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1. Introduction 
 

The composite structural components are gaining a 

significant role in different modern industries (aerospace, 

automobile ,  construction, etc .)  because of their 

incomparable mechanical, physica l and electrical 

(Mukhopadhyay 2009) properties and low cost to weight 

ratio in comparison to their metallic equivalents. In general, 

the fibre-reinforced composite elastic properties mostly 

depend on fibre orientation and individual properties. 

Moreover, the fibre distribution, the fractions of volume of 

individual constituent (fibre and matrix) and subsequent 

variation in geometry may also alter the properties from the 

expected line. Additionally, the composite components 

exposed to the service environment, may experience 

vibration (fatigue due to cyclic loading) and/or bending 

(excess geometrical distortion). These loadings lead to the  
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final failure of the structural components. In this regard, a 

list published research items correlated to the modelling of 

a composite including their experimental and numerical 

characteristic under the influence of single or multiple 

loading of different structural configurations (plate, beam, 

shell etc.) are discussed. Also, the composite properties and 

geometry may vary during the process of manufacturing or 

due to the external environmental effect, which may induce 

uncertainty and affect the final performances too. To 

emphasize the requirement of the current analysis, a few 

earlier relevant research articles are discussed considering 

the deterministic as well as the uncertain properties in the 

subsequent upcoming lines.  

The flexural and the free vibration frequencies of the 

layered structure (Akhras and Li 2005) are reported via the 

generic mathematical model considering Reddy’s model 

(higher-order kinematic theory) in conjunction with spline 

finite strip method. Also, several article reported on the 

structural modelling and subsequent responses (dynamic, 

flexural, buckling/post-buckling, etc.) of the layered 

(Szerkrenyes and Jozsef 2007, Ghannadpour et al. 2014) 

/graded structure (Mehrparvar and Ghannadpour, 2018) 

considering the deterministic type of properties and von-

Karman nonlinear strain (Ovesy and Ghannadpour 2006, 

2007, Ovesy et al. 2006, Ghannadpour et al. 2006, Ovesy et 

al. 2015). Also, a few research reported considering the 

lower order kinematic models i.e., the classical plate theory 

(CPT) and the first-order shear deformation theory (FSDT). 

As discussed previously, the uncertainty in composite 

properties may have demonstrative impact on the final 

structural characteristics and a few research articles are 
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discussed in the subsequent lines. An analytical technique 

proposed by Cherki et al. (2000) to understand the 

structural sensitivities using the fuzzy numbers to include 

the uncertainties of the prescribed displacements. Noor et 

al. (2000) adopted the two-phase approach to analyse the 

effect of the material and geometrical parameters und 

uncertainty on nonlinear structural responses of the 

composite structure. Akpan (2000) formulated the 

uncertainties within the smart structure through the fuzzy 

set approach considering the influences of piezoelectric 

effect, mechanical loading, thermal environment and 

physical conditions. Akpan (2001) utilized finite element 

method (FEM) for the modelling of structural components 

considering the fuzzified material properties. Massa et al. 

(2004) demonstrated the competent approach for the 

calculation of fuzzified eigenvalues and the eigenvectors of 

the structure considering the imprecise fuzzy parameters 

through an α-cut material and geometrical parameters 

(fuzzy numbers within Taylor’s expansion). Subsequently, 

the flexural and the modal frequency responses of the beam 

type structural components are reported using the 

deterministic type finite element (FE) theory as well as the 

fuzzified properties by Liu and Rao (2005). Gersem et al. 

(2007) presented an efficient non-probabilistic approach 

including fuzzy steps and mode synthesis technique for 

saving the time required to do calculation. Giannini and 

Hanss (2008) also presented the mathematical model 

(coupled standard transformation method and fuzzy 

arithmetic) which allow a relatively fast calculation to solve 

the problem of uncertainty management in the structural 

analysis. To predict the experimental structural 

characteristics, Massa et al. (2009) presented the 

experimental frequency and compared with the numerical 

responses (fuzzy eigenvalue analysis). The nonlinear 

flexural characteristics of the laminated composite are 

further by Dash and Singh (2010) via the higher-order type 

mathematical model. Similarly, the nonlinear flexural 

characteristics of the layered composite structure are also 

reported by the same authors (Dash and Singh 2010) using 

their customized higher-order FE model considering the 

large distortion. Subsequently, Luo et al. (2011) utilize the 

fuzzified FE model (FFEM) approach for the prediction of 

failure (serviceability) in a spatially random field. Pawar et 

al. (2012) introduced fuzzy arithmetic operators to evaluate 

the uncertainties of material properties of the thin-walled 

composite beams and investigated the stochastic behaviours 

of the same. Bui and his co-authors (2013, 2013a, 2014) 

evaluate the bending and buckling behaviour of composite 

structural components using the various techniques 

(meshfree Galerkin Kriging method and Improved 

knowledge-based neural network). Behera and Chakraverty 

(2013) proposed a method for the static deflections of the 

beam type structure using the fuzzified linear equilibrium 

equation considering system uncertainty. Adhikari and 

Khodaparast (2014) presented the uncertainty analysis of 

the composite structure using a spectral approach including 

the fuzzy variable. Xia and Friswell (2014) improved the 

fuzzy eigenvalue approach by reusing the interval analysis, 

demonstrated on a cantilever beam and obtained very 

accurate fuzzy eigenvalue solutions. The flexural 

characteristics of the functionally graded (FG) and 

sandwich structures analysed using the FEM (Taghizadeh et 

al. 2015) in the framework of Mindlin plate theory (Heydari 

et al. 2014), the higher-order theory (Bennai et al. 2015) 

and sinusoidal shear deformation theory (Kolahchi et al. 

2015). In the recent past, the bending deflections of the 

single-layer graphene sheet (Shahsavari and Janghorban, 

2017), advanced composite (Houari et al. 2018) and 

thermo-elastic analysis of FG-carbon nanotube-reinforced 

(Arefi et al. 2018) pressure vessels performed via various 

theories. Static deflection of FGM plates (Bouiadjra et al. 

2018), carbon fibre reinforced plastic (CFRP) strengthened 

reinforced concrete (RC) slab (Razavi et al. 2015) and 

functionally graded carbon nanotube-reinforced composite 

(FG-CNTR) structure (Keleshteri et al. 2019) are analysed 

developing the mathematical model based on various 

theories.  

From the above literature review, it can be understood 

easily that an ample amount of work has already been 

completed on the linear analysis for plate structures using 

different theories (CPT, FSDT, Reddy’s higher-order 

theory). Moreover, a few research also dedicated to the thin-

walled structure considering the fuzzified property 

variation. However, the bending behaviour of the composite 

structure considering large distortion and fuzzified 

properties has been not reported yet in published domain. In 

this regard, an effort has been made to derive a generic 

nonlinear fuzzified finite element model (FFEM) to 

investigate the influence of fuzzified elastic properties on 

the nonlinear deflection characteristics of the layered 

composite panels and geometrical configurations (single 

and double curvature). 

 

 

2. Theoretical formulation 
 

2.1 Fuzzy concept 
 

Now, to introduce the uncertainity in the current 

analysis, the fuzzy set theory has been adopted to convert 

the deterministic input parameter of the laminated structure. 

The fuzzy set theory utilizes the membership function and 

the corresponding step wise details provided in the 

following lines. Let ‘ ’ be a crisp set of objects forming a 

universe (Patle et al. 2018) and element from the universe 

be denoted as ‘ ’. Let   be a subset (crisp) of . Now, 

the corresponding member of  is mapped to the 
valuation set [0, 1] from   through   (a characteristic 

function) as 

1, for ,
( )

0, for


 



 
  

 
 (1) 

Now, for the given real valued and bounded valuation 

set, a fuzzy set ‘ ’ in ‘ ’ can be defined as 

 [ , ( )], ( ) [0,1]          (2) 

where, ( )  is the compatibility of the membership 

function and the corresponding element i.e.  in ‘ ’.  
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Similarly, the membership function can be defined within 

the interval [0, 1]. 

Further, the fuzzification has been introduced using the 

α-cut function parameter i.e. an element   . Fig. 1 

denotes a triangular fuzzy set ‘  ’, such that 

1 2 4, ,  d d d . The α-cut of ‘ ’ defined as ‘  ’ can 

be expressed as 

1 2 1 4 4 3( ), ( ) , [0,1]           d d d d d d  (3) 

 

2.2 Fuzzy kinematic model 
  

The curved panel is defined using the spherical  

 

 

 

 

 

coordinate system ( 1 20, , ,   ) and shown in Fig. 2. The 

panel’s geometrical parameter is presented by ‘a’, ‘b’ and 

‘h’, which denotes the length, the width and the thickness 

along 1 2, and   direction, respectively. Similarly,

1 2
and R R  denotes the principal radii along 1 2 and   , 

respectively. The composite panel made of ‘N’ numbers of 

the lamina having identical thickness and the lamina 

orientation is measured from 1 direction. 

Now the displacement kinematics (Reddy and Liu 1985) 

obtained from Taylor series expansion is used for the 

modelling purpose is presented in the following lines 

 

Fig. 1 Triangular fuzzy set representation 
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Fig. 2 Representation of shell panel type composite 
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         
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 
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1 2 0 1 2

, , , , ( ) (.) , ( ) (.) , ( ) (.) ,

, , , , ( ) (.) , ( ) (.) , ( ) (.) ,

, , , ( , )

X t X X

Y t Y Y

Z t Z
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     

 

               

               

    

   

   



 

(4) 

where, , andX Y Z   are the displacement of any arbitrary 

point along 1 2, and   direction respectively. Similarly,

0 0 0, andX Y Z
  

are mid-plane displacement and

1 2
and  

  are the rotation of the normal to the mid-

plane about 2 1and  directions, respectively. The remaining 

notations  * * * *

0 0 1 2
, , andX Y     

  are the higher-order 

terms of the Taylor series expansion. 

 

2.3 Strain-displacement relation 
 

The strain field for the layered composite can be 

represented as (Singh 2015) 

{
 
 

 
 
𝜀𝜉1𝜉1𝛼
𝜀𝜉2𝜉2𝛼
𝜀𝜉2𝜁𝛼
𝜀𝜉1𝜁𝛼
𝜀𝜉1𝜉2𝛼}

 
 

 
 

=

{
 
 
 

 
 
 

𝑋𝛼,𝜉1
𝑌𝛼,𝜉2

(𝑌𝛼,𝜁 + 𝑍𝛼,𝜉2)

(𝑋𝛼,𝜁 + 𝑍𝛼,𝜉1)

(𝑋𝛼,𝜉2
+ 𝑌𝛼,𝜉1

)}
 
 
 

 
 
 

+

{
 
 
 
 

 
 
 
 

1

2
{(𝑋𝛼,𝜉1

)
2
+ (𝑌𝛼,𝜉1

)
2
+ (𝑍𝛼,𝜉1)

2
}

1

2
{(𝑋𝛼,𝜉1

)
2
+ (𝑌𝛼,𝜉2

)
2
+ (𝑍𝛼,𝜉2)

2
}

{𝑋𝛼,𝜉1
𝑋𝛼,𝜉2

+ 𝑌𝛼,𝜉1
𝑌𝛼,𝜉2

+ 𝑍𝛼,𝜉1𝑍𝛼,𝜉2}

{𝑋𝛼,𝜉1
𝑋𝛼,𝜁 + 𝑌𝛼,𝜉1

𝑌𝛼,𝜁 + 𝑍𝛼,𝜉1𝑍𝛼,𝜁}

{𝑋𝛼,𝜉2
𝑋𝛼,𝜁 + 𝑌𝛼,𝜉2

𝑌𝛼,𝜁 + 𝑍𝛼,𝜉2𝑍𝛼,𝜁} }
 
 
 
 

 
 
 
 

  

(5) 

or 

     ( )
Lin NoL

       (6) 

The Eq. (6) can be rewritten as 

         (.) (.)
Lin NoLLin NoL

T T       (7) 

where,[ ] and[ ]Lin NoLT T represents the corresponding linear 

and nonlinear thickness coordinate matrices, respectively. 

Similarly, the mid-plane linear and nonlinear strain matrices 

are defined as the terms   and
Lin NoL

   , respectively. 

The detail expansion of terms used in the above Eq. (7) can 

be seen in the reference (Singh and Panda 2015). 

Now, the lamina stress-strain relationship for any ‘kth’ 

layer can be considered as (Liu and Rao 2003) 

{
 
 

 
 
𝜎𝜉1𝜉1𝛼
𝜎𝜉2𝜉2𝛼
𝜎𝜉2𝜁𝛼
𝜎𝜀𝜉1𝜁𝛼
𝜎𝜀𝜉1𝜉2𝛼}

 
 

 
 
𝑘

=

{
 
 

 
 
𝜎1𝛼
𝜎2𝛼
𝜎4𝛼
𝜎5𝛼
𝜎6𝛼}

 
 

 
 
𝑘

=

[
 
 
 
 
 
𝑄11𝛼 𝑄12𝛼 0 0 0

𝑄12𝛼 𝑄22𝛼 0 0 0

0 0 𝑄45𝛼 0 0

0 0 0 𝑄55𝛼 0

0 0 0 0 𝑄66𝛼]
 
 
 
 
 

(. )

[
 
 
 
 

{
 
 

 
 
𝜀𝜉1𝜉1𝛼
𝜀𝜉2𝜉2𝛼
𝜀𝜉2𝜁𝛼
𝜀𝜉1𝜁𝛼
𝜀𝜉1𝜉2𝛼}

 
 

 
 

]
 
 
 
 
𝑘

 (8) 

   (.)
kk k

ij ijijQ
 

  
 

 (9) 

where,  
k

ij


 and 
 
 

k

ij


 is the stress and strain tensor, 

respectively, whereas
 

k

ijQ


 
 

is the stiffness matrix 

constituted by elastic constants. 

 

 

2.4 Calculation of strain energy 
 

For the current layered composite structure, the strain 

energy function can be expressed in the following form 

   
/2

1 2

/2

1ˆ
2  

   




 
  

 
 

h T

ij ij

h

V d dd  (10) 

 

2.5 External work 
 

The following Eq. (11) represents the external work 

done by the transverse force applied on the structure 

   ˆ
  

T

A

W F dA  (11) 

 

2.6 Fuzzy finite element method 
 

The isoparametric lagrangian element with eighty-one 

degrees of freedom is utilised for the discretization of the 

curved structure. Now, the elemental fuzzy displacement 

vector  can be given as (Cook et al. 2000) 

     (.)i i
N    (12) 

where,  is the elemental displacement vector,  iN is the 

well-defined shape function of the discussed element whose 

detail of the same can be seen in (Cook et al. 2000) and

 
i represents the nodal displacement vector. 

Now, based on the isoparametric formulation, the mid-

plane strain vector can be rewritten in terms of nodal 

displacement vectors and presented as 

     
LinLin

i
B    (13) 

         
NoLNoL

i i
B A G         (14) 

where, the linear and nonlinear corresponding strain-

displacement relation matrices are defined as

   and
Lin NoL

B B , that can be further represented in the 

product form of the  A
and  G

whose detail can be seen 

in the reference (Singh and Panda 2015). 

 

2.7 Governing equation for static analysis 
 

The static analysis of the advanced fibre-reinforced 

laminated composite curved panel is performed by solving 

the governing equation derived by utilizing the variational 

principle and depicted as 

𝜕∏ = 𝜕(𝑉̂ − 𝑊̂) = 0 (15) 
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Eq. (15) is finally expressed as in Eq. (16) by using Eqs 

(10) and (11) 

            
Lin NoL

K F or K K F          
 

 (16) 

 

2.8 End boundary conditions 
 
The boundary conditions utilized hereafter are as 

follows: 

Simply support 

𝑌0𝛼 = 𝑍0𝛼 = 𝜙𝜉2𝛼 = 𝑌0𝛼
∗ = 𝜙𝜉2𝛼

∗ = 0at 𝜉1=0and𝑎;

𝑋0𝛼 = 𝑍0𝛼 = 𝜙𝜉1𝛼 = 𝑋0𝛼
∗ = 𝜙𝜉1𝛼

∗ = 0at 𝜉2=0and𝑏;
} (17) 

 

 

 

Clamped 

𝑋0𝛼 = 𝑌0𝛼 = 𝑍0𝛼 = 𝜙𝜉1𝛼 = 𝜙𝜉2𝛼 = 𝑋0𝛼
∗ = 𝑌0𝛼

∗ =

𝜙𝜉1𝛼
∗ = 𝜙𝜉2𝛼

∗ = 0at 𝜉1= 0and𝑎; at 𝜉2 = 0and𝑏  
(18) 

Free 

𝑋0𝛼 ≠ 𝑌0𝛼 ≠ 𝑍0𝛼 ≠ 𝜙𝜉1𝛼 ≠ 𝜙𝜉2𝛼 ≠ 𝑋0𝛼
∗ ≠ 𝑌0𝛼

∗ ≠

𝜙𝜉1𝛼
∗ ≠ 𝜙𝜉2𝛼

∗ ≠ 0at 𝜉1= 0and𝑎; at 𝜉2 = 0and𝑏  
(19) 

 
2.9 Solution procedure 
 

The governing equation of equilibrium for the static 

analysis is derived and solved using the direct iterative 

method. The solution procedure is presented through a flow 

chart and presented in Fig. 3. 

Initialization of each input parameters i.e., 

geometry,  α-value, properties. loading, 

layer numbers and end conditions

at solution step 1 

iteration i = 0

i = i+1

NEL=1 to NE

Calculate elemental [K ] and {f } using 

FEM

Obtain global stiffness and force 

vector by assembling elemental 

matrices

Apply end-restrictions and solve

Is it 1st iteration?

Calculate nonlinear stiffness matrix by 

normalizing previous displacement

STOP

Linear response

Print linear

Transverse 

displacement

No

Yes

No

Yes

Print nonlinear

transverse 

displacement

Nonlinear response

 

 

2

1 3

2
is 10

n n

n

 



 




 

Fig. 3 Flowchart presentation for linear/nonlinear bending analysis 
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3. Results and discussion 
 

Now, a suitable computer code (MATLAB) is developed 

based on the derived model (FFEM). The material 

properties of the laminated composite are fuzzified. This 

computer code is utilized further to investigate the 

deflection parameter and discussed in this section. The 

deterministic (Table 1) and fuzzified (Table 2) material 

properties are varied within ±20% from the conventional 

values (Liu et al. 1986, Singh and coauthors 2012, 2014). 

 

3.1 Convergence and validation study 
 

The convergence and the comparison behaviour of the 

currently model have been verified by solving a simply 

supported flat-panel example. The panel is consisting of 

eight-layer cross-ply arrangement 

(0°/90°/90°/0°/0°/90°/90°/0°) and deterministic type 

composite properties (Table 1). The deflection results are 

plotted in Fig. 4 for varying mesh divisions and a (5×5) 

mesh selected for the evaluation of new results. Now, the 

responses computed using the higher-order FE model are 

compared with the published experimental (Zaghloul and 

Kennedy 1975) results. The results are computed for a 

clamped (0°/90°/90°/0°) square flat structure (a = b =12 inch 

and h = 0.096 inches) under the uniformly distributed 

loading (UDL).  The present and the reference results are 

presented in Table 3. The table values show that the current 

values are in close agreement with those of the theoretical, 

as well as the reference results. However, the deviation with 

experimental responses may be due to the inexact 

replication of the boundary condition used in the 

experimentation. 

 

 

 

 

3.2 Non-dimensional non-linear deflection of a 
composite by variation of aspect ratio 
 

The influence of the aspect ratio on the non-linear 

deflection is checked by considering a simply supported 

spherical shell geometry under the UDL loading for 

different amplitude (2 kPa, 4 kPa, 6 kPa, 8 kPa and 10 kPa). 

The responses are obtained using the fuzzified properties 

for each elastic constant α = 0.8 (refer to Table 2) including 

a/h = 60 and R/a = 50. The responses are plotted in Fig. 5, 

which indicates an incremental path for a few aspect ratios 

and slope become constant after a/b = 2.5. However, the 

deflection values are following increasing type of trend 

when load values increase for a particular aspect ratio. 

 

3.3 Non-dimensional non-linear deflection of a 
composite by variation of curvature ratio 

 
To demonstrate the effect of different curvature ratios (5, 

10, 20, 30, 50, 80 and 100) on the non-linear deflection 

parameter of a cylindrical shell panel is checked in this 

problem under the influence of the sinusoidal loading 

(SDL) and fuzzified properties (α = 0.8). The responses are 

plotted Fig. 6 considering a clamped shell panel under 

different loading amplitude (2 kPa, 4 kPa, 6 kPa, 8 kPa and 

10 kPa) and a/h =40. From the graph, it can be concluded 

that the non-dimensional non-linear deflections are 

increasing with load intensity and the slope become flatten 

after R/a = 20. The is because the structural panel becomes 

flat and the curvature has an insignificant effect on the 

structural deflection. Also, the shell panel has high 

stretching energy in comparison to bending for the small 

value of the curvature ratio. 

Table 1 Deterministic elastic properties of composite 

Material 

properties 1
E (GPa) 

2
E (GPa) 1 2

G   

(GPa) 

1
G   

(GPa) 

2
G    

(GPa) 
1 2   

1   
2   

Values 25 1 0.5 0.5 0.2 0.25 0.25 0.25 

Table 2 Fuzzified elastic properties of composite 

1
E  

2
E  

1 2 1
G G     

2
G   

1 2 1 2
=         α 

30 1.2 0.6 0.24 0.3 0 

29 1.16 0.58 0.232 0.29 0.2 

28 1.12 0.56 0.224 0.28 0.4 

27 1.08 0.54 0.216 0.27 0.6 

26 1.04 0.52 0.208 0.26 0.8 

25 1 0.5 0.2 0.25 1 

24 0.96 0.48 0.192 0.24 0.8 

23 0.92 0.46 0.184 0.23 0.6 

22 0.88 0.44 0.176 0.22 0.4 

21 0.84 0.42 0.168 0.21 0.2 

20 0.8 0.4 0.16 0.2 0 

758



 
Nonlinear deflection responses of layered composite structure using uncertain fuzzified elastic properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2x2 4x4 6x6 8x8
0.001

0.002

0.003

0.004

0.005

0.006

0.007
N

o
n
-l

in
e
ar

 d
e
fl

ec
ti

o
n

Mesh size

Load=2000 N

 PLATE  CYL    SPH

Load=6000 N

 PLATE  CYL    SPH

 

Fig. 4 Variation of non-dimensional non-linear deflection with the mesh size 
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3.4 Non-dimensional non-linear deflection of a 
composite by variation of loading and edge support 
conditions 

 
Fig. 7 is showing the deflection responses of a thin (a/h 

= 50) hyperboloid composite panel (R/a = 60) under 

different loading amplitude (Q) and the end boundaries 

(CCCC, SCSC, CFCF, SSSS, SFSF and CFFF) considering 

fuzzified uncertain (α = 0.8) properties. The non- 

 

 

 

 

 

 

dimensional non-linear deflection values are following an 

incremental line while the load intensity increases for a 

particular end boundary. The maximum and the minimum 

deflections are showing correspondingly for the clamped 

and cantilever panel. The responses are following the 

anticipated line and the uncertainty has not much effect in 

comparison to the end boundaries. 
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Fig. 6 Variation of non-dimensional non-linear deflection with curvature (R/a) 
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3.5 Non-dimensional non-linear deflection of a 
composite by variation of modular ratio 

 

The influence of major and minor moduli ratio including 

the fuzzification (α = 0.8) on the deflection values have 

been computed in this example considering a simply 

supported hyperboloid shell structure. The results are 

obtained under the UDL of various loading amplitude (2 

kPa, 4 kPa, 6 kPa, 8 kPa and 10 kPa) and input parameters 

i.e. a/h = 70 and R/a = 50. The computational test results 

are plotted in Fig.8. The graphical deflections are showing 

that values are decreasing when the modular ratio increases 

whereas follow a reverse line for the load intensity. This is 

because the structural stiffness becomes higher for the 

modular ratio and the subsequent deflection decreases. 

 

3.6 Effect of fuzzified properties on non-linear 
deflection of elliptical panel 
 

In this numerical example, the influence of fuzzified 

elastic properties on the non-linear deflection values are 

obtained considering a clamped elliptical (R/a = 60) shell  

 

 

 

 

 

panel. The results are plotted in Fig. 9 considering the 

fuzzification for each constant (
1 2 1 2 2
, , , ,E E G G       ) 

and thin panel type i.e. a/h = 60.  The results are indicating 

large deviation of responses for the fuzzified longitudinal 

properties in comparison to each case. 

 

 

4. Conclusions 
 

This research mainly reported the implementation of 

higher-order nonlinear Fuzzy-FEM model for the 

computation of deflection parameters of the laminated 

curved/flat panel structure using the varied composite 

material properties via Fuzzy operator. The fuzzified 

uncertainty is included for the first time to compute the 

nonlinear deflections in association with Green-Lagrange 

type of geometrical nonlinearity. Initially, the model is 

established by considering the deterministic type properties 

by comparing the results with published numerical and 

experimental data. Moreover, the model is engaged to 

compute the deflection parameter considering the structure  

Table 3 Present nonlinear deflections (inch) in comparison with the benchmark values 

Load (psi) 
Zaghloul and Kennedy (1975) 

Present  
Experimental  Large deformation  

0.4 0.08079 0.09011 0.0766 

1.2 0.15700 0.18079 0.1724 

2 0.18930 0.23241 0.2299 
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Fig. 8 Variation of non-dimensional non-linear deflection with modular ratio (Eξ1/ Eξ2) 
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geometrical parameter with the fuzzified material properties. 

The responses are showing the consistent variation of 

deflection values for all kind of structural design parameters. 

However, the fuzzified properties are showing the 

interesting variation i.e., highest for the longitudinal 

property whereas insignificant for all other values. The 

study also reveals that the structural uncertainty can be 

examined with adequate accuracy similar to the earlier 

statistical methodologies with less computational effort. 
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