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1. Introduction 
 

Due to the advantages involving their high strength-to-

weight and stiffness-to-weight ratios, RHS thin-walled 

beams became very attractive for their use in modern 

constructions. 

Since the theory of thin walled beams was developed by 

Vlasov (1940) and subsequently refined by Benscoter 

(1954) for beams with closed cross-sections, the linear 

behaviour of box beams with rigid cross section has been 

analysed by several scientists; for sake of space, only a few 

are quoted here, e.g., Smith and Chopra (1991), 

Shakourzadeh et al. (1995), Kim and White (1997), 

Loughlan and Ata (1997), Pluzsik and Kollar (2006), Nam-

Il Kim (2009). In order to improve the predictability of the 

model, the assumption of the invariability of the cross-

section shape is abandoned in many published works. 

Among them, Mentrasti (1990) presented a theory of thin-

walled beams with deformable rectangular cross-section 

under torsional and distortional loads, considering the 

shearing strain in the walls of the beam. In the paper by 

Suetake and Hirashima (1997) the analytical procedure 

using extended trigonometric series is reconstructed so that 

box girders with intermediate diaphragms can be analysed 

under any end-support and loading conditions. Kim and 

Kim (1999) developed a method to determine the warping 

and distortion functions for general thin-walled beams with 

square cross-sections to carry out some static and free 

vibration problems. They also extended their theory to thin-

walled multicell beams in 2001. Five field variables,  

                                           

Corresponding author, Ph.D. 

E-mail: zianenoureddine@yahoo.fr 

 

 

including cross-sectional distortion and warping, were 

consistently employed by Jang et al. (2008) to express 

deformations of straight beams and angled joints. Several 

numerical problems were solved via finite element 

formulation and compared with ANSYS results using shell 

elements. Recently Ren et al. (2017) investigated the 

distortional effect of concentrated eccentric loads on simply 

supported and cantilever box girders with inner diaphragms 

using an initial parameter method in which the in-plane 

shear deformation of diaphragms is fully considered. In 

spite of the tremendous research activity devoted to the 

analysis of buckling and lateral-torsional buckling (LTB) of 

thin walled box beams, most studies were accomplished 

using the simplifying assumption of non-deformable cross-

sections in their own plane (e.g., Vo and Lee 2009, Kim et 

al. 2010, Piovan and Machado 2011, Lanc et al. 2015). 

Among the few available papers on buckling and LTB of 

thin walled beams with deformable cross-sections, 

Goncalves and Camotim (2004, 2010), Silvestre and 

Camotim (2006) and Bebiano et al. (2018) have shown that 

the Generalised Beam Theory (GBT) is a rather powerful 

tool to assess the local and global buckling behaviour of 

thin-walled prismatic members. The interactive buckling 

behaviour of welded steel box-section columns was studied 

experimentally and numerically by Yang et al. (2017). Their 

experimental results were completed by a parallel finite 

element simulation. In the same context, Saoula et al. 

(2016) investigated the effect of distortion on the elastic 

lateral buckling of thin-walled box beams under combined 

bending and compression. They used Ritz and Galerkin's 

methods to solve the coupled differential equations. 

Szymczak and Kujawa (2017) obtained closed-form 

analytical formulas for the critical stresses for closed square 

cross-sections with and without internal walls. Recently, 

Kanishchev and Kvocak (2019) provided a theoretical,  
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numerical and experimental analysis of local stability of 

axially compressed columns made of thin-walled 

rectangular concrete-filled steel tubes, with the 

consideration of initial geometric imperfections. They 

introduced the theory of elastic critical stresses in local 

buckling of rectangular wall members under uniform 

compression. 

The main objectives of the present paper are: a) to 

obtain closed-form solutions for the LTB of thin-walled 

steel RHS beams with distortion; b) to propose an 

alternative technique based on the homotopy perturbation 

method (HPM) to analyse the buckling and post-buckling of 

thin walled rectangular box beams including the 

deformability of the cross-section; c) to discuss the 

accuracy of such a method; and d) to discuss the influence 

of distortion on the critical moment. 

 

 

2. Theoretical formulation 
 

Consider a thin-walled steel RHS beam of length L, 

width b, height h and uniform wall thickness t (Fig. 1). The 

beam is assumed materially and geometrically perfect. 

Cartesian and curvilinear coordinate systems (x, y, z) and (x, 

s, n) are related through an angle of orientation α, see Fig. 1 

(B). The coordinate s is measured counter-clockwise along 

the tangent to the middle surface, while n is perpendicular 

to s. The origin of the Cartesian system is set at the 

geometrical centre of the cross-section at one end of the 

beam. 

In order to develop the present model, we pose that: a) 

the beam cross-section is deformable in its own plane; b) 

the Euler-Bernoulli hypotheses (transverse shear effect 

related to the bending is neglected) hold; c) to avoid the 

occurrence of pure local instability , the twist  of the cross-

section can be arbitrarily large, while the distortional 

displacements are assumed to be small; d) twist and 

distortion are always coupled. 

For non-shearable beams, according to Librescu and 

Song (2006) and by virtue of the assumption a) above, the 

displacements, ux, us and un of any generic point (M) on the 

profile section in the x, s and n directions, respectively, may  
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where u, v, w are the displacements of the centroid 

(coinciding with the shear centre due to the double 

symmetry) of the beam cross section in x, y, z directions, 

respectively, while  and  denote the torsion and distortion 

angle, respectively (see Fig. 2). Primes denote derivatives 

with respect to the axial abscissa x. According to 

Sokolnikoff (1946), the warping function w satisfies the 

equilibrium and boundary conditions at the cross section 

outline. It was verified in (Kim and White 1997) that it 

provides accurate results in static predictions of elastic box 

beams. Therefore, the same warping function will be used 

in the current work 
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The distortion of the cross-section is decomposed into rigid-

body tangential and normal displacement of each wall. 

These two addends are provided by the functions sd and 

nd, respectively, which we find in Kim and Kim (1999) 

and Jang et al. (2008).  
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(a) Geometry of a thin-walled RHS beam (b) Coordinate systems 

Fig. 1 Geometry of a thin-walled RHS beam and relevant coordinate systems 
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Fig. 2 The Cross-section deformation shapes for : (A) 

Axial displacement; (B) out-of plane warping; (C) 

bending rotation about z direction; (D) bending deflection 

in y direction ; (E) bending deflection in z direction; (F) 

bending rotation about y direction; (G) torsional rotation; 

(H) Distortion (in-plane deformation). 
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Furthermore, the function rn is defined as 

sin( ) cos( )nr z y    (2d) 

Recall that the kinematics of Saoula et al. (2016) can be 

obtained by replacing in Eq. (1) the torsion functions cos() 

and sin() by 1 and , respectively, and disregarding non-

linear terms.  

In the case of the RHS box beams considered here, we 

are interested in non-infinitesimal displacements and 

strains. Hence, strain measures shall be described by the 

components of Green’s strain tensor, which incorporate 

large displacements 
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The adoption of assumptions c) and d), as well as the 

substitution of Eq. (1) into Eq. (3), lead to the following 

strain tensor 
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Since the material constituting the considered RHS 

beam is supposed to be linear elastic, a generalised form of 

Hooke’s law for the points of the beam walls can be written 

in the local coordinate system (x,s,n) 

xx xxE   (5a) 

xs xsG   (5b) 

where (σxx, τxs) and (εxx, γxs) are the stress and strain 

components, respectively, while E and G denote Young’s 

and shear moduli, respectively. 

 

4.1 Static balance – Variational formulation 
 

The equilibrium equations can be obtained by using the 

stationary conditions δ(U-W) = 0, where U and W are the 

strain energy and the work spent by the external loads, 

respectively.  

If A denotes the cross-section area, the variation of the 

strain energy is 

0
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The variation of the external work for a beam subjected to 

distributed load with magnitude qz (see Fig. 3) is defined by 

0
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where ez, ey are the eccentricities of the load with respect to 

the shear centre; the latter is used later as the initial 

imperfection for the post-buckling analysis. 

If the beam is not axially loaded, the equations of 

equilibrium can be established by using the expressions of 

the strain energy (Eq. (6)), the work of external loads (Eq. 

(7)) and the series expansion of cos() and sin(), i.e., 1- 
2/2 and , respectively. Once integrated by parts, for each 

arbitrary variation v, w,  these equations can be written 
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Fig. 3 Thin walled RHS beam under a distributed load qz 

with the load height ez and eccentricity ey. 
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where the symbols Iy, Iz, Iw, J, It, Jd and Jtd stand for the 

moments of inertia with respect to the y and z axes, the 

warping constant, the Saint-Venant torsion constant, the 

higher order torsion constant, the distortion and the coupled 

torsion-distortion constants, respectively, defined by 

2
y

A

I z dA   (9a) 

2
z

A

I y dA   (9b) 

2
w w

A

I dA   (9c) 

2( )w
n

A

d
J r dA

ds


   (9d) 

 

 

2

2 2 2
( )

( )
y z

t n

A

I I
I s r dA

A


    (9e) 

2( )nd
d sd

A

d
J n dA

ds


   (9f) 

( )( )nd w
td sd n

A

d d
J n r dA

ds ds

 
    (9g) 

 

2.1.1 Lateral-torsional buckling 
To establish the expression of the moment inducing 

lateral buckling with cross-section distortion, Galerkin’s 

method is used for simply supported RHS beams. The 

displacements are approximated by the means of the 

following functions, which are compatible with the 

governing equations and the boundary conditions of the 

beam 
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where v0, w0, θ0 are the associated displacement amplitudes.  

Inserting Eq. (10) into Eq. (8b), and carrying out the 

integration along the beam length at the fundamental state 

{v00, w00, θ00} = {0, w00, 0}, we find the linear expression of 

w00 as 
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where M0=qzL2/8 is the maximum bending moment of the 

beam under uniform distributed load.  

Similarly, the tangent stiffness matrix [K(M0,ez)] derived 

from the algebraic equilibrium equations Eqs. (8) at the 

fundamental state, is given by 
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One can obtain the buckling loads by requiring the 

singularity of the tangent stiffness matrix in Eq. (12), i.e., 

by imposing det([K(M0,ez)]) = 0. This procedure leads to a 

non-linear algebraic problem for the critical Moments. After 

some simplifications, the closed-form solutions for the 

critical LTB moment of simply supported RHS beams under 

uniformly distributed loading is 
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where the coefficients C1, C2 depend on the ratio Iz/Iy in 

accordance with Mohri et al. (2002) and are given by 
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As it will be seen later, the new expression in Eq. (13) 

which contains the distortion ratio ((Jtd)2/Jd), reveals that the 

distortional effect tends to diminish the critical values of the 

moment.     

 

2.1.2 Linear and non-linear curve 
The study of instabilities is not only limited to the 

determination of bifurcation points, but also extends to 

post-critical regions. Structural behaviour in these regions is 

often untreated. This is due to the fact that the governing 

differential equations in the post-critical region are non-

linear and strongly coupled, posing analytical difficulties. 

The solution of the such non-linear problem is derived via 

the homotopy perturbation method (HPM) whose 

expression is 
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Where p∈{0,1} denote the so-called homotopy parameter. 

Recall that the linear path is obtained by setting p=0, while 

for p=1 the path becomes non-linear. Thus, by varying p 

from 0 to 1, the whole solution is obtained. Note that this 

method has already been used for other non-linear problems 

(He 2006, Esmaeilpour and Ganji 2007, Jafarimoghaddam 

2019). The solutions of Eq. (15) can be written as a power 

series in p 
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The substitution of Eq. (16) into Eq. (15), followed by the 

collection of the terms associated with pi, leads to the 

following hierarchy of equations: 
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For sake of space, the terms associated with the 

coefficients pi when i  2, can not be displayed here. 

Moreover, the boundary conditions for simply supported 

RHS beam are given by 
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In order to solve the non-linear problem in Eq. (17), the 

initial linear solutions v0, w0, 0 can easily be obtained after 

replacing the general solutions of Eqs. (17(a)-17(c)) in the 

boundary conditions Eq. (18). Once these solutions v0(qz), 

w0(qz), 0(qz) are replaced into Eqs. (17(d)-17(f)) we obtain 

v1(qz), w1(qz), 1(qz). Thus, the solutions for i  2 are 

obtained by following the same procedure.  

To validate the accuracy of the HPM, the non-linear 

equation given in Eq. (8) are solved by the help of the 

classical iterative Newton–Raphson method with arc length. 

The expressions of the tangent stiffness symmetric matrix 

coefficients Kij may be found in Appendix. 

 

 

 
 

 
 
 

 
 

 
 
3. Results and discussion 

 
3.1 Lateral torsional buckling moment with distortion 
 
In order to validate the closed-form solutions presented 

earlier, the present values of the buckling moments obtained 

by Eq. (13) are compared with those obtained by Saoula et 

al. (2016) and by Generalised Beam Theory (GBT). For this 

purpose, a simply supported steel beam with rectangular 

hollow section is considered. In this comparative study we 

take E=210 Gpa, G=80.77 Gpa, h=0.6 m and b=0.2 m,  

while the beam length L and wall thickness t are variable 

(see Tables 1-3). The GBT results are obtained by means of 

the GBTUL 2.0 code, in which the RHS beams are 

discretized longitudinally into 10 elements and transversally 

into 4 natural nodes, 3 intermediate nodes for each flange 

and 5 intermediate nodes for each web. As it is well-known, 

buckling of short beams occurs in local mode. Therefore, by 

virtue of the assumption c), the beams with length L10 m 

are abandoned in this study.  

 

Table 1 Buckling moments (kN.m) when the load is applied on top flange, ez = 0.3 m 

L (m) t (cm) 
Present 

Eq. (13) 

Saoula et al. 

(2016) with 

Galerkin 

Saoula et al. 

(2016) with 

Ritz 

Saoula et al. 

(2016) with 

FEM 

GBT 1 2 3 4 

 

10.00 

 

2.00 16133.45 16109.14 15855.04 15868.75 16076.17 0% 2% 2% 0.3% 

2.50 20210.51 20145.86 19829.85 21157.50 21435.71 0% 2% 5% 6% 

 

12.00 

 

2.00 13572.16 13675.56 13448.83 14079.78 14209.69 1% 1% 4% 4% 

2.50 17002.25 17102.33 16820.31 18484.20 18656.19 1% 1% 9% 9% 

Table 2 Buckling moments (kN.m) when the load is applied on centroid, ez = 0.0 m 

L (m) t (cm) 
Present 

Eq. (13) 

Saoula et al. 

(2016) with 

Galerkin 

Saoula et al. 

(2016) with 

Ritz 

Saoula et al. 

(2016) with 

FEM 

GBT 1 2 3 4 

 

10.00 

 

2.00 17174.40 16092.94 15794.60 16622.40 16834.61 7% 9% 3% 2% 

2.50 21516.69 22592.56 22104.00 22130.00 22405.16 5% 3% 3% 4% 

 

12.00 

 

2.00 14298.90 13675.56 15197.84 14618.88 14746.92 5% 6% 2% 3% 

2.50 17914.17 18819.58 18413.98 19177.20 19343.10 5% 3% 7% 7% 

Table 3 Buckling moments (kN.m) when the load is applied on bottom flange, ez = -0.3 m 

L (m) t (cm) 
Present 

Eq. (13) 

Saoula et al. 

(2016) with 

Galerkin 

Saoula et al. 

(2016) with 

Ritz 

Saoula et al. 

(2016) with 

FEM 

GBT 1 2 3 4 

 

10.00 

 

2.00 18282.52 17822.27 17364.15 17371.25 17618.27 3% 5% 5% 3% 

2.50 22907.28 23742.27 23082.38 23078.75 23402.67 4% 1% 1% 2% 

 

12.00 

 

2.00 15064.56 15530.69 15968.73 15147.36 15295.45 3% 6% 1% 1% 

2.50 18875.01 20726.52 20147.24 19848.6 20043.62 9% 7% 5% 6% 
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It can be seen from the comparison shown in Tables 1-3  

that the present results agree well with those obtained by 

Saoula et al. (2016) and GBT. The relative error is 

( ) ( . )
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3.2 Pre- and post- buckling results 
 

The purpose of this section is to compare the 

equilibrium paths provided by the HPM, Newton-Raphson 

and FEM. The effect of distortion on the non-linear solution 

is also discussed. In all computations, the initial 

imperfection ey is assumed to be 10-4 m. We use a RHS steel 

beam with L=12 m, b=0.2 m, h=0.6 m, t=0.02 m. Three 

load positions are considered, i.e., the load can be applied to 

the top flange, bottom flange or on the shear centre.  

The non-linear problem in Eq. (8) is solved by the HPM, 

which requires power series of 80 terms (m=80 in Eq. (16)). 

The same problem is solved by Newton-Raphson method 

for which arc-length can be held constant (equal to unity) or 

reduced if convergence fails; the maximum tolerance is 10-6. 

The finite element simulation is carried out by using 

Abaqus software with two element types. The first type of 

element (S8R) is restricted to RHS beam considering 

distortion, while the second (B32) is adopted to mesh non-

deformable cross-section beams.  

In the case of RHS beam with distortion Figs. 4-9 show 

that the linear paths as well as the bifurcation points found 

by the HPM are quite close to those obtained by Newton-

Raphson method and shell finite element analysis (S8R); the 

maximum relative error is 3%. This error remains 

acceptable for all non-linear paths (qz, w00), (qz, v00), (qz, 00)  

when the load is applied on the top flange. These figures 

also reveal that for the post-buckling equilibrium paths (qz, 

w00) and (qz, 00) of the beams loaded at bottom flange and 

shear centre there are only small discrepancies among the 

three models results. For the non-linear curves (qz, w00), the 

difference between the three models becomes more and 

more important as one moves away from the critical region. 

Note that the FEM with shell element provides only short 

post-buckling paths. This is due to the fact that the local 

buckling occurs near the overall bifurcation point; a similar 

remark can be found in Ed-dinari et al. (2014) for open 

section beams. 
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Fig. 4 Pre and post-buckling equilibrium paths (qz, w00) 

with distortional effect. Load on top flange (top-right 

curve).Load on bottom flange (bottom-left curve) 
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Fig. 5 Pre and post-buckling equilibrium paths (qz, v00) 

with distortional effect. Load on top flange (top-right 

curve). Load on bottom flange (bottom-left curve) 

 

 

From Figs. 7-9 it can be seen that the buckling load 

provided by FEM with beam element (B32) is slightly 

lower than those predicted by the HPM and Newton-

Raphson method (the maximum relative error is of order 

6%). These plots also show that models without distortion 

overestimate the buckling load as compared to models with 

distortion; the difference between the predictions obtained 

via the two approach (HPM with and without distortion) 

can reach 32%. 
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with distortional effect. Load on top flange (top-
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Fig. 7 Pre and post-buckling equilibrium paths (qz, w00) 

with and without distortional effect. Load on the shear 
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4. Conclusions 
 

To highlight the influence of distortion on the lateral-

torsional buckling and post-buckling behaviour of simply 

supported RHS steel beams, we have proposed on the one 

hand a new closed form solution to predict buckling loads 

and, on the other hand, three methods (HPM, Newton 

Raphson and FEM) to obtain the pre- and post-buckling  
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Fig. 8 Pre and post-buckling equilibrium paths (qz, v00) 

with and without distortional effect. Load on the shear 

centre 
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Fig. 9 Pre and post-buckling equilibrium paths (qz, 00) 

with and without distortional effect. Load on the shear 

centre 

 

 

equilibrium paths. The non-linear equilibrium equations 

have been established by using large displacements, large 

twist angles and small distortion angles. The main results 

are: 

• The present buckling loads obtained by Eq. (13) 

agree well with those in Saoula et al. (2016) and with the 

results obtained by GBTul code. 
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• Linear paths and bifurcation points computed by 

the HPM coincide exactly with those provided by Newton 

Raphson method and FEM. 

• Contrary to the non-linear curves (qz,w00) for ez=0, 

ez=-0.3, showing remarkable differences between the three 

approaches, the other curves exhibit similar post-buckling 

behaviour. 

• The present model with distortion underestimates 

the buckling load as compared to that of the classical 

models without distortional. This means that the present 

model is conservative. 
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