) by taking into account different values for 

geometric imperfection amplitude (W*/h=0, 0.02, 0.04, 

0.06). Strain gradient coefficient is fixed at λ=0.2. It must 

be clarified that 0W   yields a bifurcation point called 

critical buckling load in the case of perfect micro-panel. 

However, there is no bifurcation point for an imperfect 

micro-panel. Therefore, for an imperfect micro-panel the 

post-buckling load starts from zero and reaches to post-

buckling path of the perfect micro-panel at higher values of 

normalized deflection. Since micro-panels are not always 

ideal and they may have initial configuration, it is crucial to 

incorporate their imperfectness effects. 

Fig. 3 illustrates buckling load variation versus 

normalized deflection (W ) of micro-scale curved panel for 

various strain gradient coefficient (λ). The panel thickness is 

considered as constant, therefore the thickness coefficients 

become g1=g2=0. For perfect panel it must be stated that 

W*/h=0 and also for imperfect panel it is assumed that 

W*h=0.02. The magnitude of GOPs weight fraction is 

selected as WGOP=0.2% based on uniform GOP distribution. 

It is found from the figure that higher values for strain 

gradient coefficient are corresponding to higher post-

buckling curves. This is due to additional stiffness of the 

micro-panel when train gradient effects are included.  

Nonlinear buckling load variation of GOP-reinforced 

curved micro-panels with respect to normalized deflection 

according to different GOP weight fraction (WGOP) has been 

plotted in Fig.4. It is assumed that the micro-panel has a 

curvature radius of R=5L. The present figure indicates that 

enlarging the magnitude of GOP weight fraction yields 

greater post-buckling loads. The reason is additional  
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Table 3 Comparison of non-dimensional buckling load (
2 3/xN P L Eh ) of micro-panel for different strain g

radient coefficients 

/l h  Zhang et al. (2015) present 

0.1 297.304  297.306 

0.2 88.3325  88.3328 

0.5 29.7615  29.7617 

1 21.3765 21.3768 

 

Fig. 2 Buckling load variation versus normalized deflection of cylindrical panel for various magnitude of imperfection 

(R=5L, h=0.02L, WGOP=0.2%, λ=0.2) 

 

Fig. 3 Buckling load variation versus normalized deflection of cylindrical panel for various strain gradient coefficients 

(R=5L, h=0.02L, WGOP=0.2%, W*/h=0.02) 
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stiffness of the micro-scale panel via increase of GOP 

content. Thus, post-buckling behavior of curved micro-

panel may be enhanced via increasing the amount of GOPs 

in matrix material. 

Fig. 5 compares the post-buckling path of the GOP-

reinforced micro-panel between uniform and linear 

distributions of GOPs at a fixed vale of GOP weight 

fraction WGOP=0.6%. For an imperfect micro-panel it is 

assumed that W*/h=0.02. This graph indicates that linear 

GOP dispersion is corresponding to lower post-buckling  

 

 

 

 

 

load values than uniform GOP dispersion. This is owing to 

the reason that GOP content is decaying in thickness 

direction of the micro-panel by considering linear GOP 

distribution. So, micro-panel based on uniform GOP 

distribution has extra stiffness compared to linearly graded 

GOP distribution. 

Fig. 6 illustrates the effects of curvature radius (R) on 

post-buckling curves of GOP-reinforced curved micro-size 

panel when WGOP=0.2% and λ=0.2. It must be noted that 

post-buckling curve of flat panels will be derived by  

 

 

Fig. 4 Buckling load variation versus normalized deflection of cylindrical panel for various GOP weight fractions 

(R=5L, h=0.02L, λ=0.2, W*/h=0.02) 

 

Fig. 5 Buckling load variation versus normalized deflection of cylindrical panel for various GOP dispersion types 

(R=5L, h=0.02L, WGOP=0.6%, λ=0.2, W*/h=0.02) 
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considering curvature radius as infinity (R→∞). Indeed, 

curvature radius specifies the structural behaviors of curved 

panel. As instance, by increment of curvature radius, the 

buckling behaviors of curved micro-panels become closer 

to flat panels. Thus, based on the graph, it can be seen that 

at smaller values for R, buckling loads of perfect micro-

panels first decrease with the enlargement of normalized 

deflection because of remarkable effects of panel curvature. 

However, at larger values of R, buckling load decrement 

becomes less appreciable.  

 

 

 

 

 

Variation of post-buckling curves of GOP-reinforced 

micro-panels based on different values of thickness 

variation coefficients (g1, g2) has been plotted in Figs. 7 and 

8 considering perfect and imperfect micro-panel 

assumptions. By selecting g2=0 the thickness becomes un-

varied; while g2=1 results in linear thickness changes and 

g2=2 results in parabolic thickness changes. Moreover, g1 

denotes a coefficients which evaluates the rates of variation 

in thickness. One can see that as the magnitude of g1 is 

greater, the post-buckling loads are larger. It must be stated  

 

 

Fig. 6 Buckling load variation versus normalized deflection of cylindrical panel for various curvature radii (h=0.02L, 

WGOP=0.2%, λ=0.2, W*/h=0.02) 

 

Fig. 7 Buckling load variation versus normalized deflection of cylindrical panel for various first thickness variation 

parameter (R=5L, h=0.02L, WGOP=0.2%, λ=0.1, g2=1) 

70



 

Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder… 

 

 

that higher values for g1 results in higher rate of thickness 

variation. Furthermore, it is obvious that higher values of 

non-uniform thickness coefficient g2 results in smaller post-

buckling loads. 

 

 

6. Conclusions 
 

The presented research investigated post-buckling 

behaviors of geometrically imperfect tapered curved micro-

panels made of graphene oxide powder (GOP) reinforced 

composite. Micro-scale effects on the panel structure were 

included based on strain gradient elasticity. Post-buckling 

curves were determined based on both perfect and imperfect 

micro-panel assumptions. There are some interesting 

findings which can be classified as: 

 For an imperfect micro-panel the post-buckling 

load starts from zero and reaches to post-buckling 

path of the perfect micro-panel at higher values of 

normalized deflection. 
 Higher values for strain gradient coefficient are 

corresponding to higher post-buckling curves.  
 Enlarging the magnitude of GOPs weight fraction 

yields greater post-buckling loads. 
 Linear GOP dispersion is corresponding to lower 

post-buckling load values than uniform GOP 

dispersion.  
 At smaller values for micro-panel curvature, 

buckling loads of perfect micro-panels first 

decrease with the enlargement of normalized 

deflection.  
 Higher values of non-uniform thickness coefficient 

results in smaller post-buckling loads. 
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