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1. Introduction 
 

Normally, functionally graded materials (FGMs) are 

heterogeneous materials in which the elastic and thermal 

properties change from one surface to the other, gradually 

and continuously. The material is constructed by smoothly 

changing the volume fraction of its constituent materials. 

FGMs offer great promise in applications where the 

operating conditions are severe, including spacecraft heat 

shields, heat exchanger tubes, plasma facings for fusion 

reactors, engine components, and high-power electrical 

contacts or even magnets. For example, in a conventional 

thermal barrier coating for high-temperature applications, a 

discrete layer of ceramic material is bonded to a metallic 

structure. However, the abrupt transition in material 

properties across the interface between distinct materials 

can cause large interlaminar stresses and lead to plastic 

deformation or cracking (Finot and Suresh 1996). These 

adverse effects can be alleviated by functionally grading the 

material to have a smooth spatial variation of material 
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composition. The concept of FGMs was first introduced in 

Japan in 1984. Since then it has gained considerable 

attention (Koizumi 1993). A lot of different applications of 

FGMs can be found in (Zhu and Meng 1995). Owing to the 

superior properties against the conventional composite 

laminates, FGMs have found increasing applications in 

modern engineering designs, such as aircraft fuselage, 

rocking-motor casing, packaging materials in 

microelectronic industry, human implants, and so on. FG 

plates have extensive applications in different engineering 

branches. For mechanical engineering and  aerospace 

engineering  it can be used in different aircraft components 

such as turbine or fan blades, wings and also vacuum filter 

segment with replaceable sector plates. Mukhopadhyay 

(1979, 1982) used a semi-analytical method and Srinivasan 

and Thiruvenkatachari (1983, 1986) used the integral 

equation technique to analyze the vibrations of annular 

sector plates, respectively. Kim and Dickinson (1989) used 

one-dimensional (1-D) orthogonal polynomials and Liew 

and Lam (1993) used two-dimensional orthogonal 

polynomials as admissible functions to study the free 

vibration of annular sector plates by the Rayleigh-Ritz 

method. Seok and Tiersten (2004) used a variational 

approximation procedure to analyze the free vibration of 

cantilevered annular sector plates. Houmat (2001) used the 

hierarchical finite element method to study the free 

vibration of annular sector plates. Sharma and Marin (2013) 
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considered wave propagation in micropolar thermoelastic 

solid half space with distinct conductive and 

thermodynamic temperatures. Marin and Florea (2014) 

investigated porous micropolar bodies. Marin et al. (2013) 

studied nonsimple material problems considering Lagrange 

approach. The Lagrange identity method was developed by 

Marin (1994) to study the initial boundary value problem of 

thermoelasticity of bodies with microstructure. Sharma et al. 

(2005a, 2005b) integrated an analytical approach with the 

Chebyshev polynomials technique to study the buckling and 

free vibration of isotropic and laminated composite sector 

plates based on the first-order shear deformation theory. For 

moderate thickness plates, the first-order shear deformable 

plate theory is commonly used, which could provide a result 

more accurate than that from the CPT. In another studies 

(Marin and Nicaise 2016 and Marin et al. 2017) researchers 

studied different effects of porosity and voids in the 

material. Marin et al. (2019) formulated the mixed 

backward in time problem in the context of thermoelasticity 

for dipolar materials. To prove the consistency of this mixed 

problem, their first main result was regarding the 

uniqueness of the solution for this problem. This was 

obtained based on some auxiliary results, namely, four 

integral identities. The second main result was regarding the 

temporal behavior of our thermoelastic body with a dipolar 

structure. Barka et al. (2016) studied Thermal post-buckling 

behavior of imperfect temperature-dependent sandwich FG 

plates. Bouguenina et al. (2015) studied FG plates with 

variable thickness subjected to thermal buckling. Chen, Liu 

and Chen (2017) studied Vibration and stability of initially 

stressed sandwich plates with FGM face sheets. Wu and Liu 

(2016) developed a state space differential reproducing 

kernel (DRK) method in order to study 3D analysis of FG 

circular plates. Park et al. (2016) used modified couple 

stress for dynamic analysis of sigmoid functionally graded 

materials plates. Arefi (2015) suggested an analytical 

solution of a curved beam with different shapes made of 

functionally graded materials (FGMs). Bennai et al. (2015) 

developed a new refined hyperbolic shear and normal 

deformation beam theory to study the free vibration and 

buckling of functionally graded (FG) sandwich beams 

under various boundary conditions. Bouchafa et al. (2015) 

used refined hyperbolic shear deformation theory (RHSDT) 

for the thermoelastic bending analysis of functionally 

graded sandwich plates. Tahouneh (2016) presented a 3-D 

elasticity solution for free vibration analysis of continuously 

graded carbon nanotube-reinforced (CGCNTR) rectangular 

plates resting on two-parameter elastic foundations. The 

volume fractions of oriented, straight single-walled carbon 

nanotubes (SWCNTs) were assumed to be graded in the 

thickness direction.  Moradi-Dastjerdi and Momeni-

Khabisi (2016) studied Free and forced vibration of plates 

reinforced by wavy carbon nanotube (CNT). The plates 

were resting on Winkler-Pasternak elastic foundation and 

subjected to periodic or impact loading. Kamarian et al. 

(2015) studied vibration analysis of sandwich beams. The 

material properties of the FG nanocomposite sandwich 

beam are estimated using the Eshelby-Mori-Tanaka 

approach. Tornabene et al. (2016) investigated the effect of 

Carbon Nanotube (CNT) agglomeration on the free 

vibrations of laminated composite doubly-curved shells and 

panels reinforced by CNTs. Fantuzzi et al. (2017) studied 

free vibration of arbitrarily shaped FG carbon nanotube-

reinforced plates using generalized differential quadrature 

method. Some additional parametric studies were also 

performed to analyze the effect of a mesh distortion, by 

considering several geometric and mechanical 

configurations. Tornabene et al. (2017) investigated the 

static response of composite plates and shells reinforced by 

agglomerated nanoparticles made of carbon nanotubes. A 

two-parameter agglomeration model was taken into account 

to describe the micromechanics of such particles, which 

showed the tendency to agglomerate into spherical regions 

when scattered in a polymer matrix. Saidi et al. (2013) used 

an analytical solution for thermomechanical bending 

analysis of functionally graded sandwich plates. The 

thermal buckling behavior of functionally graded sandwich 

plates was studied by Kettaf et al. (2013) via a new 

hyperbolic displacement model. Unlike any other theory, 

the theory was variationally consistent and gives four 

governing equations. Eyvazian et al. (2019) considered the 

instability behavior of sandwich plates considering 

magnetorheological (MR) fluid core and piezoelectric 

reinforced face sheets. Salah et al. (2019) used a simple 

four-variable integral plate theory that employed for 

examining the thermal buckling properties of functionally 

graded material (FGM) sandwich plates. The proposed 

kinematics considers integral terms which include the effect 

of transverse shear deformations. Sahla et al. (2019) use a 

simple four-variable trigonometric shear deformation model 

with undetermined integral terms to consider the influences 

of transverse shear deformation dynamic analysis of anti-

symmetric laminated composite and soft core sandwich 

plates. The buckling analysis of micro sandwich plate with 

an isotropic/orthotropic cores and piezoelectric/polymeric 

nanocomposite face sheets was studied by Rajabi and 

Mohammadimehr (2019). In this research, two cases for 

core of micro sandwich plate is considered that involve five 

isotropic Deviney cell materials (H30, H45, H60, H100 and 

H200) and an orthotropic material also two cases for face 

sheets of micro sandwich plate is illustrated that include 

piezoelectric layers reinforced by carbon and boron-nitride 

nanotubes and polymeric matrix reinforced by carbon 

nanotubes under temperature-dependent and hydro material 

properties on the elastic foundations. The nonlinear 

behavior of steel sandwich panels, with different core 

materials: (1) Hollow (no core material); (2) Rigid 

Polyurethane Foam (RPF); and (3) Vulcanized Rubber (VR) 

under free air blast loads, was investigated using detailed 

3D nonlinear finite element models in Ansys Autodyn 

(Rashad and Yang 2018). Tornabene et al. (2019) 

investigated free vibration analysis of arches and beams 

made of composite materials via a higher-order 

mathematical formulation. Tornabene et al. (2017) studied 

free vibration analysis of composite sandwich plates and 

doubly curved shells with variable stiffness. The reinforcing 

fibers were located in the external skins of the sandwich 

structures according to curved paths. A survey of several 

methods under the heading of strong formulation finite 

element method (SFEM) was presented by Tornabene et al.  
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(2015). In another investigation CNT/epoxy nanocomposite 

have been fabricated by in situ polymerization technique 

and piezoresistive responses of the samples have been 

recorded and evaluated (Afrookhteh et al., 2016). The 3D 

microstructure of the gas diffusion layers (GDLs) was 

generated, using a stochastic reconstruction approach. The 

method used basic input parameters and fibers orientation 

distribution and was capable to model carbon fiber and 

binder phases of all types of carbon fiber GDLs with 

different structural parameters (Afrookhteh et al., 2016). 

   Trapezoidal plates are used commonly as structural 

components in many engineering applications such as ships, 

aircraft, and engineering construction (Fig. 1). Many 

researchers have investigated the free vibration behavior of 

trapezoidal plates. Gürses et al. (2009) used discrete 

singular convolution (DSC) method for the free vibration 

analysis of laminated trapezoidal plates. The differential 

quadrature (DQ) method in conjunction with the introduced 

transformed weighing coefficients (TW -DQ) was 

formulated to solve geometrically nonlinear free vibration 

of functionally graded carbon nanotube -reinforced 

composite (FG-CNTRC) quadrilateral plates (Setoodeh and 

Shojaee 2016). Gupta and Sharma (2014) investigated free 

transverse vibration of orthotropic thin trapezoidal plate of 

parabolically varying thickness in x-direction subjected to 

linear temperature distribution in x-direction through a 

numerical method. Zamani et al. (2012) studied free 

vibration analysis of moderately thick symmetrically 

laminated general trapezoidal plates with various 

combinations of boundary conditions. The governing partial 

differential equations and boundary conditions for 

trapezoidal plate are obtained using first order shear 

deformation theory (FSDT) together with proper 

transformation from Cartesian system into trapezoidal 

coordinates. Generalized differential quadrature (GDQ) 

method is then employed to obtain solutions for the 

governing equations. Torabi and Afshari (2017) investigated 

vibration analysis of cantilevered non-uniform trapezoidal 

thick plates based on the first shear deformation theory. 

Convergence and accuracy of the proposed solution were 

confirmed using results presented by other authors and also 

results obtained based on the finite element method using 

ANSYS software. Gupta and Sharma (2016) investigated 

free transverse vibrations of non-homogeneous trapezoidal 

plates of linear thickness variation in the x-direction under 

thermal gradient effect. The non-homogeneity of the plate  

 

 

was assumed to arise due to parabolic density variation in 

the y-direction. A two term deflection function has been 

taken for clamped-simply supported-clamped-simply 

supported boundary conditions. A general variational 

formulation for free vibration analysis of hybrid (metal 

composite) plates with a trapezoidal platform was presented 

by Shokrollahi and Shafaghat (2016). The plate was 

composed of two distinguished parts in the span direction, 

where the inboard section was assumed to be made of an 

isotropic metal, and the outboard section was from a 

laminated composite material. Zhao et al. (2017) studied 

bending and vibration behaviors of a novel class of 

functionally graded trapezoidal plates reinforced with 

graphene nanoplatelets (GPLs) by employing the finite 

element method. Modified Halpin-Tsai model and the rule 

of mixture were used to determine the effective material 

properties including Young’s modulus, mass density and 

Poisson’s ratio of the nanocomposites. Zhao et al. (2019) 

studied bending behaviours of functionally graded 

trapezoidal nanocomposite plates reinforced with graphene 

platelets (GPLs) under thermo-mechanical loading by 

employing finite element method. Analysis of FG-CNTR 

plates were first presented by Shen (2009) in which he 

studied the nonlinear bending behavior of FG-CNTR plates 

in thermal environment. He concluded that the load bending 

moment curves of the plate could be significantly increased 

as a result of functionally graded CNT reinforcements. Shen 

and Zhang (2010) presented thermal buckling and post 

buckling behavior of functionally graded nanocomposite 

plates reinforced by single-walled carbon nanotubes 

(SWCNTs). In comparison with research works on the free 

vibration or buckling analyses of FG structures, only a few 

references can be found that consider the effect of waviness 

and aspect ratio on the free vibrational behavior of panels 

with four edges simply supported (Moradi-Dastjerdi, 

Foroutan, and Pourasghar 2013). Moradi-Dastjerdi, 

Foroutan, and Pourasghar (2013) investigated the effects of 

CNT waviness on the dynamic behavior of FG-CNTR 

cylinder under impact load. 

To the best of authors’ knowledge, no papers have been 

reported in the literature concerning the vibrational 

behavior of the trapezoidal sandwich porous/GPLR plates 

with various combinations of B.C.s. In this study, sandwich 

plates with metallic foam core and two (GPLs) reinforced 

nanocomposite outer layers were proposed as lightweight 

engineering structures. Using GDQ method, the free  

 

Fig. 1 Trapezoidal composite plates and components in JAS39 Gripen (Kapidzic 2013) 
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vibration analysis of three-layer sandwich plates with 

porous core is investigated and natural frequencies of the 

trapezoidal sandwich plates are obtained. 

 

 

2. Theoretical modeling 
 

As shown in Fig. 2 A three-layer trapezoidal sandwich 

plate with thickness h in z direction, two lengths Lx and Ly 

and two angles α and β in the x-y plane, is considered. The 

sandwich plate consists of porous metal foam core and two 

face layers reinforced functionally with GPLs. The plate has 

total thickness h (=hc+2hf), where hc and hp are the 

thicknesses of the core and GPL reinforced layers, 

respectively. Superscript f and c, respectively, stand for the 

face layers and the porous core. It is supposed that the 

orthogonal Cartesian system located on the middle surface 

of the plate. Furthermore, the porosities and GPLs are 

distributed along the core and two face sheet thickness, 

respectively. 

 

2.1 Effective material properties 
 

Fig. 3 depicts three the porosity distributions of the core 

layer and three GPL dispersion patterns along the thickness 

direction of the face layers of plates. In addition, Fig. 3 

demonstrates the distribution of GPLs in which three 

different GPLs distribution patterns are plotted. The 

variation of Young’s modulus (Em), shear modulus (Gm) and 

mass density (ρm) through the thickness of metal foam core 

layer (-hc/2 ≤ z ≤ hc/2) corresponding to three different 

types of porosity distributions are explicitly formulated as 

(Wang et al. 2019): 

𝐸𝑐(𝑧) = 𝐸𝑚(1 − 𝑒0𝜆(𝑧)) 
𝐺𝑐(𝑧) = 𝐺𝑚(1 − 𝑒0𝜆(𝑧)) 

𝜌𝑐(𝑧) = 𝜌𝑚(1 − 𝑒1𝜆(𝑧)) 
(1) 

In which Em and ρm are the maximum values of the Young’s 

modulus and the mass density of the metallic porous core,  

 

 

respectively. λ(z) is formulated for each porosity pattern as 

follows (Zhao et al. 2019) 

𝜆(𝑧) =

{
 
 

 
 1 − 𝑐𝑜𝑠 (

𝜋𝑧

ℎ𝑐
)            𝐹𝐺𝑃 − 1

𝑐𝑜𝑠 (
𝜋𝑧

ℎ𝑐
)                    𝐹𝐺𝑃 − 2

𝜆0                               𝐹𝐺𝑃 − 3

  ;  

(|𝑧| ≤
ℎ𝑐
2
) 

(2) 

Also, the porosity coefficient 𝑒0 = 1 −
𝐸𝑚

𝐸0
 ,   (0 < 𝑒0 < 1) 

and 𝑒1 = 1 −
𝜌𝑚

𝜌0
 is the coefficient mass density, where 𝐸0 

and 𝜌0 are the minimum values of the Young’s modulus and 

the mass density of the core, respectively. The relation 

between 𝑒1 and 𝑒0 can be expressed as 

𝑒1 = 1 − √1 − 𝑒0 (3) 

Moreover, the term 𝜆0  which is implemented can be 

calculated by 

𝜆0 =
1

𝑒0
−
1

𝑒0
[
2

𝜋
√1 − 𝑒0 −

2

𝜋
+ 1]

2

 (4) 

The variations of the Poisson’s ratio are small enough to 

be considered unimportant. So, the poison’s ratio is 

constant. It is assumed that two face layers are reinforced 

with three different GPLs distribution patterns without 

porous and the matrix and GPLs nanofillers are in perfect 

bond. Based on Halpin-Tsai micromechanical scheme, the 

effective Young’s modulus of the two face sheets is (Rafiee 

et al. 2009): 

𝐸𝑓(𝑧) = 𝐸𝑚 [
3

8
(
1 + 𝜉𝐿𝜂𝐿𝑉𝐺𝑃𝐿
1 − 𝜂𝐿𝑉𝐺𝑃𝐿

) +
5

8
(
1 + 𝜉𝐵𝜂𝐵𝑉𝐺𝑃𝐿
1 − 𝜂𝐵𝑉𝐺𝑃𝐿

)] (5) 

where the subscripts ‘GPL’ and ‘m’ represent the 

corresponding material properties of the GPLs nanofillers 

and metallic matrix of face sheets, respectively. 𝜉𝐿, 𝜉𝐵, 𝜂𝐿, 

and 𝜂𝐵 are geometrical parameters of the GPLs with the 

following expressions 

 

Fig. 2 Trapezoidal sandwich plates with FG porous core and two nanocomposite outer layers reinforced with GPLs. (a) 

top view, (b) side view 
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𝜉𝐿 = 2
𝐿𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

 ,       𝜂𝐿 =
𝐸𝐺𝑃𝐿/𝐸𝑚 − 1

𝐸𝐺𝑃𝐿/𝐸𝑚 + 𝜉𝐿
 ,   

𝜉𝐵 = 2
𝑏𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

 ,       𝜂𝐵 =
𝐸𝐺𝑃𝐿/𝐸𝑚 − 1

𝐸𝐺𝑃𝐿/𝐸𝑚 + 𝜉𝐵
 , 

(6) 

where 𝐿𝐺𝑃𝐿, 𝑏𝐺𝑃𝐿, and 𝑡𝐺𝑃𝐿 are the GPLs’ average length, 

width, and thickness, respectively. The effective Poisson’s 

ratio, mass density can be estimated by the rule of mixtures.  

𝜐𝑓(𝑧) = 𝜐𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝜐𝑚(1 − 𝑉𝐺𝑃𝐿) 

𝜌𝑓(𝑧) = 𝜌𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝜌𝑚(1 − 𝑉𝐺𝑃𝐿) 
(7) 

Then we define the following functions in terms of z to 

characterize the distributions of GPLs in which three GPL 

patterns are denoted by shape functions Θ(z) 

correspondingly 

Θ(𝑧) =

{
 
 
 

 
 
 

1 − 𝑐𝑜𝑠 (
𝜋 (𝑧 −

ℎ𝑐
2
)

ℎ𝑝
)              𝐺𝑃𝐿 − 𝑆

1 − 𝑐𝑜𝑠 (
𝜋 (𝑧 −

ℎ𝑐
2
)

2ℎ𝑝
+
𝜋

4
)     𝐺𝑃𝐿 − 𝐴

1                                                     𝐺𝑃𝐿 − 𝑈

 ;  
ℎ𝑐
2
≤ |𝑧| ≤

ℎ𝑐
2
+ ℎ𝑓 (8) 

The relationship between the shape functions Θ(𝑧) and the 

volume fraction 𝑉𝐺𝑃𝐿 of GPLs is 

𝑉𝐺𝑃𝐿 = 𝑉𝑖Θ𝑖(𝑧) (9) 

where the peak values 𝑉𝑖 , (i = 1, 2, 3) of the GPLs’ volume 

fraction are functions of Λ𝐺𝑃𝐿 . They are expressed by (Dong 

et al. 2019) 

𝑉𝑖
ℎ𝑓
(∫ Θ𝑖(𝑧)𝑑𝑧

ℎ𝑐
2
+ℎ𝑓

ℎ𝑐
2

) =
Λ𝐺𝑃𝐿𝜌𝑚

Λ𝐺𝑃𝐿𝜌𝑚 + 𝜌𝐺𝑃𝐿 − Λ𝐺𝑃𝐿𝜌𝑚
  (10) 

 
2.2 Governing equations and Boundary condition 
 

According to the FSDT, the governing equations of 

motion for free vibration analysis of any symmetrically 

sandwich plate in Cartesian coordinate system are (Reddy 

2003) 

𝑘𝑠𝐴55 (
𝜕𝜑𝑥
𝜕𝑥

+
𝜕2𝑤

𝜕𝑥2
) + 𝑘𝑠𝐴44 (

𝜕𝜑𝑦

𝜕𝑦
+
𝜕2𝑤

𝜕𝑦2
) = 𝐼0

𝜕2𝑤

𝜕𝑡2
 

𝐷11
𝜕2𝜑𝑥
𝜕𝑥2

+ 𝐷12
𝜕2𝜑𝑦

𝜕𝑦𝜕𝑥
+ 𝐷66 (

𝜕2𝜑𝑥
𝜕𝑦2

+
𝜕2𝜑𝑦

𝜕𝑦𝜕𝑥
)

− 𝑘𝑠𝐴55 (𝜑𝑥 +
𝜕𝑤

𝜕𝑥
) = 𝐼2

𝜕2𝜑𝑥
𝜕𝑡2

 

𝐷22
𝜕2𝜑𝑦

𝜕𝑦2
+ 𝐷12

𝜕2𝜑𝑥
𝜕𝑦𝜕𝑥

+ 𝐷66 (
𝜕2𝜑𝑦

𝜕𝑥2
+
𝜕2𝜑𝑥
𝜕𝑦𝜕𝑥

)

− 𝑘𝑠𝐴44 (𝜑𝑦 +
𝜕𝑤

𝜕𝑦
) = 𝐼2

𝜕2𝜑𝑦

𝜕𝑡2
 

(11) 

In which the displacement components of the trapezoidal 

plate along z directions are illustrated by w at middle 

surface. 𝜓𝑥  and 𝜓𝑦 separately, denote rotational 

displacements about the x- and y- axis. Besides, 𝑘𝑠 is the 

shear correction factor which is assumed to be 5/6, other 

coefficients are defined as 

{𝐴𝑖𝑗 , 𝐷𝑖𝑗} = (∫ 𝑄𝑖𝑗(1, 𝑧
2)𝑑𝑧

ℎ𝑓+
ℎ𝑐
2

ℎ𝑐
2

+∫ �̃�𝑖𝑗(1, 𝑧
2)𝑑𝑧

ℎ𝑐
2

−ℎ𝑐
2

+∫ 𝑄𝑖𝑗(1, 𝑧
2)𝑑𝑧

−ℎ𝑐
2

−(ℎ𝑓+ℎ𝑐/2)

) 

(12) 

In which the coefficients of 𝑄𝑖𝑗   and �̃�𝑖𝑗 are the plane 

stress-reduced stiffness of the face layers and the porous 

core respectively; defined as bellow (Li et al. 2018) 

𝑄11 = 𝑄22 =
𝐸𝑓(𝑧)

1 − 𝑣𝑓(𝑧)
2
 ; �̃�11 = �̃�22 =

𝐸𝑐(𝑧)

1 − 𝑣𝑐
2
  

𝑄12 = 𝑄21 =
𝑣𝑓(𝑧)𝐸𝑓(𝑧)

1 − 𝑣𝑓(𝑧)
2
 ;  �̃�12 = �̃�21 =

𝑣𝑐𝐸𝑐(𝑧)

1 − 𝑣𝑐
2
  

 𝑄44 = 𝑄55 = 𝑄66 = 𝐺𝑓(𝑧);  �̃�44 = �̃�55 = �̃�66
= 𝐺𝑐(𝑧) 

(13) 

Moreover, 𝑀𝑖𝑗 and 𝑄𝑖  are elements of resultant moment and 

shear force vectors in the Cartesian coordinates which are 

defined as 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

]

{
  
 

  
 

𝜕𝜑𝑥
𝜕𝑥
𝜕𝜑𝑦

𝜕𝑦
𝜕𝜑𝑦

𝜕𝑥
+
𝜕𝜑𝑥
𝜕𝑦 }

  
 

  
 

 (14) 

{
𝑄𝑥
𝑄𝑦
} = [

𝐴55 0
0 𝐴44

]

{
 

 𝜑𝑥 +
𝜕𝑤

𝜕𝑥

𝜑𝑦 +
𝜕𝑤

𝜕𝑦}
 

 
 (15) 

Different boundary conditions for a random edge whose 

normal and tangential directions are denoted by n and s are 

as (Malekzadeh and Karami 2005) 

Free (F):  Mn = Qn = Mns = 0 

Simply supported (S):  Mn = φs = w = 0 

Clamped (C):  φn = φs = w = 0 

 

(16) 

where Mn  and Mns  are resultant bending and twisting 

moments, respectively and Qn  is resultant shear force 

acting on the boundary in the z direction. Furthermore, φn 

and φs are rotations of the normal to the mid-plane in the 

plane nz (normal plane) and sz (tangent plane), respectively. 

These parameters can be defined in Cartesian coordinate as 

𝜑𝑠 = −𝑛𝑦𝜑𝑥 + 𝑛𝑥𝜑𝑦 

𝜑𝑛 = 𝑛𝑦𝜑𝑦 + 𝑛𝑥𝜑𝑥 

𝑀𝑛 = 𝑀𝑥𝑥𝑛𝑥
2 +𝑀𝑦𝑦𝑛𝑦

2 + 2𝑀𝑥𝑦𝑛𝑥𝑛𝑦 

𝑀𝑛𝑠 = 𝑛𝑥𝑛𝑦(𝑀𝑦𝑦 −𝑀𝑥𝑥) + 𝑀𝑥𝑦(𝑛𝑥
2 − 𝑛𝑦

2) 

𝑄𝑛 = 𝑛𝑥𝑄𝑥 + 𝑛𝑦𝑄𝑦  

(17) 

 

51



 

Di Liang, Qiong Wu, Xuemei Lu and Vahid Tahouneh 

 

 

 

 

𝜑𝑠 = −𝑛𝑦𝜑𝑥 + 𝑛𝑥𝜑𝑦 

𝜑𝑛 = 𝑛𝑦𝜑𝑦 + 𝑛𝑥𝜑𝑥 

𝑀𝑛 = 𝑀𝑥𝑥𝑛𝑥
2 +𝑀𝑦𝑦𝑛𝑦

2 + 2𝑀𝑥𝑦𝑛𝑥𝑛𝑦 

𝑀𝑛𝑠 = 𝑛𝑥𝑛𝑦(𝑀𝑦𝑦 −𝑀𝑥𝑥) +𝑀𝑥𝑦(𝑛𝑥
2 − 𝑛𝑦

2) 

𝑄𝑛 = 𝑛𝑥𝑄𝑥 + 𝑛𝑦𝑄𝑦  

(17) 

where 𝑛𝑥 and 𝑛𝑦 are the x and y components of the vector 

normal to the edge, respectively. 

2.3 Geometric mapping  
 

The trapezoidal plate in the physical domain described 

in the Cartesian x-y coordinate system can be mapped into 

the computational domain described in the rectangular  𝜁 −
𝜂 coordinate system, the transformation equations are 

expressed as 

𝑥 = 𝜁 + 𝜂 cos(𝛼) −
𝜂𝜁 sin(𝛽 − 𝛼)

𝐿𝑥 sin(𝛽)
 

 𝑦 = 𝜂 sin(𝛼) 
(18) 

the first-order and second-order derivatives of a function 

can be expressed in new 𝜁 − 𝜂  rectangular coordinates 

using the chain rule, as follows 

{
 

 
𝜕𝑉

𝜕𝑥
𝜕𝑉

𝜕𝑦}
 

 
= [𝑗]−1

{
 

 
𝜕𝑉

𝜕𝜁
𝜕𝑉

𝜕𝜂}
 

 

 (19) 

 

 

 

 

 

{
  
 

  
 
𝜕2𝑉

𝜕𝑥2

𝜕2𝑉

𝜕𝑦2

𝜕2𝑉

𝜕𝑥𝜕𝑦}
  
 

  
 

= [𝑗(2)]
−1

{
  
 

  
 
𝜕2𝑉

𝜕𝜁2

𝜕2𝑉

𝜕𝜂2

𝜕2𝑉

𝜕𝜁𝜕𝜂}
  
 

  
 

− [𝑗(2)]
−1
[𝑗(1)][𝑗]−1

{
 

 
𝜕𝑉

𝜕𝜁
𝜕𝑉

𝜕𝜂}
 

 

 (20) 

In which V stands for an arbitrary variable and the 

components of the transformation Jacobian matrices are 

[𝑗] =

[
 
 
 
 
𝜕𝑥

𝜕𝜁

𝜕𝑦

𝜕𝜁
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂]
 
 
 
 

 ;  [𝑗(1)] =

[
 
 
 
 
 
 
𝜕2𝑥

𝜕𝜁2
𝜕2𝑦

𝜕𝜁2

𝜕2𝑥

𝜕𝜂2
𝜕2𝑦

𝜕𝜂2

𝜕2𝑥

𝜕𝜁𝜕𝜂

𝜕2𝑥

𝜕𝜁𝜕𝜂]
 
 
 
 
 
 

 (21) 

[𝑗(2)] =

[
 
 
 
 
 
 (
𝜕𝑥

𝜕𝜁
)
2

(
𝜕𝑦

𝜕𝜁
)
2

2
𝜕𝑥

𝜕𝜁

𝜕𝑦

𝜕𝜁

(
𝜕𝑥

𝜕𝜂
)
2

(
𝜕𝑦

𝜕𝜂
)
2

2
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂
𝜕𝑥

𝜕𝜁

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜁

𝜕𝑦

𝜕𝜂

𝜕𝑥

𝜕𝜁

𝜕𝑦

𝜕𝜂
+
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜁]
 
 
 
 
 
 

 (22) 

Based on the above transformation Jacobian matrix, the 

governing equations and boundary conditions can be 

transformed from the physical domain into the new 

computational domain. Using Eqs. (11) and (19), (20) one 

can obtain the governing equations of motion of sandwich 

trapezoidal plate in the 𝜁 − 𝜂 coordinate as 

 

Fig. 3 Schematic of (a) The GPL dispersion patterns and (b) Different porosity distributions. 
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in which: 

1 1 1
1 3 4

(2) 1
mn

(2) 1 (1) 1

[ ] (1,1), b [ ] (2,1), [ ] (2,2),

k [ ] ( ,n),

[ ] [ ][ ] ( , )

  



 

  



mn

b j j b j

j m

a j j j m n

 (26) 

It should be noted that boundary conditions also can be 

transformed into the computational domain using Eqs. (16) 

and (19)-(20). 

 
 
3. Solution procedure 

 

Differential quadrature method (DQM) is an accurate 

and effective numerical method. The convergence and 

accuracy of results depends on the precision of weighting 

coefficients controlled by the number of grid points. The 

primary formulations of DQM, an algebraic equation 

system was employed to calculate weighting coefficients 

which determined the number of grid points. An explicit 

formulation for the weighting coefficients was later 

presented by Shu (2012) and led to GDQ. This method uses 

weighted linear combination of function values in the whole 

domain to approximate the function derivations with respect 

to the space variables. For instance, the nth-order derivative 

of variable V with respect to the 𝜁 at point 𝜁𝑖  is 

approximated as 

𝑉(𝑛)(𝜁𝑖) = (
𝑑𝑛𝑉

𝑑𝜁𝑛
)|
𝜁=𝜁𝑖

=∑𝐶𝜁
(𝑛)(𝑖, 𝑗)𝑉𝑗 , (1 ≤ 𝑖 ≤ 𝑁𝜁)

𝑁𝜁

𝑗=1

 (27) 

where 𝑁𝜁  is the total number of grid points in the 𝜁 

direction and 𝐶𝜁
(𝑛)

are weighting coefficients for the nth-

order derivative. In the GDQ method, the global Lagrange 

interpolation polynomial is used for determination of the 

weighting coefficients as 

 

 

𝑔𝑗(𝜁) =
𝑀(𝜁)

(𝜁 − 𝜁𝑗)𝑀
(1)(𝜁𝑗)

 

𝑀(𝜁) =∏(𝜁 − 𝜁𝑘)

𝑁𝜁

𝑘=1

 

𝑀(1)(𝜁𝑗) = ∏ (𝜁𝑗 − 𝜁𝑘)

𝑁𝜁

𝑘=1,𝑘≠𝑗

 

(28) 

it can be concluded that 𝑀(1)(𝜁) is the first derivation of 

𝑀(𝜁)  Now, derivation from Eq. (28) leads to analytic 

expression for 𝐶𝜁
(𝑛)(𝑖, 𝑗) as: 

𝐶𝜁
(1)(𝑖, 𝑗) = 𝑔𝑗

(1)(𝜁𝑖), (1 ≤ 𝑖, 𝑗 ≤ 𝑁𝜁), 𝑖 ≠ 𝑗 

𝐶𝜁
(1)(𝑖, 𝑖) = − ∑ 𝐶𝜁

(1)(𝑖, 𝑗),          ( 1 ≤ 𝑖 ≤ 𝑁𝜁) 

𝑁𝜁

𝑗=1,𝑗≠𝑖

 

(29) 

The higher order derivative weighting coefficients can 

be found using following recursive formulation 

𝐶𝜁
(𝑛)(𝑖, 𝑗) = 𝑛(𝐶𝜁

(1)(𝑖, 𝑗)𝐶𝜁
(𝑛−1)(𝑖, 𝑖) −

𝐶𝜁
(𝑛−1)(𝑖, 𝑗)

𝜁𝑖 − 𝜁𝑗
),       

 (1 ≤ 𝑖, 𝑗 ≤ 𝑁𝜁), 𝑖 ≠ 𝑗 

𝐶𝜁
(𝑛)(𝑖, 𝑖) = ∑ 𝐶𝜁

(𝑛)(𝑖, 𝑗),           (1 ≤ 𝑖 ≤ 𝑁𝜁) 

𝑁𝜁

𝑗=1,𝑗≠𝑖

 

(30) 

the natural and simplest choice of grid points is equally 

spaced points in the direction of the coordinate axes of the 

computational field. It was proven that the non-uniform grid 

points give better results than equally spaced grid points do 

with the same number of grid points. Using Eq. (27), one 

may rewrite the governing equations in algebraic 

discretized form. For example, the discretized form of the 

first governing equation, Eq. (23), can be read as 

2 2 2 2 2

55 1 11 44 3 4 21 22 23 21 02 2 2 2

       
       

        

y yx
s s

w w w w w w
k A (b k ) k A (b b k k k a ) I

t

 

       
 

(23) 

2 2 22 2 2

11 11 12 66 31 32 33 31 66 21 222 2 2 2 2

2 2

23 21 55 1 2 2

     
       

      

  
   

    

y y y yx x x

x x x
s x

D ( k ) ( D D )(k k k a ) D ( k k

w
k a ) k A ( b ) I

t

     

      

  


   

 
(24) 

2 2 22 2 2

66 11 12 66 31 32 33 31 22 21 222 2 2 2 2

2 2

23 21 44 3 4 2 2

     
       

      

   
    

     

y y yx x x x

y y y
s y

D ( k ) ( D D )(k k k a ) D ( k k

w w
k a ) k A ( b b ) I

t

     

      

  


    

 
(25) 
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In this paper, a non-uniform set of grid points is chosen 

as follows 

𝜉𝑖 =
𝐿𝜁

2
(1 − cos (

𝑖 − 1

𝑁𝜉 − 1
𝜋)) (32) 

𝐿𝜁  is the length in the 𝜁 direction. Applying GDQ method 

on Eqs. (23-25) with the special combination of B.Cs, one 

can write the subsequent set of algebraic equations as 
[𝐾]{𝑞} = [𝑀]{𝜕2𝑞/𝜕𝑡2}. Where {q} is vector of system 

degree of freedoms including values of w, 𝜑𝑥 and 𝜑𝑦 at 

all nodes. In order to obtain the natural frequencies, the 

nodes on boundaries and internal domain of the plate are 

separated. Combination equations of motion and B.C 

equations can now be rewritten as (Tornabene and Viola 

2008) 

{[
[𝐾𝑏𝑏]

[𝐾𝑑𝑏]

[𝐾𝑏𝑑]

[𝐾𝑑𝑑]
]} {

𝑞𝑏
𝑞𝑑
} = [

[0]

[0]

[0]

[𝑀𝑑𝑑]
] {
𝜕2𝑞𝑏/𝜕𝑡

2

𝜕2𝑞𝑑/𝜕𝑡
2
} (33) 

Here, subscripts d and b indicate domain and boundary 

nodes, respectively. For example, [Kdb] indicates the effects 

of boundary nodes on the vibration of domain nodes. Here 

we have: 

Number of all nodes: N2 

Number of all nodes DOFs: 3N2 

Num. of boundary nodes DOFs (Nb): 3(N-4)2 

Num. of domain nodes DOFs (Nd): 3[N2 - (N-4)2] 

So, in Eq. (33): The dimensions of [Kbb] (or [Mbb]) matrix is 

equal to Nd × Nb. The dimensions of [Kbd] (or [Mbd]) matrix 

is equal to Nb × Nd. The dimensions of [Kdb] (or [Mdb]) 

matrix is equal to Nb × Nb and the dimensions of [Kdd] and 

[Mdd] matrices are equal to Nd × Nd. Also we know 

[Mbb]=[0], [Mbd]=[0] and [Mdb]=[0]. Consequently The 

dimensions of [
[Kbb]

[Kdb]

[Kbd]

[Kdd]
]  and [[0]

[0]
[0]

[Mdd]
]  matrices are 

equal to (3N×M) ×(3N×M). 

Due to harmonic nature of the vibration, it is reasonable 

to assume that {𝑞} = {𝑄(𝜁, 𝑛)}𝑒𝑖𝜔𝑡;  Where 𝜔 is natural 

frequency of the plate. Rearranging the quadrature analogs 

of field equations and boundary conditions inside the fabric 

of a generalized eigenvalue problem yield 

{[
[𝑀𝑑𝑑]

[0]

[0]

[0]
] 𝜔2 + [

[𝐾𝑑𝑑]

[𝐾𝑏𝑑]

[𝐾𝑑𝑏]

[𝐾𝑏𝑏]
]} {

𝑄𝑑
𝑄𝑏
} = 0 (34) 

Eq. (34) can be transformed to a standard eigenvalue 

problem as 

[𝐾𝑑𝑑 − 𝐾𝑑𝑏𝐾𝑏𝑏
−1𝐾𝑏𝑑 +𝜔

2[𝑀𝑑𝑑]] {𝑄𝑑} = 0 (35) 

 

 

Finally, by solving the eigenvalue problem, the natural 

frequencies can be obtained. 

 

 

4. Results and discussions 

In this section, numerical results of the free vibration 

analyses of trapezoidal sandwich GPLR/FGP plates with 

different porosity coefficient, porosity distribution, GPL 

distribution, GPL weight fraction, B.Cs and geometrical 

parameters are presented through some examples. The 

boundary conditions of the plate are stated by the letter 

symbols, for instance, CFSC means a plate with edges 𝜁 =
0 clamped (C), 𝜂 = 0 free (F), 𝜁 = 𝐿𝑥 simply supported (S) 

and 𝜂 = 𝐿𝑦 clamped (C).  

 

4.1 Verification  
 
In order to verify the present approach, results are 

compared with some existing ones in the literature. The 

verification example is a symmetrically laminated isosceles 

trapezoidal plate, (see Fig. 4) Composite material properties 

used in this study are as: (𝐸1, 𝐺) = (40𝐸2, 0.6𝐸2), 𝜈12 =
0.25 , 𝜌 = 2500 𝐾𝑔 𝑚3⁄ .Dimensionless natural frequency 

(Ω =
𝜔𝑎2

ℎ
√𝜌 𝐸2⁄ ) of SSSS and CCCC [0 90]s laminated 

trapezoidal plate for different values of b/a and h/a are 

presented in Table 1 . Results of FE method (Haldar and 

Manna 2003) and DSC method (Gürses et al. 2009) are also 

included in the table for comparison. A good agreement can 

be seen between results of the GDQ method and those 

available from literature.  

Table 2 demonstrates the first three dimensionless 

natural frequencies Ω  of a [30 60]S laminated (lay-up 

configurations) right trapezoidal (see Fig. 4) with Lx=1, 

Ly=0.5 at two corner angles and different boundary 

conditions, the obtained results also have good agreements 

with reported results in literature  for the vibration analysis 

of composite plates. Besides results show that as the angle 

𝜃 increased, dimensionless frequency reduced. 

 

4.2 Convergence study 
 
During detailed parametric studies in this section, the 

mechanical properties of the GPL and metal matrix 

constituents of the face layers and core are: Em=68.3GPa, 

EG=1.01TPa,  𝜌𝐺  =1062 Kg/m3, 𝜌𝑚=2706 Kg/m3, vm=0.34; 

vG=0.86 with LG=2.5 µm, bG=1.5 µm, tG=1.5 nm.  

     

 

i ,k i ,k j,k

N N N
(1) (2) (1) (2) (1) (1)

s 55 1 x 11 i,k s 44 3 y 21 i,k 21 i,k y
i 1 i 1 j 1

N N 2
(1)(2) (1)

22 l, j 23 m,n 0 2
m 1n 1

k A ( (b C k C w ) k A [ (b C k C w a C w ) (b4C

w
k C w ) k C C w ] I , l 2,..., N 1,k 2,..., N 1

t

  

 

    
  

   
 

        


     



  

 

 
(31) 
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Since the number of assumed grid points can affect the 

results, the convergence of the results with respect to N is 

studied. In Table 3 convergence of the GDQ method for the 

first three dimensionless natural frequencies of plate 

(Ω = 𝜔𝐿𝑥
2√𝜌ℎ/𝐷11 𝜋2⁄ ) is investigated with: Lx=Ly=1.5, 

α=120, β=45, hc /Lx=0.1, hf /hc=0.75. In the case of FGP-3 

and GPL-U sandwich plate in which the GPL weight 

fraction and porous coefficient are set to (Λ𝐺𝑃𝐿 , e0) = (1%, 

0.2); Results are prepared for different B.C.s. The problem 

is solved with six different mesh sizes. From the results one 

can conclude that GDQ leads to accurate results even using 

a few grid points. Also, results show that as the number of 

grid points increased GDQ results are rapidly converged to 

the final values which show fast rate of convergence of the 

method. Thus, the mesh size of 14×14 is used in the next 

numerical examples. 

 

4.3 Numerical results 
 
Effect of the boundary conditions on the fundamental 

natural frequency of sandwich porous/GPLR skew  

 

 

 

 

sandwich plate (α=β), is presented in Fig. 5. The results are 

attained when the core has porosities diffused in pattern 

(FGP-1) with fraction of 0.4 and GPLs distributed in the 

two face sheets in pattern GPL-S with Λ𝐺𝑃𝐿 = 1% ,The 

other parameters considered (Lx, Ly, h)=(1.5,1,0.2), 

hf/hc=0.75. It can be concluded that as the plate tends to the 

rectangular shape (α=90), natural frequency decreases.  

Fig. 6 investigates the effect of bottom angle β on the 

natural frequency of trapezoidal sandwich plate at various 

B.C.s in which the other dimensions of the plate are fixed as 

(Lx, Ly, h) = (1,1,0.2), α=120, hf / hc = 0.75. The results are 

attained when the sandwich plate has porosities diffused in 

pattern (FGP-1) with fraction of 0.4 and GPLs distributed in 

pattern GPL-S with Λ𝐺𝑃𝐿 = 1%. Apparently, fundamental 

frequency increases when the angle β increases. This 

indicates that the increase in bottom angle will increases the 

stiffness and natural frequency of the trapezoidal plate. Fig. 

7 illustrate the effect of weight fraction of GPL reinforced 

face sheets on Fundamental frequency change of the 

sandwich plate with FSCS B.C.s. In this figure all three 

different GPL pattern are depicted and (Lx, Ly, h) =  

Table 1 Comparison of fundamental frequency of [0 90]𝑠 symmetric trapezoidal plate by Refs 

B.C. h/a b/a  Haldar and Manna 2003  Gürses et al. 2009 Present 

SSSS 

0.1 
0.4 23.91 24.06 24.14 

0.8 17.39 18.41 17.69 

0.2 
0.4 15.44 15.46 15.82 

0.8 11.97 11.99 12.31 

CCCC 

0.1 
0.4 30.95 31.08 31.65 

0.8 24.73 25.12 25.44 

0.2 
0.4 17.45 17.56 18.14 

0.8 14.46 14.59 14.90 

Table 2 Validation of first three frequencies for [30 60]𝑠 laminated right trapezoidal plate at various B.C and two 

different side angles 

Θ B.C. 

Frequency 

1st mode 2nd mode 3rd mode 

Present Zamani et al. 2012 Present Zamani et al. 2012 Present Zamani et al. 2012 

45 

CCCC 16.865 16.866 23.615 23.618 30.164 30.199 

SSSS 12.067 11.716 19.250 19.154 26.320 26.315 

CSCS 14.924 14.888 21.215 21.192 27.741 27.764 

CFCF 8.602 8.554 13.855 13.702 15.287 15.051 

CFSF 4.465 4.412 10.199 10.172 13.450 13.347 

CFFF 0.712 0.572 3.146 3.320 5.278 5.229 

60 

CCCC 14.723 14.723 20.692 20.692 26.998 27.014 

SSSS 10.126 9.842 16.709 16.687 23.483 23.464 

CSCS 11.915 11.886 18.608 18.608 25.014 25.023 

CFCF 6.974 6.924 8.706 8.582 12.906 12.872 

CFSF 3.786 3.741 7.619 7.585 9.982 9.961 

CFFF 0.646 0.601 2.780 2.858 4.784 4.789 
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(1,1,0.2), (α, β) = (120,45), hf/hc=0.75 with FGP-1 porosity 

distribution at porosity value e0=0.4 are also assumed. As 

shown in this figure the fundamental frequency rises as 

GPL weight fraction increases. Numerical results indicate 

that graphene platelets play a substantial role in the 

enhancement of the plate stiffness. Additionally, it can be 

illustrated that the highest and the lowest frequency 

parameters are corresponded to the GPL-S and GPL-U 

patterns, respectively. 

The variation of fundamental frequency of sandwich 

plate versus the porosity coefficient of core is plotted in 

Figs.8 considering all three different porosity distribution 

with CFCF B.C.s and GPL-U for face sheets. In this figure, 

the parameters considered (Lx, Ly, h)= (1,1,0.15), (α, β)= 

(90,60), hf/hc=0.5; Λ𝐺𝑃𝐿=1%. As shown in this figure, the  

 

 

 

porosity coefficient and distribution have a remarkable 

influence on fundamental frequency. Also, it can be 

illustrated that the highest and lowest frequencies are 

corresponded to the FGP-2 and FGP-3 porosity 

distributions. Besides it is found that fundamental frequency 

of sandwich plate with symmetric porosity distribution 

increases by increasing the porosity coefficient. It is due the 

fact that the effect of mass density of host layer overcomes 

that of flexural rigidity when the pores are symmetrically 

distributed about the mid-plane of the core sheet. The first 

two frequency parameter (Ω)  of trapezoidal sandwich 

porous/GPLR plate for various porosity distribution, 

different GPL patterns and two different B.Cs are presented 

in Table 4; in which the parameters considered that (Lx, 

Ly ,h)=(1,1,0.2), (α,β)=(60,30), hf/hc=0.5 and 

(Λ𝐺𝑃𝐿 ,e0)=(1%,0.4). 

Table 3 Effect of B.C on Convergence study for first four natural frequency of trapezoidal plate 

B.C. 
Number of 

 grid points 

Mode sequence 

1st 2nd 3rd 4th 

CCCC 

6 1.4830     2.2216     3.0207     3.6919 

9 1.4457     2.1572     2.8472     3.1689 

12 1.4457     2.1526     2.8403     3.1621 

15 1.4457     2.1526     2.8402     3.1617 

18 1.4457     2.1526     2.8402     3.1617 

CSCS 

6 1.1054     1.9359     2.4083     3.3327 

9 1.0769 1.9040 2.3601 2.8509 

12 1.0760     1.8996     2.3560     2.8464 

15 1.0756     1.8995     2.3555     2.8458 

18 1.0754     1.8995     2.3552     2.8457 

SSSS 

6 0.8559 1.5349 2.2714 3.0229 

9 0.8556 1.5583 2.1994 2.5448 

12 0.8569 1.5567     2.1975     2.5413 

15 0.8571     1.5570     2.1978     2.5413 

18 0.8575 1.5570 2.1981 2.5414 

CFCF 

6 0.5189     1.1040     1.2744     1.8498 

9 0.4903     1.0525     1.2218     1.7188 

12 0.4886     1.0480     1.2167     1.7085 

15 0.4886     1.0478     1.2148     1.7072 

18 0.4884     1.0478     1.2139     1.7067 

CFSF 

6 0.2898     0.8074     1.0729     1.7284 

9 0.2962     0.7972     1.0506     1.4327 

12 0.2947     0.7928     1.0465     1.4283 

15 0.2950     0.7927     1.0458     1.4282 

18 0.2950     0.7927     1.0455     1.4283 

CFFF 

6 0.0796     0.4805     0.8562     0.9686 

9 0.0499     0.2704     0.8228     1.2118 

12 0.0808     0.3493     0.7390     1.0951 

15 0.0719     0.2056     0.3948     0.9142 

18 0.0786     0.2271     0.3818     0.9007 
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Fig. 4 Schematic view of: (a) symmetric trapezoidal plate and (b) right trapezoidal plate 

 

Fig. 5 Effect of bottom angles α on frequency parameters (Ω) of GPL/FGP skew sandwich plates at various B.Cs 

Table 4. First two frequencies of trapezoidal sandwich porous/GPLR plate for different pattern of porosity and 

reinforced GPLs 

B.C. Pattern 
1st mode 2nd mode 

GPL-U GPL-S GPL-A GPL-U GPL-S GPL-A 

SSSS 

FGP-3 1.9084 1.9678 1.9436 3.217 3.3754 3.3099 

FGP-2 1.9364 1.9955 1.9715 3.2595 3.4163 3.3515 

FGP-1 1.9236 1.9777 1.9557 3.2550 3.4003 3.3404 

CFCF 

FGP-3 1.2858 1.3525 1.3223 2.105 2.2796 2.2029 

FGP-2 1.3040 1.3698 1.3402 2.1305 2.3025 2.2272 

FGP-1 1.2999 1.3623 1.3341 2.1419 2.3061 2.2342 

0
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0 20 40 60 80 100
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This table shows that the max. Value of fundamental 

frequencies is relevant to FGP-2 porosity distribution 

together with GPL-S pattern. 

Fig. 9 demonstrates the variation of fundamental 

frequency of CFSC sandwich plate as a function of face to 

core thickness ratio (hf / hc) for different GPL reinforced 

patterns. The parameters (Lx, Ly, hc) = (1,1.5,0.1), (α, β) = 

(135,120) are assumed and that the core thickness of plate is 

kept constant. The results are obtained when the sandwich 

plate has porosities diffused in pattern (FGP-3) with 

fraction of 0.4 and GPLs distributed with Λ𝐺𝑃𝐿 = 1%. It 

can be seen that the frequency parameter of the sandwich 

plate decrease with the increase of the thickness ratio. 

Similar to the trend as observed in Fig. 6, plates with 

distribution pattern GPL-U has the smallest frequency while  

pattern GPL-S has the largest one. In addition, the variation 

of the dimensionless amplitude is found to be more  

 

 

 

sensitive to the thickness ratio for plates with pattern GPL-

U than those with pattern GPL-A and pattern GPL-S. 

 

 

5. Conclusions 
 
This article is organized to investigate the vibrational 

characteristics of trapezoidal sandwich porous/GPLR plates 

with respect to the influences of different porosity 

distributions and GPLs patterns. Explanation of the material 

properties of such nanocomposites accounting for porosity 

and GPLs reinforced content is performed via Halpin-Tsai 

micromechanical rule. The existing governing equations of 

the problem based on the FSDT in the Cartesian coordinate 

system are properly transformed into trapezoidal 

coordinate. The GDQ method is used for discretizing of 

governing equations at different B.Cs. Results of the present 

study are compared with existing results in the literature.  

 

Fig. 6 Variation of Fundamental frequency parameter (Ω) of trapezoidal plate with its side degree, at various B.Cs 

 

Fig. 7 Fundamental frequency parameter (Ω) of FSCS trapezoidal sandwich plate versus the GPL weight fraction at 

different reinforced patterns 
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The results reveal that 

 Plates with higher GPL weight fraction and more 

GPLs dispersing near the top and bottom surfaces 

of the face sheets have higher natural frequencies. 

 Reinforcing face sheets with GPL-S and FGP-2 

pattern for metal core presents the highest 

fundamental frequency in valuation with other 

mixtures of GPLs and porosity distribution. 

 In all three-porosity distribution, the fundamental 

frequency increases with increasing of porosity 

coefficient. 

 It can be seen that the frequency parameter of the 

sandwich plate decrease with the increase of the 

thickness ratio. 

 Fundamental frequency increases when the angle β 

increases. This indicates that the increase in 

bottom angle will increases the stiffness and 

natural frequency of the trapezoidal plate (Fig. 6). 

 

 

 

 

 Results show that as the angle θ increased, 

dimensionless frequency reduced (Fig. 4). 

According to the results for better understanding of 

mechanical behavior of nanocomposite plates, it is crucial 

to consider porosities inside the material structures. 
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