
Steel and Composite Structures, Vol. 35, No. 6 (2020) 765-777 

DOI: https://doi.org/10.12989/scs.2020.35.6.765                                                                  765 

Copyright © 2020 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=8                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 

Scholars are always trying to accomplish more 

comfortable life for human and to establish modern applied 

sciences. Thus, the requirement for smart and advanced 

materials has grown, and existent technologies are 

frequently exchanged by progressive technologies (Feng et 

al. 2017, Zhang et al. 2017, Dong et al. 2018, Safaei et al. 

2019, Mirjavadi et al. 2017, 2018, 2019, Azimi et al. 2017, 

2018). A polymeric material has already replaced ordinary 

materials including metals and ceramics because of its low 

weight, easy manufacturing, and low costs (Thanh et al. 

2019, Ahmed et al. 2019). Therewith, a polymer possesses 

prominent corrosion stability and promising mechanical 

character. But, there are some disadvantages related to 

polymeric components, including slight thermal stability, 

downscale stiffness and environmental stability. In order to 

eschew such sorts of disadvantages, polymeric composites 

were manufactured via reinforcement of matrices based on 

an extensive range of filler materials (Vo et al. 2017, Houari 

et al. 2018, Kaci et al. 2018). According to the desirable 

performances of the conclusive material, the polymeric 

matrix may be reinforced via different kinds of macro to 

nano size fillers including fibers, particles and even 

platelets (Wu et al. 2017, Zhao et al. 2017). The 

performances of produced composite rely on the properties 

of both host material and filler. However, the performances 

of polymeric materials will decrease by passing time 

because of diverse factors including subjecting to UV, high 

temperatures or moisture. Composites which contain  
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polymeric matrix and fiber reinforcement are produced to 

prevail such problems and enhance the overall 

performances of composite materials. 

Fibers in reinforced polymeric materials represent 

remarkable characteristics including desired flexibility, 

aspect ratio and stability while the matrix defends the fibers 

against unfair conditions and retains their location. 

Nowadays, diverse sorts of artificial and synthetic fibers 

have been employed for reinforcing the polymeric matrices 

and then improving the performances of the final product. 

Such reinforced composites are applied in a variety of 

engineering fields such as aerospace, ocean and even 

automobiles, owning to the their desired cost and weight 

together with notable strength. For improving the out-of-

plane performances of a composite, more than one filler 

element is needed. Note that weight is a very vital 

parameter in several applications including space vehicles 

and automobiles, and large size fillers yield higher to 

weights. Accordingly, nano scale fillers are often prior to 

macro scale counterparts. Multiple investigations have 

proved the elevated mechanical, thermal, and electrical 

characteristics of a nanoparticle reinforced composite. An 

advanced composite made from embedded fibers and 

reinforcing nano-dimension fillers (graphene, carbon 

nanotube, ant etc.) is introduced as a multi-scale composite 

(Marynowski 2017, Wattanasakulpong and Chaikittiratana 

2015, Barati and Zenkour 2017). Such kind of composite is 

also defined as a multi-function composite due to 

possessing conventional load-sharing character of fiber 

reinforced material and also the extra functional 

characteristics (stiffness, strength, conductivity) related to 

the specific nanomaterials. 

According to recent studies, the multi-scale composite 

can be modeled via several approaches including Halpin-

Tsai and Eshelby-Mori-Tanaka forms (Mori and Tanaka 
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1973). Although the Eshelby–Mori–Tanaka approach has 

high efficacy for multi-scale material modeling, it 

sometimes yields an asymmetric stiffness tensor for the 

composites, whereas, the 3D Mori-Tanaka's stiffness tensor, 

is always symmetric (Kazakov et al. 2019). The later can be 

used as an efficient tool for elastic properties definition of 

multi-scale composite. Also, there are many publications on 

vibration analysis of multi-scale composite structures, there 

is no investigation on nonlinear vibrations of annular 

sectors made of hybrid epoxy/fiberglass/CNT material. 

It must be stated that annular plates possess remarkable 

applications in diverse engineering sections including 

defense industry, semi-conductors, space vehicle, chemical 

plants and bio-medical sectors. Recently, few studies are 

devoted to examine mechanical characteristics of annular 

plates made of composite materials. Dai et al. (2019) 

examined vibrational behavior of annular plates reinforced 

by functional gradation of nanotubes in hygro-thermal 

environments. An investigation on vibrations of graphene 

reinforced annular plates is performed by Liu et al. (2019). 

Also, Keleshteri et al. (2019) studied nonlinear bending 

behavior of carbon nanotube reinforced annular plates with 

variable thickness. Safarpour et al. (2020) researched linear 

vibrations of graphene reinforced annular plates based on a 

numerical approach. Based on a higher order theory, Wang 

et al. (2020) researched free vibrations of graphene 

reinforced annular plates under thermal load. According to 

the best of our knowledge, nonlinear forced vibrations of 

multi-scale epoxy/CNT/fiberglass annular sector plates 

under external harmonic loads is not studied before. 

Different plate and shell theories are available in the 

literature (Abualnour et al. 2019, Addou et al. 2019, 

Balubaid et al. 2019, Batou et al. 2019, Bellal et al. 2020, 

Berghouti et al. 2019, Bouamoud et al. 2019, Bourada et al. 

2019, Boussoula et al. 2020, Boutaleb et al. 2019, 

Chaabane  et al. 2019, Draiche et al. 2019, Draoui et al. 

2019, Hellal et al. 2019, Hussain et al. 2019, Kaddari et al. 

2020, Khiloun et al. 2019, Medani et al. 2019, Meksi et al. 

2019, Refrafi et al. 2020, Rahmani et al. 2020, Sahla et al. 

2019, Semmah et al. 2019, Soltani et al. 2019, Tlidji et al. 

2019, Tounsi et al. 2020, Zarga et al. 2019, Zaoui et al. 

2019). In the context of classic conical shell formulation, 

nonlinear forced vibration analysis of truncated conical 

shells and annular plates made of multi-scale 

epoxy/CNT/fiberglass composites has been presented. The 

composite material is reinforced by carbon nanotube (CNT) 

and also fiberglass for which the material properties are 

defined according to a 3D Mori-Tanaka micromechanical 

scheme. By utilizing the Jacobi elliptic functions, the 

frequency-deflection curves of truncated conical shells and 

annular plates related to their forced vibrations have been 

derived. The main focus is to study the influences of CNT 

amount, fiberglass volume, open angle, fiber angle, 

truncated distance and force magnitude on forced 

vibrational behaviors of multi-scale truncated conical shells 

and annular plates. 

 

 

2. Properties of multi-scale CNT/fiberglass/epoxy 
composite 

In this research, a 3D Mori-Tanaka model is employed 

for evaluating multi-scale material properties. Also, all of 

glass fibers are assumed to have uni-directional alignment 

and CNTs have random diffusion (Fig. 1). The first issue is 

calculating material properties of a nano-composite 

(epoxy+ CNTs) which are elastic moduli (E11, E22), shear 

moduli (G12, G23) and bulk modulus (K23) as (Kazakov et 

al. 2019) 
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in which cnt mG G G    ; Gcnt and Gm denote nanotube 

and matrix shear modulus, respectively. In addition, Em and 

m denote Young’s modulus and Poisson ratio of matrix 

material; Vcnt defines CNT volume fraction which is 

associated with CNTs weight fraction (Wcnt), matrix density 

(
m ) and CNT density (

cnt ) as 
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Moreover, the parameters Ai (i=1, 2, 3, 4, 5) should be 

determined by 
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Next, the parameters in above relations may be defined as 
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in which Sijkl denote the components of Eshelby’s tensor 

which are introduced in the Appendix and 
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It must be stated that m  and cnt  define Lame’s 

constants of matrix and CNT, respectively determined by 
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Next, it must be stated that the nano-composite material 

has below definitions for the bulk modulus K̂ and shear 

modulus Ĝ  as 
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In the case of multi-scale materials, the nano-composite 

part is defined as host material (matrix) and the glass fibers 

are macro scale fillers. Therefore, Young’s modulus Ê and 

Poisson ratio ̂  of host material are defined as 
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For incorporating the effect of glass fiber as infinite 

filler with , Eqs.(1)-(5) may be employed again. 

However, these equations should be modified by 

considering fiber volume fraction (Vf) instead of Vcnt and 

also all properties related to nano-composite material 

should be considered as the properties of matrix material. 

Also, all properties of the ingredients are presented in Table 

1. 

 
 
3. Truncated conical shell formulation 
 

Having semi-vertex angle (β) and truncated distance 

(ξ0), a truncated conical shell in coordinate system (ξ1, ξ2,  

 

 

ξ3) has been illustrated in Fig. 2. Possible geometries as 

case studies for the truncated conical shell and annular plate 

(β=π/2) are shown in Fig. 3. For a thin annular plate or 

conical shell, components of strain field are (Barati and 

Zenkour 2019) 
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Table 1 Material properties of hybrid multi-scale composite 

material (Kazakove et al. 2019) 

Material property Value 

Young modulus of matrix (Em) 3.45 GPa 

Young modulus of CNTs (Ecnt) 1 TPa 

Young modulus of fiberglass (Ef) 73.1 GPa 

Density of matrix (ρm) 1270 kg/m3 

Density of CNTs (ρcnt) 110 kg/m3 

Poisson's ratio of the matrix (µm) 0.35 

Poisson's ratio of the CNTs (µcnt) 0.17 

Poisson's ratio of the fiberglass (µ f) 0.22 

 

Fig. 1 Ingredients of reinforced multi-scale composites 
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Sector deflection is denoted by w and in-plane 

displacements are denoted by u and v. As mentioned, the 

conical shell and annular sector are made of fiber-reinforced 

multi-scale material for which the stresses σp (p= ξ1, ξ2, 
ξ1ξ2) can be determined as 
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in which ijQ may be introduced by 
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where  denotes orientation of fibers about ξ1-axis and 
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Considered shell model contains stresses which result in 

below forces and moments via integrating Eq. (16) over the 

thickness 
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(a) truncated conical shell (b) annular plate 

  
(c) truncated conical shell segment (d) annular plate sector 

Fig. 3 The geometries of truncated conical shells and annular plates 
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Represented in the below equations are the governing 

equations of conical shells based upon classical shell theory 

in terms of defined forces and moments as 
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where ( ) cos( )f t F t and
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0
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h
I dz


  is mass inertia. 

Note that F is force amplitude and ω is excitation frequency 

In order to simplify the governing equations and 

representing them with respect to strain components, Eqs. 

(19) and (20) should be placed into Eqs. (22) and (24) 

which gives 
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4. Solution procedure 
 

Herein, the solution of nonlinear governing equations of 

multi-scale conical shells and annular sector plates has been 

presented. Firstly, it should be noted that the edges of the 

structure are simply-supported based upon following 

conditions 
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According to the thin shell and sector plate formulation, 

the displacement field may be selected as 
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where (U ,V ,W ) are the displacements amplitudes and 

the functions iH and jR are the test functions which are 

selected as 
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Arranging the governing equations as Yi (u, v, w)=0 with 

(i=1,2,3) and inserting field components presented as 

Eqs.(29)-(31) into Yi yields following equations with the use 

of Galerkin’s technique 
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After solving Eqs. (33)-(35) by neglecting in-plane 

inertias, three governing equations will be derived 
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in which ij  are stiffness matrix components; M is mass 

matrix and Gi are nonlinear stiffness matrices. With the use 

of Eqs. (36) and (37), U and V are calculated as 
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Therefore, Eq. (38), with the aid of Eq. (39) can be 

reduced to below equation 
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Exact solution of above equation can be introduced based 

on Jacobi elliptic function (cn) as (Feng and Meng 2017) 

2( , )W Wcn t k  (42) 

Note that k2 is the modulus of the elliptic function; W  

is vibration amplitude. It should be pointed out that   is 

the frequency of elliptic function. Based on the Fourier 

expansion, the Jacobi elliptic function (cn) can be expressed 

as a series of corresponding trigonometric function as 
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where K(k) is the complete elliptic integral of the first kind; 

exp( / )q K K    and ( )K K l   is the associated 

complete elliptic integral of the first kind. Also, the elliptic 

modulus can be defines as 
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(44) 

where a0 and a1 are two constants. The vibration frequency 

depends on the period of elliptic function, 2 /T in 

which 

4 ( )K k
T


  (45) 

where 
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  (46) 

However, Eq. (42) must be inserted into Eq. (4) to 

derive amplitude-frequency curves as explained by 

Mirjavadi et al. (2020). Also, some normalized parameters 

can be introduced in this paper such as 
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5. Results and discussions 
 

Presented in this section is nonlinear forced vibration 

characteristics of multi-scale epoxy/CNT/fiberglass 

truncated conical shells and annular plates subjected to 

transverse harmonic load. In previous sections, a Mori-

Tanaka model was employed for evaluating multi-scale 

material properties. Also, Jacobi elliptic functions were 

used for solving the governing equations and deriving 

forced vibration curves of the multi-scale annular plate and 

conical shell. This section provides new findings for 

demonstrating the significance of CNT distribution, 

geometric nonlinearity, applied force, fiberglass volume, 

open angle and fiber directions on forced vibration 

characteristics of multi-scale annular plates and truncated 

conical shells. 

Based on various values of inner to outer radius ratio 

(r0/r1) of nano-composite annular plate, Table 2 presents the 

validation of vibration frequency with that of Liu et al. 

(2019). In this table it is assumed that r0/r1=0.1, 0.2 and 0.3 

and plate thickness is h/r1=0.05. Also, uniform dispersion of 

carbon-based inclusion within the matrix is assumed. One 

can see the excellent agreement among obtained 

frequencies and the results provided by Liu et al. (2019). 

For both multi-scale truncated conical shell and annular 

plate, forced vibration curves based on various CNT weight 

fraction (Wcnt) are shown in Fig. 4 when the open angle is 

considered as ψ=2π. Also, the normalized value of applied 

for is considered as �̃�=0.001. This figure shows the  

 

 

normalized deflection ( /W h ) variation of truncated 

conical shell and annular plate with excitation frequency. It 

is obvious that deflection value is increasing with respect to 

excitation frequency and resonance occurs at a particular 

value of excitation frequency. It is also seen that frequency-

amplitude curves of truncated conical shell and annular 

plate moves to the right by increase of CNT weight fraction. 

This means that resonance occurs at higher values of 

excitation frequency when the CNT weight fraction 

increases. So, adding CNT into the matrix will improve 

forced vibration characteristics of the truncated conical 

shells and annular plates. 

Based on various values of fiberglass volume (Vf), Fig. 5 

illustrates the variation of frequency-deflection curves of 

truncated conical shell and annular plate. The weight 

fraction of CNTs is chosen to be Wcnt=0.2%. Truncated 

distance is considered as ξ0=0.4L. This figure indicates that 

higher values for fiberglass volume result in greater 

excitation frequencies due to increased stiffness of the shell 

and annular plate. Therefore, it can be concluded that both 

fiberglass and CNT content can affect forced vibration 

behavior of annular plates and truncated conical shells.  

Forced vibration curves of multi-scale annular sectors 

and truncated conical segments for various open angles are 

plotted in Fig. 6 by assuming that Wcnt=0.2% and Vf=0.1. 

Annular sectors and truncated conical segments with 

different values of open angle have diverse nonlinear 

vibration behaviors. Actually, annular sectors and truncated 

conical segments with lower open angle has more deviation 

to the right due to increase of nonlinear effects. Thus, as the 

open angle increases the nonlinear effects become less 

prominent and frequency-amplitude curves have less 

deviations. In this figure, the most notable influence of 

nonlinearity is obtained when ψ=30 degree.  

 

  
(a) truncated conical shell (b) annular plate 

Fig. 4 Forced vibration curves of multi-scale conical shells and annular plates for various CNT weight fraction (Vf=0, 

�̃�=0.001, α=50) 
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Based on various values of fiber orientation (θ), Fig. 7 

depicts the variation of normalized deflection of annular 

sector with respect to excitation frequency. It is assumed 

that Wcnt=0.2% and Vf=0.1. It must be pointed out that θ=0 

results in fiber direction parallel to ξ1 axis. One can see that 

increasing in orientation angle yields lower excitation 

frequency. Accordingly, as the value of fiber orientation is 

greater, the structural stiffness of annular plate is decreased. 

Hence, the forced vibration behaviors of annular plates 

made of multi-scale composites rely on the orientations of 

included fibers.  

 

 

 

In Fig. 8, the variation of normalized deflection of 

annular sector with respect to excitation frequency is plotted 

according to diverse values for normalized force amplitude 

�̃�. It is clear that force amplitude has no impact on the 

magnitude of excitation frequency, but it greatly affects the 

values of deflections. Indeed, higher values for normalized 

force amplitude yield larger deflections, but un-varied 

resonance frequency location. So, in nonlinear analysis of 

forced vibrations of annular plates, the magnitude of force 

amplitude has a key load in determining the response 

branches.  

  
(a) truncated conical shell (b) annular plate 

Fig. 5 Forced vibration curves of multi-scale conical shells and annular plates for various fiber volume fraction 

(Wcnt=0.2%, �̃�=0.001, α=50) 

  
(a) truncated conical shell segment (b) annular plate sector 

Fig. 6 Forced vibration curves of multi-scale conical shell segments and annular plate sector for various opening angles 

(Vf=0.1, Wcnt=0.2%, �̃�=0.001, α=50) 

772



 
Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells… 

 

 

 

 

 

Fig.9 depicts forced vibration properties of multi-scale 

annular plates affected by diverse values of truncated 

distance (ξ0) at fixed values of Wcnt=0.2%, Vf=0.1, and 

ψ=2π. Truncated distance of the plate has great influences 

on deviation of frequency-amplitude curves. Actually, more 

deviation is observed for higher values of truncated distance 

which means that nonlinear effects are more announced. So, 

the geometry of annular plate is very important for 

determining the forced vibration properties. 

 

 

 

 

 

 

6. Conclusions 
 

Based on an analytical trend, the presented article 

examined nonlinear forced vibrations of truncated conical 

shells and annular plates made of multi-scale materials. The 

multi-scale composite is consist of epoxy, random CNTs 

and glass fibers which were included into the calculations 

based on Mori-Tanaka scheme. Jacobi elliptic functions 

were employed for determining the frequency-amplitude 

curves. In the below statements, new findings are 

introduced: 

 

Fig. 7 Forced vibration curves of multi-scale annular sector for various fiber angles (Wcnt=0.2%, Vf=0.1) 

 

Fig. 8 Forced vibration curves of multi-scale annular sector for various force amplitude (Wcnt=0.2%, Vf=0.1) 
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 The resonance occurs at higher values of excitation 

frequency when the CNT weight fraction increases. 

 Higher values for fiberglass volume result in 

greater excitation frequencies due to increased 

stiffness of the annular sector.  

 As the open angle increases the nonlinear effects 

become less prominent and frequency-amplitude 

curves have less deviations.  

 Increasing in fiber orientation angle yields lower 

excitation frequency.  

 Nonlinear effects become less prominent as the 

value of truncated distance declines.  
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