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1. Introduction 
 

Normally, Functionally graded materials (FGMs) are 

heterogeneous materials in which the elastic and thermal 

properties change from one surface to the other, gradually 

and continuously. The material is constructed by smoothly 

changing the volume fraction of its constituent materials. 

FGMs offer great promise in applications where the 

operating conditions are severe, including spacecraft heat 

shields, heat exchanger tubes, plasma facings for fusion 

reactors, engine components, and high-power electrical 

contacts or even magnets. For example, in a conventional 

thermal barrier coating for high-temperature applications, a 

discrete layer of ceramic material is bonded to a metallic 

structure. However, the abrupt transition in material 

properties across the interface between distinct materials 

can cause large interlaminar stresses and lead to plastic 

deformation or cracking (Finot and Suresh 1996). These 

adverse effects can be alleviated by functionally grading the 

material to have a smooth spatial variation of material 

composition. The concept of FGMs was first introduced in  
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Japan in 1984. Since then it has gained considerable 

attention (Koizumi 1993). 

A lot of different applications of FGMs can be found in 

(Zhu and Meng 1995). Mahmoud et al. (2011) investigated 

free vibration analysis of a non-uniform column resting on 

an elastic foundation and subjected to follower force. Smith 

and Herrmann (1972) introduced a stability of a 

cantilevered beam on an elastic foundation subjected to a 

follower force at its free end. He found that the critical load 

for flutter is independent of the foundation modulus which 

characterizes the Winkler-type embedding. Sundararajan 

(1974) presented stability of columns on Winkler type 

elastic foundations subjected to stationary forces 

(conservative or non-conservative). Various cases were 

discussed and a theorem on the influence of the foundation 

on the critical load was derived. Hauger and Vetter (1976) 

discussed the influence of an elastic foundation on the 

stability of a tangentially loaded column. Celep (1980) 

presented the stability analysis of a beam on an elastic 

foundation subjected to a nonconservative load. Based on 

the Lagrange interpolation Chan (Quan and Chan 1989) 

provided explicit formulations to compute the weighting 

coefficients of the DQ discretization of the first and second 

order derivatives. Application of DQM to flexural vibration 

analysis of a geometrically nonlinear beam was introduced 

by Yusheng Feng and Bert (1992). There are many types of 

grid distributions such as; uniform space grid distribution. It 

was introduced by Wang and Bert (1993) as a new approach 

 
 
 

Vibration behavior of functionally graded sandwich beam with  
porous core and nanocomposite layers 

 

Hua Si1, Daoming Shen1, Jinhong Xia1 and Vahid Tahouneh2 
 

1School of Civil Engineering & Architecture, Xinxiang university, Xinxiang, 453000, China  
2Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran  

 
(Received January 13, 2020, Revised May 30, 2020, Accepted June 1, 2020) 

 
Abstract.  This paper presents the influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene 

platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich beams resting on two-parameter 

elastic foundations. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper 

and bottom layers of the sandwich beam and their mechanical properties are estimated by an extended rule of mixture. In this 

study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by 

introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes’ effective 

aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) 

are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties 

of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. The equations of motion are derived 

based on Timoshenko beam theory and employing Hamilton’s principle. The problem is modeled using a semi-analytical 

approach composed of generalized differential quadrature method (GDQM) and series solution adopted to solve the equations of 

motion. Detailed parametric studies are carried out to investigate carbon nanotubes (CNTs) waviness, CNT aspect ratio, porosity 

coefficient, porosity distribution, graphene platelets (GPLs) distribution, Winkler foundation modulus, shear elastic foundation 

modulus and geometrical conditions on the vibrational behavior of the sandwich structure. 
 

Keywords:    CNTs waviness and aspect ratio; sandwich beams; vibration; rule of mixture; two-parameter elastic 

foundations; functionally graded materials; porous core; Halpin-Tsai micromechanics model 

 

mailto:daiomingshen@126.com


 

Hua Si, Daoming Shen, Jinhong Xia and Vahid Tahouneh 

 

in applying DQ to free vibration analysis of a beam and 

plates. Bert and Malik (1996) indicated an important fact 

that the preferred type of grid points changes with the 

problem of interest; and recommended to use Chebyshev-

Gauss-Lobatto grid distributions for structural mechanics 

computation. Lee and Yang (1994) discussed the influence 

of a Winkler elastic foundation and the slenderness ratio on 

the non-conservative instability of cantilever non-uniform 

beams subjected to an end concentrated follower force. Du 

et al. (1996) applied the DQM to the buckling analysis of 

columns and plates. The numerical results obtained were 

compared with those from existing literature and achieved 

high accuracy. Also there are many types of implementation 

of boundary conditions such as δ-type a small distance δ 

from the boundary. It was developed in the DQM to apply 

more than one boundary condition at discretized point; 

these results often based on value of δ and may be get ill-

conditioned matrices. The clamped and simply supported 

boundary conditions using generalized DQ were introduced 

by Shu and Du (1997a). This approach directly substitutes 

the boundary conditions into the governing equations, 

abbreviated as SBCGE. It was used to overcome the 

drawbacks of δ-type. Also Shu and Du (1997b) presented an 

implementation of the general boundary conditions in the 

free vibration analysis of rectangular plates which directly 

couples the boundary conditions with the governing 

equations, abbreviated as CBCGE. As shown in the book of 

Shu (2000) the DQ is a global method, which is equivalent 

to the highest-order finite difference scheme. As compared 

to the low order finite difference schemes and finite element 

methods, the DQM can obtain very accurate numerical 

results by using a considerably small number of grid points. 

Consequently, it requires less computational effort and 

virtual storage. In general, the DQM uses a non-uniform 

mesh for numerical discretization. Karami et al. (2003) 

discussed that the differential quadrature element method 

(DQEM) could be employed as an accurate method for 

practical beam applications. The DQEM was applied to a 

non-uniform or discontinuous cross section beam and a 

beam subjected to heavy concentrated masses resting on 

elastic foundation in comparison with the finite element 

method. Ebrahimi et al. (2019) proposed a new gusset plate 

passing through the HSS columns and beams, named as 

through gusset plate to study the force transfer mechanism 

in such gusset plates of SCBFs compared to the case with 

conventional gusset plates. Nguyen et al. (2019) investigate 

the static behavior of a novel RCS beam-column exterior 

joint. The studied joint detail is a through-column type in 

which an H steel profile totally embedded inside RC 

column is directly welded to the steel beam. Wang and Sun 

(2019) investigate on seismic behavior of out-of-code Q690 

circular high-strength concrete-filled thin-walled steel 

tubular (HCFTST) columns made up of high-strength (HS) 

steel tubes (yield strength fy ≥ 690 MPa). Six shear-critical 

square tubed steel reinforced concrete (TSRC) columns 

using the high-strength concrete (fcu,150 = 86.6 MPa) were 

tested under constant axial and lateral cyclic loads (Li et al. 

2019). Song et al. (2019) present a preliminary numerical 

study on stainless steel-concrete composite beam-to-column 

joints with bolted flush endplates. In order to ensure a 

consistent corrosion resistance within the whole structural 

system, all structural steel components were designed with 

austenitic stainless steel, including beams, columns, 

endplates, bolts, reinforcing bars and shear connectors. Lai 

et al. (2019) report additional test data, analytical and 

numerical studies leading to a new design method to predict 

the ultimate resistance of composite columns made of high 

strength steel and high strength concrete. Bambaeechee 

(2019) investigates free vibration of AFG and uniform 

beams with general elastic supports. An efficient and free 

of shear locking finite element model is developed and 

employed to study free vibration of tapered bidirectional 

functionally graded material (BFGM) beams by Nguyen 

and Tran (2018). Investigation on the thermal buckling 

resistance of simply supported FGM beams having 

parabolic-concave thickness variation and temperature 

dependent material properties is presented by Arioui et al. 

(2018). Hadji et al. (2014) study static and free vibration of 

functionally graded beams via a higher order shear 

deformation beam theory. Mirjavadi et al. (2017) 

investigate the thermo-mechanical vibration behavior of 

two dimensional functionally graded (2D-FG) porous 

nanobeam. Shafiei and Setoodeh (2017) study the nonlinear 

free vibration and post-buckling of functionally graded 

carbon nanotube reinforced composite (FG-CNTRC) beams 

resting on a nonlinear elastic foundation. Yaghoobi et al. 

(2014) investigate nonlinear vibration and post-buckling of 

beams made of functionally graded materials (FGMs) 

resting on nonlinear elastic foundation subjected to thermo-

mechanical loading. Marin et al. (2013) studied nonsimple 

material problems using Lagrange’s identity. They proved 

the uniqueness theorem and some continuous dependence 

theorems without recourse to any any energy conservation 

on the thermoelastic coefficients. Marin (2010) used 

Lagrange identity approach for microstretch thermoelastic 

materials. Marin (2010) considered a right cylinder 

composed of a physically dipolar thermoelastic material for 

wich one plane end was subjected to an excitation which 

was harmonic in time. In some other papers, researchers 

studies different problems relating to the void and porosity 

(Marin and Nicaise 2016, Marin et al. 2016, Marin et al. 

2017). Sharma et al. (2005a, 2005b) integrated an analytical 

approach with the Chebyshev polynomials technique to 

study the buckling and free vibration of isotropic and 

laminated composite sector plates based on the first-order 

shear deformation theory. Liu and Wang (2015) studied 

Thermal vibration of a single-walled carbon nanotube 

predicted by semiquantum molecular dynamics. Zhang and 

Wang (2018) investigated the nonlinear thermal vibrational 

behavior of single-layered BP (SLBP) via a nonlinear 

orthotropic plate model (OPM) and molecular dynamics 

(MD) simulations. Xu et al. (2016) studied the vibration of 

double-layered graphene sheets (DLGS) using A nonlocal 

Kirchhoff plate model with the van der Waals (vdW) 
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interactions. Ahmed Houari et al. (2018) presented a closed-

form solutions for exact critical buckling loads of nonlocal 

strain gradient functionally graded beams. Chen et al. (2017) 

investigated vibration and stability of initially stressed sandwich 

plates with FGM face sheets. Barka et al. (2016) studied thermal 

post-buckling behavior of imperfect temperature-dependent FG 

structures. Bouguenina et al. (2015) studied FG plates with 

variable thickness subjected to thermal buckling. Park et al. 

(2016) used modified couple stress based third-order shear 

deformation theory for dynamic analysis of sigmoid 

functionally graded materials (S-FGM) plates. Wu and Liu 

(2016) developed a state space differential reproducing 

kernel (DRK) method in order to study 3D analysis of FG 

circular plates. Arefi (2015) suggested an analytical solution 

of a curved beam with different shapes made of functionally 

graded materials (FGMs). Bennai et al. (2015) developed a 

new refined hyperbolic shear and normal deformation beam 

theory to study the free vibration and buckling of 

functionally graded (FG) sandwich beams under various 

boundary conditions. Bouchafa et al. (2015) used refined 

hyperbolic shear deformation theory (RHSDT) for the 

thermoelastic bending analysis of functionally graded 

sandwich plates. Tornabene et al. (2019) investigated free 

vibration analysis of arches and beams made of composite 

materials via a higher-order mathematical formulation. 

Tornabene et al. (2017) studied free vibration analysis of 

composite sandwich plates and doubly curved shells with 

variable stiffness. The reinforcing fibers were located in the 

external skins of the sandwich structures according to 

curved paths. Tornabene et al. (2018) studied free vibration 

of laminated nanocomposite plates and shells using first-

order shear deformation theory and the Generalized 

Differential Quadrature (GDQ) method. Each layer of the 

laminate was modelled as a three-phase composite. A 

survey of several methods under the heading of strong 

formulation finite element method (SFEM) was presented 

by Tornabene et al. (2015). Tahouneh (2016) presented a 3-

D elasticity solution for free vibration analysis of 

continuously graded carbon nanotube-reinforced (CGCNTR) 

rectangular plates resting on two-parameter elastic 

foundations. The volume fractions of oriented, straight 

single-walled carbon nanotubes (SWCNTs) were assumed 

to be graded in the thickness direction.  Moradi-Dastjerdi 

and Momeni-Khabisi (2016) studied Free and forced 

vibration of plates reinforced by wavy carbon nanotube 

(CNT). The plates were resting on Winkler-Pasternak 

elastic foundation and subjected to periodic or impact 

loading. 

Nowadays, the use of carbon nanotubes in 

polymer/carbon nanotube composites has attracted wide 

attention (Wagner et al. 1997). A high aspect ratio, low 

weight of CNTs and their extraordinary mechanical 

properties (strength and flexibility) provide the ultimate 

reinforcement for the next generation of extremely 

lightweight but highly elastic and very strong advanced 

composite materials. On the other hand, by using of the 

polymer/CNT composites in advanced composite materials, 

we can achieve structures with low weight, high strength 

and high stiffness in many structures of civil, mechanical 

and space engineering. 

Many researchers have reported that mechanical 

properties of polymeric matrices can be drastically 

increased (Montazeri et al. 2010, Yeh et al. 2006) by adding 

a few weight percent (wt%) MWCNTs. Montazeri et al. 

(2010) showed that modified Halpin-Tsai equation with 

exponential Aspect ratio can be used to model the 

experimental result of MWNT composite samples. They 

also demonstrated that reduction in Aspect ratio (L/d) and 

nanotube length cause a decrease in aggregation and Above 

1.5 wt%, nanotubes agglomerate causing a reduction in 

Young’s modulus values. Thus, it is important to determine 

the effect Aspect ratio and arrangement of CNTs on the 

effective properties of carbon nanotube-reinforced 

composite (CNTRC). Yeh et al. (2006) used the Halpin-Tsai 

equation to shows the effect of MWNT shape factor (L/d) 

on the mechanical properties. They showed that the 

mechanical properties of nanocomposite samples with the 

higher shape factor (L/d) values were better than the ones 

with the lower shape factor. The reinforcement effect of 

MWCNTs with different aspect ratio in an epoxy matrix has 

been carried out by Martone et al. (2011). They showed that 

progressive reduction of the tubes effective aspect ratio 

occurs because of the increasing connectedness between 

tubes upon an increase in their concentration. Also they 

investigated on the effect of nanotube curvature on the 

average contacts number between tubes by means of the 

waviness that accounts for the deviation from the straight 

particles assumption. The material properties of FG-CNTR 

can be evaluated through a micromechanical model in 

which CNT efficiency parameters are estimated by 

matching the elastic moduli of the CNTR observed from the 

molecular dynamics (MD) simulation with that of 

numerical results obtained from the rule of mixture (Shen 

2009). 

Analysis of FG-CNTR plates and beams were first 

presented by Shen (2009) in which he studied the nonlinear 

bending behavior of FG-CNTR plates in thermal 

environment. He concluded that the load bending moment 

curves of the plate could be significantly increased as a 

result of functionally graded CNT reinforcements. Shen and 

Zhang (2010) presented thermal buckling and post buckling 

behavior of functionally graded nanocomposite plates 

reinforced by single-walled carbon nanotubes (SWCNTs). 

The temperature-dependent material properties of SWCNTs 

were obtained from MD simulations. In comparison with 

research works on the free vibration or buckling analyses of 

FG structures, only a few references can be found that 

consider the effect of waviness and aspect ratio on the free 

vibrational behavior of panels with four edges simply 

supported (Moradi-Dastjerdi, Foroutan, and Pourasghar 

2013). Moradi-Dastjerdi, Foroutan, and Pourasghar (2013) 

investigated the effects of CNT waviness on the dynamic 

behavior of FG-CNTR cylinder under impact load. 

Despite the aforementioned extensive research on the 

free vibration analysis of structures resting on elastic 

foundations, to the authors’ best knowledge, still very little 

work has been done for vibration analysis of FG-CNTR  
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structures and considering the effect of waviness and aspect 

ratio on their vibrational response. The aim of this study is 

to fill this apparent gap in this area by investigating the 

influence of carbon nanotubes (CNTs) waviness, aspect 

ratio, internal pores and graphene platelets (GPLs) on the 

vibrational behavior of functionally graded nanocomposite 

sandwich beams resting on two-parameter elastic 

foundations. The distributions of CNTs are considered 

functionally graded (FG) or uniform along the thickness of 

upper and bottom layers of the sandwich beam and their 

mechanical properties are estimated by an extended rule of 

mixture. In this study, the classical theory concerning the 

mechanical efficiency of a matrix embedding finite length 

fibers has been modified by introducing the tube-to-tube 

random contact, which explicitly accounts for the 

progressive reduction of the tubes’ effective aspect ratio as 

the filler content increases. The core of structure is porous 

and the internal pores and graphene platelets (GPLs) are 

distributed in the matrix of core either uniformly or non-

uniformly according to three different patterns. 

 

 

2. Problem description 
 

Consider an FG sandwich beam resting on Pasternak 

foundations as shown in Fig. 1. It is assumed that the total 

thickness of beam is “h”, the thickness of faces is "hf" and 

the length of structure assumed to be "L". The FG wavy 

CNT-reinforced faces are made from a mixture of wavy 

SWCNTs and isotropic matrix and the core of structure is 

considered to be porous as depicted in Fig. 1. 

 

 

3. Carbon nanotubes (CNTs) waviness and Porosity 
 

3.1 Mechanical properties of the wavy SWCNT 
reinforcement 

 
 

 
The wavy SWCNT reinforcement is either uniformly 

distributed (UD) or functionally graded in the faces of beam. 

Employing the extended rule of mixture the effective elastic 

properties of the CNTR beam can be expressed as follows 

(Shen 2009) 
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effective Young’s moduli, effective shear modulus, 

Poisson’s ratios and density of the CNT, respectively. mE ,

mG , m  and m are the corresponding properties of the 

isotropic matrix. 
j (j=1,2,3) are the CNT efficiency 

parameters accounting for the scale-dependent material 

properties evaluated by comparing the effective material 

properties obtained from MD simulations and that of 

numerical results obtained from the rule of mixture in (Shen 

2009). 

CNTV and 
mV  are the CNT and matrix volume fractions 

related by  
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Fig. 1 Geometry of FG sandwich beam with porous core and nanocomposite layers. 
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The effective Young’s moduli and shear modulus of wavy 

CNT are introduced as follows (Martone et al. 2011) 
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The efficiency parameter, * is considered to account the 

CNT aspect ratio and waviness (Martone et al. 2011).  c  
is the average number of contacts for CNTs depends on 

their aspect ratio defined as 
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where the waviness, w, has been introduced for accounting 

the CNT’s curvature within the CNTR structure (Martone et 

al. 2011). Introducing this parameter, the excluded volume 

due to the curvature of CNTs has been considered. The 

accuracy of this method has been investigated by (Moradi-

Dastjerdi et al. 2013). The variation of CNT distribution 

through the face thickness can be stated as 
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Table 1 Properties of the (10,10) SWCNT and the polymer 

matrix (Shen and Zhang 2010). 

 

 

Table 2 CNT efficiency parameters for different values of 

volume fractions (Shen and Zhang 2010) 

*
CNTV  1  2  3  

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.138 

0.28 0.141 1.585 1.109 
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(11) 

*
CNTV is the CNT volume fraction and 

CNTw  is the mass 

fraction of CNTs. Poly methyl methacrylate, referred to as 

PMMA and (10,10) SWCNTs are selected as the matrix and 

the reinforcement materials, respectively. The material 

properties for the constituent materials are listed in Table 1 

(Shen and Zhang 2010). 

Values of CNT efficiency parameters, 
i (i , , ) 1 2 3 , for 

different CNT volume fractions are presented in Table 2 to 

capture the scale difference between micro and nano levels. 

It should be noted that . ,G G  3 2 13 120 7  and

G . G23 121 2  (Shen and Zhang 2010). 
 

3.2 Mechanical properties of a porous structure 
with different types of porosity distributions 

 
Three different GPL dispersion patterns, denoted by A, 

B, and C, are considered for each porosity distribution (Fig. 

2). The GPL volume content VGPL is assumed to vary along 

the thickness smoothly with its peak values (Sij, i,j=1, 2, 3) 

being determined based on the specific porosity distribution.  

To facilitate a direct and meaningful comparison, the 

total amount of GPLs is kept the same for three different 

GPL distribution patterns. This leads to s1i≠s2i≠s3i (i=1, 2, 3).  

The mechanical properties of a porous structure with 

different types of porosity distributions can be expressed by 
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for asymmetric porosity distribution 

( ) cos( )
2 4

zz
h

     (16) 

and for uniform porosity distribution 

( )z   (17) 

where E1, G1, and ρ1 are the maximum values of elasticity 

moduli, shear moduli and mass density. 

Also, e0 and em are the coefficients of porosity and mass 

density, respectively, defined by (Kitipornchai et al. 2017) 

2 2
0

1 1

2.3
0

m

E G
e 1 1

E G

1.121(1 1 e (z))
e

(z)

   

  




 
(18) 

Also based on the closed-cell graphene-reinforcement 

scheme, Poisson’s ratio (z) can be expressed by 

(Kitipornchai et al. 2017) 

2

1(z) 0.221p (0.342p 1.21p 1)       (19) 

 

 

 

 

In which 𝝊1 is the Poisson’s ratio of pure matrix materials 

without pores and 

2.3
0p 1.121(1 1 e (z))     (20) 

Also, λ(z) for uniform porosity distribution can be 

expressed by 

2.3

0 0

1 1 M h 0.121
( )

e e 1.121


    (21) 

In which 
h/2

h/2
M (1 p)dz


   (22) 

According to the distribution patterns depicted in Fig. 2, the 

volume fraction of GPLs can be written as (i=1,2,3) 

 

 

i1

GPL i2

i3

S 1 cos( z / h ,Pattern A

V S 1 cos( z / 2h / 4 , Pattern B

S ,Pattern C


  



    





 
(23) 

The relation between the volume fraction of GPLs and their 

weight fraction WGPL can be expressed by 

 

 

Fig. 2 Porosity distribution and GPL dispersion patterns 
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



 
(24) 

In which ρGPL and ρM are mass density of GPL and metal 

matrix, respectively. Based on Halpin-Tsai micromechanical 

model, it is possible to obtain material properties of GPL-

reinforced metal matrix structures 
GPL GPL

L L GPL
1 MGPL

L GPL

GPL GPL

W W GPL
MGPL

W GPL

1 V3
E E

8 1 V

1 V5
E

8 1 V

   
  

 

   
 

 

 
(25) 

in which Em is Young’s modulus of the metal and 

GPL GPL GPL M
L GPL GPL L GPL

GPL M L

GPL GPL GPL M
W GPL GPL W GPL

GPL M W

(E / E ) 1
2l t , ,

(E / E )

(E / E ) 1
2w t ,

(E / E )


   

 


   

 

 
(26) 

wGPL, lGPL and tGPL denote GPLs’ average width, length, and 

thickness, respectively. Finally, Poisson’s ratio of GPL-

reinforced metal matrix implementing rule of mixture can 

be expressed by 

where VM is the volume fraction of metal matrix (VM= 

1−VGPL). 

 

 

4. Equations of motion 

 

The sandwich beam is assumed to be rested on the two-

parameter elastic (Pasternak) foundation whose supporting 

action is described by 
2

2w s

w
P K w K

x


 


 (28) 

where P is the foundation reaction per unit area, w is the 

transverse deflection of the beam, and Kw and Ks are 

Winkler and shearing layer elastic coefficients of the 

foundation. Based on Timoshenko beam theory, the 

displacements of any point in the beam along the x- and z-

axes, represented by U(x, z, t) and W(x, z, t), respectively, 

are as follows 

0

0

( , , ) ( , ) ( , )

( , , ) ( , )

U x z t u x t z x t

W x z t w x t

 


 (29) 

in which u0 and w0 represent the components of 

displacement at z=0, 𝝍 is the section normal vector rotation 

about the y-axis, and t is time. The linear normal strain ɛx 

and shear strain γxz are associated with the displacements as 

0 0,x xz

u w
z

x x x


  

 
   
  

 (30) 

Using the linear elastic constitutive law, the normal stress σx 

and shear stress τxz are given by  

11

55

( ) ( )

( ) ( )

x x

xz zx

z Q z

z Q z

 

 




 (31) 

 

In which 

11 552

( ) ( )
( ) , ( )

1 2(1 )

E z E z
Q z Q z

 
 

 
 (32) 

Employing Hamilton’s principle, the equations of motion 

and the related boundary conditions can be derived. It is 

formulated as 

0
( ) 0

t

pT dt    (33) 

where δ, T, and Π denote variational symbol, kinetic energy 

of the beam, and potential energy composed of strain 

energy the beam together with the elastic potential energy 

of the foundation, respectively. It is worth noting that γp is 

the work done by external force that is zero for free 

vibration analysis. 

/2
2 2

0 /2

/2
*

0 /2

2 2

0

( ) ( ) ( ) ,
2

( )
2

( )
2

L h

h

L h

x x xz xz
h

L

w s

b U W
T z dzdx

t t

b
k dzdx

b W
K W K dx

x



   





  
  

  

   

 
 

 

 

 



 
(34) 

In this study, the shear correction factor k*=5/6 is used. 

Substituting equation (34) into equation (33) and integrating 

through the thickness of beam and then setting the 

coefficients of δu, δw0, and δ𝝍 to zero lead to the equations 

of motion as 
2 2

0
0 1 22 2

: xN u
u I I

x t t




  
 

  
 (35) 

2 2

0 0
0 0 12 2

: x
f s

Q w w
w K w K I

x x t


  
  

  
 (36) 

2 2

0
2 32 2

: x
x

M u
Q I I

x t t




  
  

  
 (37) 

where Nx, Mx, and Qx are axial force, bending moment, and 

shear force, which can be defined as 

/2

/2

x xx
h

x xx
h

x xz

N

M z dz

Q








   
   

   
   
   


 

(38) 

By combining Eqs. (30)-(32) and Eq. (37), we have 

0 0
11 11 11 11

* 0
55

, ,

( )

x x

x

u u
N A B M B D

x x x x

w
Q k A

x

 



  
   

   


 



 
(39) 

The stiffness components A11, B11, D11, A55 and the inertia-

related terms I1, I2, I3 of the beam are defined as 
/2

2

11 11 11 11
/2

/2

55 55
/2

/2
2

1 2 3
/2

( , , ) ( )(1, , )

( )

( , , ) ( )(1, , )

h

h

h

h

h

h

A B D Q z z z dz

A Q z dz

I I I z z z dz



















 
(40) 

Substituting Eq. (39) into Eqs. (35)-(37) leads to the 

following equations 
2 22 2

0 0
11 11 1 22 2 2 2

u u
A B I I

x x t t

   
  

   
 (41) 

 

1 GPL GPL M MV V     (27) 
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2 2 2
* 0 0 0

55 0 12 2 2
( ) w s

w w w
k A K w K I

x x x t

  
   

   
 (42) 

2 22 2
*0 0 0

11 11 55 2 32 2 2 2
( )

u w u
B D k A I I

x x x t t

 


   
    

    
 (43) 

Different boundary conditions of the beams such as 

Clamped-Hinged (C-H), Clamped-Clamped (C-C), and 

Clamped-Free (C-F) are considered. These conditions can 

be described as 

 

Clamped (C): u0=w0=𝝍=0 

Hinged (H): u0=w0=Mx=0                              

(44) 

Free (F): Nx=Qx=Mx=0 

 

For simplicity and generality the following dimensionless 

quantities are introduced 

0 0

31 2
1 2 3 2

10 10 10

5511 11 11
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110 110 110 110

2
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
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
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(45) 

in which A110 and I10 are the values of A11 and I1 of a 

homogeneous beam made from pure matrix material. Thus, 

Eqs. (41)-(43) can be transformed into the following 

dimensionless forms 
2 2 2 2

11 11 1 22 2 2 2

U U
a b I I

 

   

   
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 (46) 
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*
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    
 (48) 

 

 

5. GDQ approach 

 

Here, GDQ technique is used to solve the governing 

equation of sandwich beam resting on Pasternak foundation. 

The GDQ approach was developed by Shu (2000) [A brief 

review of GDQ method is given in Appendix]. In harmonic 

vibration analysis of Timoshenko beam, the displacements 

can be expressed as 

( , ) ( )

( , ) ( )

( , ) ( )

i

i

i

U x u x e

W x w x e

x x e
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







 
(49) 

where 1i    and *

10 110L I A  are the dimensionless 

natural frequency. It should be mentioned that ω is the 

natural frequency of the structure. By substituting Eq. (49) 

into Eqs. (41)-(43) and then applying the GDQ rule, the 

following relations are obtained 
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(50) 

The associated boundary conditions can be handled in the 

same way. For example, the dimensionless boundary 

condition of clamped–hinged (C-H) supported beams is 

1 1 1

1 1

11 11

1 1

0 0

0

0 1

N N

N N

Nj j Nj j

j j

u w at

u w
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(51) 

Implementing the boundary conditions into equation (50) 

leads to the following system of algebraic 

   
   

 

 

   

 

 

 
2

0 0

0

b bbb bd

d ddb dd i

U US S

U US S I


         
      

            

 (52) 

where dU and bU are as follows 

        

        

,
T

b b b b

T

d d d d

U u w

U u w









 
(53) 

In the above relation, subscripts ‘‘b’’ and ‘‘d’’ refer to the 

points at the boundary and in the interior domain, 

respectively. [ I ]i
is dimensionless inertia terms matrices. 

Eliminating the boundary degrees of freedom, this equation 

becomes 

   2([ ] [I ]) 0i dS U   (54) 

where 

1[ ] [ ] [ ][ ] [ ]dd db bb bdS S S S S   (55) 

The natural frequency parameters of the considered FG-

sandwich beam can be determined by solving the standard 

eigenvalue problem. 

 

 

6. Numerical results and discussion 

 

6.1 Verification 
 

In this section, the accuracy of the method in evaluating 

the non-dimensional natural frequencies of the beams are 

investigated. The dimensionless fundamental natural 

frequency and critical buckling load obtained in the present 

analysis are compared in Tables 3 and 4 with the results 

given by Yas and Samadi (2012) by employing Timoshenko 

beam theory and the generalized differential quadrature 

method and those by Wattanasakulpong and Ungbhakorn 

(2013) who used the third order shear deformation theory. 

As can be observed, our results agree well with the 

published results. 
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6.2 Benchmark results 
 

In this section, we characterize the response of FG beam 

considering the effects of waviness, internal pores and 

graphene platelets (GPLs), Winkler foundation modulus, shear 

elastic foundation modulus and geometrical conditions. The 

non-dimensional natural frequency, Winkler and shearing layer 

elastic coefficients are assumed as follow 
*

2

*

m

m

A
L

E I


   (56) 

2

110

w
w

K L
k

A
  (57) 

110

s
s

K
k

A
  (58) 

In which A110 and I10 are the values of A11 and I1 of a 

homogeneous beam. A* and I* are the cross section and the 

moment of inertia of the cross section of the beam, respectively 

ρm and Em are mechanical properties of CNTs. 

The variation of natural frequencies in terms of the 

porosity coefficient and side-to-thickness ratio for 

Clamped-Clamped FG sandwich beams is plotted in Fig. 3. 

It can be seen from this figure that a porous nanocomposite 

sandwich beam has lower natural frequencies than a perfect 

beam (e0=0). In other words, increasing porosity coefficient 

results in smaller natural frequencies due to the reduction in 

the bending rigidity of the sandwich beam. Therefore, for 

better understanding of mechanical behavior of 

nanocomposite beam, it is crucial to consider porosities 

inside the material of structure. It is also seen from this 

figure that with increasing side-to-thickness ratio, the 

frequencies increasing and for great amount of side-to- 

 

 

 

 

thickness ratio (L/h>15) the frequencies become almost 

constant. 

The effect of CNT aspect ratio is depicted in Fig. 4. This 

figure illustrates frequency parameters of Clamped-

Clamped sandwich beams for different amounts of *

CNV , 

including 0.12, 0.17 and 0.28. This figure reveals that 

increasing of CNT aspect ratio (AR) leads to a little 

increases frequency parameters. 

The influence of weight fraction on vibration frequency 

of the nanocomposite FG beams with respect to the 

Pasternak parameter of elastic medium is presented in Fig. 5. 

It is observed that increasing the weight fraction of GPLs 

results in larger values of vibration frequency which 

highlights their reinforcing effect on the structure. It is also 

seen that with increasing the shearing layer elastic 

coefficient the non-dimensional natural frequency of 

sandwich structure sharply increasing. 

The effects of variation of the Winkler elastic coefficient 

on the non-dimensional natural frequency parameters of FG 

sandwich beam and for different values of porosity 

coefficient are shown in Fig. 6. It is clear that in all cases, 

with increasing the elastic coefficients of the foundation, 

the frequency parameters increase. It should be noted that 

higher values of Winkler and Pasternak foundation 

constants yield increase in bending rigidity and natural 

frequency of the structure. However, surrounding shear 

layer (Ks) has a continuous interaction with the sandwich 

beam and its effect on the vibration frequency is more 

sensible than Winkler layer. 

To make clear the effect of boundary condition on the 

natural frequencies of FG sandwich beam, the natural 

frequencies of the structure with C-C, C-F and C-H 

boundary conditions are compared with each other in Fig. 7.  

Table 3 Dimensionless fundamental natural frequency of FG-CNTRC beams (L/h=15, V*
CNT=0.12) 

 H-H beam       C-C beam 

 UD O X UD O X 

Yas and Samadi (2012) 0.9753 0.7527 1.1150 1.5085 1.3180 1.6000 

Wattanasakulpong and 

Ungbhakorn (2013) 
0.9745 0.7453 1.1152 - - - 

Present 0.9750 0.7523 1.1152 1.5087 1.3177 1.6009 

Table 4 Comparison of fundamental frequency parameters of clamped-clamped FG-CNTR beams reinforced by aligned 

CNTs and rested on Pasternak foundation (L/h=15, V*
CNT=0.12, Kw=0.1, Ks=0.02) 

Type  
*

1  
*

2  *

3  

UD Yas and Samadi (2012) 1.6038 3.2714 5.1779 

 Present 1.5991 3.2594 5.1574 

FG-Λ Yas and Samadi (2012) 1.5096 3.1420 5.0216 

 Present 1.5055 3.1308 5.0022 

FG-O Yas and Samadi (2012) 1.4282 3.0249 4.8750 

 Present 1.4248 3.0150 4.8573 

FG-X Yas and Samadi (2012) 1.6895 3.3937 5.3264 

 Present 1.6834 3.3802 5.3037 
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The natural frequency of C-C FG sandwich beam is 

significantly higher than those of Sandwich beam with C-F 

and C-H boundary conditions. As expected, increasing the 

degrees of freedom in the edges, decreases the natural 

frequencies. 

The combined effects of porosity distribution and GPL 

distribution pattern on the fundamental frequency are 

investigated in Fig. 8 in which the fundamental natural 

frequency at various GPL weight fractions is presented. 

Symmetric GPL pattern A is proved to be the best 

dispersion method, followed by the uniform pattern C 

which is slightly better than the asymmetric pattern B. 

Results indicate that sandwich beam with non-uniform 

symmetric porosity distribution 1 and symmetric GPL 

pattern A have the largest fundamental frequencies, i.e., the 

highest effective stiffness under the same GPL weight  

 

 

 

 

fraction, suggesting that a nanocomposite beam in which 

both internal pores and nanofillers are symmetrically 

distributed can offer the best structural performance. It 

should be noted this tendency has been seen in other types 

of boundary conditions but for the sake of brevity, they are 

not reported here. 

 

 

7. Conclusions 
 

In this research work, free vibration of continuous 

grading FG beams on a two-parameter elastic foundation is 

investigated. The elastic foundation is considered as a 

Pasternak model with adding a shear layer to the Winkler 

model. 
 

 

Fig. 3 Natural frequency of C-C Uniform GPLs-reinforcement sandwich beam versus side-to-thickness ratio ( *

CNV

=0.28, AR=1000, Ks=Kw=100, GPL weight fraction, 0.1 wt.%) 

 

Fig. 4 Natural frequency of C-C Uniform GPLs-reinforcement sandwich beam versus CNT aspect ratio (AR) for 

different amount of *

CNV (Ks=Kw=100, GPL weight fraction, 0.1 wt.%, e0=0.2, L/h=10) 
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The aim of this study is to fill this apparent gap in this area 

by investigating the effects of CNTs waviness and aspect 

ratio, porosity coefficient, porosity distribution, graphene 

platelets (GPLs) distribution, Winkler foundation modulus, 

shear elastic foundation modulus and geometrical conditions 

on the vibrational behavior of the sandwich structure. The 

distributions of CNTs are considered functionally graded (FG) 

or uniform along the thickness of upper and bottom layers of 

the sandwich beam and their mechanical properties are 

estimated by an extended rule of mixture. In this study, the 

classical theory concerning the mechanical efficiency of a 

matrix embedding finite length fibers has been modified by 

introducing the tube-to-tube random contact, which explicitly  

 

 

 

 

accounts for the progressive reduction of the tubes’ effective 

aspect ratio as the filler content increases. The core of structure 

is porous and the internal pores and graphene platelets (GPLs) 

are distributed in the matrix of core either uniformly or non-

uniformly according to three different patterns. From this 

study some conclusions can be made as following:  

 It is observed that increasing of CNT aspect ratio 

(AR) leads to a little increases frequency 

parameters. 

 Results reveal that increasing the weight fraction 

of GPLs results in larger values of vibration  

 

 

Fig. 5 The influence of shear elastic coefficient on natural frequency of C-C Uniform GPLs-reinforcement sandwich 

beam for different GPL weight fraction (Kw=100, AR=1000, L/h=10, e0=0.2, * 0.28CNV  ) 

 

Fig. 6 The influence of Winkler elastic coefficient on natural frequency of C-C Uniform GPLs-reinforcement 

sandwich beam for different GPL weight fraction (Ks=100, AR=1000, L/h=10, e0=0.2, * 0.28CNV  ) 
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frequency which highlights their reinforcing effect 

on the structure. 

 It should be noted that higher values of Winkler 

and Pasternak foundation constants yield increase 

in bending rigidity and natural frequency of the 

structure. However, surrounding shear layer (Ks)  

 

 

 

 

 

has a continuous interaction with the sandwich 

beam and its effect on the vibration frequency is 

more sensible than Winkler layer. 

 The natural frequency of C-C FG sandwich beam 

is significantly higher than those of Sandwich 

beam with C-F and C-H boundary conditions. As 

 

Fig. 7 The influence of different types of boundary conditions on natural frequency of Uniform GPLs-reinforcement 

sandwich beam (Ks=Kw=100, GPL weight fraction, 0.1 wt.%, AR=1000, L/h=10, * 0.28CNV  , e0=0.2) 

 

Fig. 8 The influence of GPL on natural frequency of GPLs-reinforcement sandwich beam (Ks=Kw=100, AR=1000, 

L/h=10, * 0.28CNV  , e0=0.2) 
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expected, increasing the degrees of freedom in the 

edges, decreases the natural frequencies. 

 It is shown that increasing porosity coefficient 

results in smaller natural frequencies due to the 

reduction in the bending rigidity of the sandwich 

beam. 

 According to the results, Symmetric GPL pattern A 

is proved to be the best dispersion method, 

followed by the uniform pattern C which is slightly 

better than the asymmetric pattern B. 
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Appendix 

In Generalized Differential Quadrature Method 

(GDQM), the nth order partial derivative of a continuous 

function ( , )f x z with respect to x at a given point xi can be 

approximated as a linear summation of weighted function 

values at all the discrete points in the domain of x, that is  

 
 

,
( 1, 2,..., , 1, 2,..., 1),

1

i

ik

n Nf x z nc f i N n Nx ziknx k


   

 

  (1) 

Where N is the number of sampling points and nc
ij

is the 

xi dependent weight coefficient. To determine the weighting 

coefficients nc
ij

, the Lagrange interpolation basic functions 

are used as the test functions, and explicit formulas for 

computing these weighting coefficients can be obtained as 

(Bert and Malik 1996) 

(1) ( )(1)
, , 1,2,..., ,

(1)( ) ( )

M xic i j N i jij
x x M xi j j
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

 (2) 

where 

(1) ( ) ( )

1,

N

M x x xi i j

j i j

 

 

  
(3) 

and for higher order derivatives, one can use the following 

relations iteratively 

( 1)
( ) ( 1) 1( ), , 1, 2,..., ,

( )

n
cijn n

c n c c i j Nij ii ij x xi j




  


 

, 2,3,..., 1i j n N    

(4) 

 

( ) ( )
1,2,..., , 1,2,..., 1

1,

N
n n

c c i N n Nii ij
j i j

    

 

  (5) 

A simple and natural choice of the grid distribution is the 

uniform grid-spacing rule. However, it was found that 

nonuniform grid-spacing yields result with better accuracy. 

Hence, in this work, the Chebyshev-Gauss-Lobatto 

quadrature points are used 

1 1
(1 cos( )) 1,2,...,

2 1

i
x i Ni

N

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