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1. Introduction 
 

Functionally graded materials (FGMs) had been 

invented in the 1980s by Japanese scientists during the 

space-plane project, Alshorbagy et al. (2011). FGM is an 

inhomogeneous composite encompassing two/more 

constituents varied continuously and smoothly along certain 

direction(s). FGMs are widely used in many scientific and 

engineering fields, such as aerospace, automobiles, naval 

structures, nuclear engineering, and biomedical engineering, 

Eltaher et al. (2013a). Applications of FG materials have 

broadly been spread in nanostructures to achieve light 

weight, high sensitivity, and desired performance, Eltaher et 

al. (2012).  

In 2013, Şimşek and Reddy presented unified higher 

order beam theory to study buckling of FG microbeam 

embedded in elastic Pasternak medium. Eltaher et al. 

(2013b, 2014) studied the effect of size-scale on the static 

stability of FG Euler and Timoshenko nanobeams based on 

the modified nonlocal continuum model by using finite 

element method (FEM). Sedighi et al. (2015a, b) 

investigated a dynamic stability of double-sided NEMS  
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fabricated from non-symmetric FGM incorporating finite 

conductivity, surface energy and nonlocal effect. Eltaher et 

al. (2016) investigated effects of thermal load and shear 

force on the buckling of higher-order shear deformation 

nanobeams. Emam and Eltaher (2016) presented effects of 

temperature variation and moisture absorption on the 

buckling and post-buckling of composite beams in 

hydrothermal environments. Khorshidi et al. (2016) studied 

nonlinear post-buckling behavior of FG nanobeams based 

on modified couple stress theory. Hamed et al. (2019) 

examined effects of porosity models on the static behavior 

of size dependent FG nanobeam modeled by nonlocal 

elasticity. Kahya and Turan (2017) developed a finite 

element model based on shear deformation theory to study 

vibration and buckling of FG beam. Rahmani et al. (2017) 

derived an analytical solution of buckling of double FG 

nonlocal nanobeam under axial load. She et al. (2017) 

predicted thermal buckling and post-buckling behaviors of 

FGM beams based on classical and higher order shear 

deformation theories. Mohammadimehr et al. (2018) 

studied bending, buckling, and vibration of composite beam 

reinforced by carbon nanotubes (CNTs) and concluded that 

2% of CNTs leads to increase the mechanical properties and 

increases natural frequencies and critical buckling load, and 

decreases deflection. Akbas (2018) presented non-linear 

geometrical effect on the static behavior of FG simple 
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supported beam including porosity effect. Karami et al. 

(2018) studied thermal buckling of smart porous FG 

nanobeam rested on Kerr foundation and integrated with 

piezoelectric sensor and actuator based on the nonlocal 

higher-order shear deformation beam theory. Mohamed et 

al. (2018) presented a novel numerical procedure to predict 

nonlinear free vibration and steady state forced vibrations of 

curved beam in the vicinity of post-buckling configuration. 

Emam et al. (2018) studied postbuckling and free vibration 

of multilayer imperfect nanobeams under a pre-stress load. 

Arioui et al. (2018) predicted thermal buckling of FG 

beams having parabolic thickness variation and temperature 

dependent materials. Eltaher et al. (2019) investigated 

periodic and nonperiodic modes of post-buckling and 

nonlinear vibration of beams attached to nonlinear 

foundations. Avcar (2019) studied free vibration of beams 

made of imperfect FGMs including porosities within the 

frame works of classical and first order shear beam theories. 

Abdelrahman et al. (2019) and Almitani et al. (2019) 

studied free and forced vibration behaviors of perforated 

beams by using semi-analytical method. Almitani et al. 

(2020) studied buckling stability of perforated nanobeams 

incorporating surface energy effects. Mohamed et al. (2019 

&2020) explored the post-buckling behavior of elastic 

CNTs modeled by classical and higher shear beam theories 

using energy equivalent method. Ansari et al. (2020) 

exploited variational differential quadrature finite element 

method and modifed Halpin-Tsai model to study the 

vibration and buckling of FG graphene platelets plates with 

cutout. Kim et al. (2020) presented continuum mechanics 

comprehensive finite element model to analyze 

multilayered composite beams with interlayer slips. 

Abdulrazzaq et al. (2020) studied thermal buckling of 

nonlocal clamped exponentially graded plate according to a 

secant function based on refined theory.    

Structure elements such as, rods, beams, plates, and 

shells are employed frequently as parts in the complex 

structures. The load exerted on these parts are not always 

constant or uniform but acting in non-uniform distributions, 

such as in in aircraft, automotive, civil, and ship-building 

industries, Eltaher et al. (2020). Bert and Devarakonda 

(2003), state that “The problem of buckling of a rectangular 

plate subjected to uniformly distributed in-plane 

compressive loading at each end goes back to 1890”. In 

1969 Benoy investigated the buckling of plate under 

parabolic in-plane compressive loading. Wang et al. (1984) 

presented the buckling of simply supported plate under the 

linear varying in-plane load. Eisenberger (1991) derived 

exact solutions for the critical buckling loads of isotropic 

columns loaded by variable axial load, which described by 

polynomial expressions.  

Kang and Leissa (2005) developed exact solution to 

study buckling stability of rectangular plates under linearly 

varying in-plane loading. Duan and Wang (2008) obtained 

analytical solution in terms of generalized hypergeometric 

functions for the elastic buckling of heavy column where 

the weight of the column was treated as a uniformly 

distributed axial load. Panda and Ramachandra (2010) 

investigated the effect of non-uniform in-plane loads on 

buckling stability of rectangular higher order shear 

deformation plates. Aminbaghai et al. (2012) modelled and 

simulated a free vibration of the 2D FG beams under the 

effect of large axial force by using FEM. Farajpour et al. 

(2012) presented buckling response of orthotropic single 

layered graphene sheet under linearly varying in-plane load 

by using nonlocal continuum mechanics. Mijušković et al. 

(2014) derived exact stress functions to study static stability 

of isotropic plates under uniaxial and biaxial compression. 

Lou et al. (2016) studied pre-buckling and buckling 

behaviors of a simply supported FG micro-shell under a 

combined axial and radial loads by including shear 

deformable and von Karman’s geometric nonlinearity. 

Robinson and Adali (2016) computed buckling loads for 

CNTs under a combination of concentrated and distributed 

axial loads by using Rayleigh–Ritz method. Murin et al. 

(2016) investigated static, modal and buckling behaviors of 

FG solid and hollow beam structures with three directional 

variation of material properties by using FEM. Osmani and 

Meftah (2018) investigated the lateral buckling of tapered 

thin walled bi-symmetric beams under combined axial and 

bending loads with shear deformations effects by using Ritz 

method. Karamanli and Aydogdu (2019a) studied elastic 

buckling of isotropic, laminated composite and sandwich 

beams under numerous axially varying in-plane forces 

based on a modified shear deformable beam theory. 

Karamanli and Aydogdu (2019b) illustrated vibration and 

buckling responses of laminated composite and sandwich 

microbeams subjected to the linearly variable axial in-plane 

load. Singh and Harsha (2019) used Navier’s method to 

investigate the buckling responses of FGM plate subjected 

to uniform, linear, and non-linear in-plane loads. 

Aminbaghai et al. (2019) presented the influence of the 

longitudinal variation of the material properties and the 

secondary torsion moment on the angle of twist and the 

normal stresses resulting from non-uniform torsion. 

Ravindran and Bhaskar (2019) presented 3D elasticity 

solution for unidirectional reinforced composite plates with 

in-plane uniaxial grading using a series approach. Eltaher et 

al. (2020) studied the static stability of composite beam 

under variable axial load by using DQM. Eltaher and 

Mohamed (2020) and Hamed et al. (2020a) presented 

effects of axial load functions and elastic foundations on the 

static buckling loads and corresponding modes shapes of 

sandwich composite beam modeled by unified shear 

deformation theories. Hamed et al. (2020b) presented 

influence of axial load function and optimization on static 

stability of sandwich FG beams with porous core. Hamed et 

al. (2020c) presented effects of perforation parameters on 

critical buckling loads and static bending of thin and thick 

nanobeams for all boundary conditions.  

According to literature survey and author’s background, 

influences of gradation functions (i.e., sigmoid and 

symmetric) and axial load functions (i.e., constant, linear, 

and parabolic) on the buckling behavior of FG beam under 

compressive axial load have not been investigated 

elsewhere. Thus, the present study fills this gap. The higher 

order shear deformation is exploited to consider both thin 

and thick FG beam structure. Because of the load is 

distributed through axial direction by a function, the 

obtained equilibrium equation is found to be differential 
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equation with variable coefficients. The differential 

quadrature method (DQM) is exploited to solve the 

governing variable coefficients differential equations and 

convert them to a generalized matrix eigenvalue problem. 

The current manuscript is structured as follows: - Section 2 

will be focused on material gradation functions, constitutive 

equations, and governing equilibrium equations. Section 3 

presents solution strategy and procedure of numerical 

differential quadrature method (DQM) to solve the 

governing equilibrium differential equations with variable 

coefficients. Validation and numerical studies to present 

influences of gradation functions, material gradation index, 

load distribution functions, slenderness ratio, and boundary 

conditions on the buckling loads and related mode-shapes 

are discussed in detail in section 4. Section 5 highlights and 

summarizes main remarks and conclusion points in this 

study. 

 

 
2. Problem formulation 
 

2.1 Materials gradation 
 

A geometry and loading of functionally graded beam 

considered through analysis is presented in Fig. (1). A set of 

Cartesian coordinates (𝑥, 𝑧)  is proposed to label the 

material points of the beam in the reference configuration. 

Here, the material is changed gradually from metal rich 

pahse at the bottom to the ceramic rich face at the top of the 

beam through the thickness direction (𝑧), as shown in Fig. 

(1(a)). The beam with the following dimensions [length (L), 

thickness (h), and unity width (b)] has subjected to variable 

axial load 𝑁𝑎𝑥𝑖𝑎𝑙 , as presented in Fig. (1(b)). 

Assuming that, the material constituent varies 

continuously and smoothly from metal phase (subscript “m”) 

to ceramic phase (subscript “c”) according to a power law 

function. Hence the volume fraction of material constituents 

can be expressed by 
 

 

 
(a) Geometry and Material 

 

 
(b) Simply-simply FG beam under axial distributed load 

𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥) 

 

Fig. 1 Schematic representation of FG beam under 

distributed axial load 𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥) 

 

𝑉𝑐(𝑧) = (
ℎ+2𝑧

2ℎ
)

𝑘
    &  𝑉𝑚(𝑧) = 1 − 𝑉𝑐(𝑧)   (1) 

in which 𝑉(𝑧)  indicates the volume fraction of the 

constituents and 𝑘 is the power law index that controls the 

material constituents. In the current analysis, symmetric 

power functions and sigmoid function are proposed. In the 

symmetric power (SP) function, the Young modulus (𝐸) 

and Poisson’s ratio (𝜈) through the beam thickness can be 

depicted by, (Hamed et al. 2016, Avcar 2019) 

SP_ CMC 

𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) (
−2𝑧

ℎ
)

𝑘

    (−
ℎ

2
≤ 𝑧 ≤ 0)  (2a) 

𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) (
2𝑧

ℎ
)

𝑘

     (0 ≤ 𝑧 ≤
ℎ

2
)  (2b) 

𝜈(𝑧) = 𝜈𝑚 + (𝜈𝑐 − 𝜈𝑚) (
−2𝑧

ℎ
)

𝑘

    (−
ℎ

2
≤ 𝑧 ≤ 0) (3a) 

𝜈(𝑧) = 𝜈𝑚 + (𝜈𝑐 − 𝜈𝑚) (
2𝑧

ℎ
)

𝑘

           (0 ≤ 𝑧 ≤
ℎ

2
) (3b) 

SP_MCM 

𝐸(𝑧) = 𝐸𝑐 + (𝐸𝑚 − 𝐸𝑐) (
−2𝑧

ℎ
)

𝑘

    (−
ℎ

2
≤ 𝑧 ≤ 0)  (4a) 

𝐸(𝑧) = 𝐸𝑐 + (𝐸𝑚 − 𝐸𝑐) (
2𝑧

ℎ
)

𝑘

       (0 ≤ 𝑧 ≤
ℎ

2
)  (4b) 

𝜈(𝑧) = 𝜈𝑐 + (𝜈𝑚 − 𝜈𝑐) (
−2𝑧

ℎ
)

𝑘

    (−
ℎ

2
≤ 𝑧 ≤ 0) (5a) 

𝜈(𝑧) = 𝜈𝑐 + (𝜈𝑚 − 𝜈𝑐) (
2𝑧

ℎ
)

𝑘

            (0 ≤ 𝑧 ≤
ℎ

2
) (5b) 

However, in case of sigmoid functional distribution the Young 

modulus and Poisson’s ratio can be described by, (Hamed et al. 

2016) 

𝐸(𝑧) = 𝐸𝑚 +
1

2
(𝐸𝑐 − 𝐸𝑚) (1 +

2𝑧

ℎ
)

𝑘
    (−

ℎ

2
≤ 𝑧 ≤ 0)  (6a) 

𝐸(𝑧) = 𝐸𝑐 +
1

2
(𝐸𝑚 − 𝐸𝑐) (1 −

2𝑧

ℎ
)

𝑘

    (0 ≤ 𝑧 ≤
ℎ

2
)  (6b) 

𝜈(𝑧) = 𝜈𝑚 +
1

2
(𝜈𝑐 − 𝜈𝑚) (1 +

2𝑧

ℎ
)

𝑘

    (−
ℎ

2
≤ 𝑧 ≤ 0) (7a) 

𝜈(𝑧) = 𝜈𝑐 +
1

2
(𝜈𝑚 − 𝜈𝑐) (1 −

2𝑧

ℎ
)

𝑘

       (0 ≤ 𝑧 ≤
ℎ

2
) (7b) 

The symmetric power and sigmoid FG beams are assumed 

to be made of aluminum metal [ 𝐸𝑚 = 70𝐺𝑃𝑎 , 𝜌𝑚 =
2700𝑘𝑔/𝑚3 and 𝜈𝑚 = 0.3] and alumina ceramics [𝐸𝑐 =
380 𝐺𝑃𝑎 , 𝜌𝑐 = 3960 𝑘𝑔/𝑚3  and 𝜈𝑐 = 0.3], Hamed et 

al. (2016). The variation of Young modulus for SP_ CMC , 

SP_MCM and sigmoid function is shown in Fig. 2. 
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2.2 Geometrical and constitutive conditions 
 

Based on higher order shear deformation, the enhanced 

by introducing thickness stretching effects along the 

transverse directions, Polit et al. (2018), kinematic 

displacement field can be described by Hamed et al. (2020) 

𝑢(𝑥, 𝑧) = 𝑢0(𝑥) − 𝑧
𝜕𝑤0(𝑥)

𝜕𝑥
+ 𝑓(𝑧)𝜑(𝑥)  (8a) 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥)   (8b) 

in which 𝑢& 𝑤are a generic axial and transverse 

displacements through beam domain. However, 𝑢0 and 

𝑤0 are the longitudinal and bending displacements of a 

point along the mid-axis of the beam. The rotation of the 

normal to the mid-plane is defined by 𝜑(𝑥) and 𝒇(𝒛) is a 

function describing the parabolic shear deformation along 

the thickness and satisfying the zero shear at the top and  

 

 

bottom layers. This function can be portrayed by 

𝑓(𝑧) = 𝑧 (1 −
4𝑧2

3ℎ2
) (9) 

Strain-displacement field can be derived to  

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝑘𝑥

0 + 𝑓(𝑧)𝑘𝑥
2 (10a) 

𝛾𝑥𝑧 = 𝑔(𝑧)𝑘𝑥𝑧
𝑠  (10b) 

where 𝜺𝒙 and 𝜸𝒙𝒛 are the normal and the shear strains, 

respectively. The element components of normal and shear 

strain, described in Eq. (10) can be written as  

𝜀𝑥
0 =

𝜕𝑢0

𝜕𝑥
  , 𝑘𝑥

0 = −
𝜕2𝑤0

𝜕𝑥2    , 𝑘𝑥
2 =

𝜕𝜑

𝜕𝑥
  , 

𝑘𝑥𝑧
𝑠 = 𝜑      &     𝑔(𝑧) =

𝜕𝑓

𝜕𝑧
 

(11) 

 

 
(a) SP-MCM                                        (b) SP-CMC 

 

 

 
(c) Sigmoid Function 

Fig. 2 Variation of Young Modulus through the beam thickness   
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The stress-strain constitutive equations can be 

represented for as, Karamanli and Aydogdu (2019a) 

Plane stress components 

{
𝜎𝑥

𝜎𝑧𝑧
} = [

𝑄11 𝑄12

𝑄12 𝑄22
] {

𝜀𝑥

𝜀𝑧
} 

(12a) 

  Shear stress component 

𝜎𝑥𝑧 = 𝑄55 𝛾𝑥𝑧 
(12b) 

where the material stiffnesses can be presented in terms of 

engineering constants as 

𝑄11(𝑧) = 𝑄22(𝑧) =
𝐸(𝑧)

1−𝜈2 ,     𝑄12(𝑧) =
𝜈𝐸(𝑧)

1−𝜈2  ,  

 𝑄55(𝑧) =
𝐸(𝑧)

2(1+𝜈)
 

(13) 

Based on the higher order shear deformation theory, the 

force and moment resultants are defined by  

Normal force-moment resultants 

{
𝑁
𝑀
𝑃

} = [
𝐴 𝐵 𝐸
𝐵 𝐷 𝐹
𝐸 𝐹 𝐻

] {
𝜀0

𝑘0

 𝑘2

}  
(14a) 

 Shear force resultant 

{𝑅} = [𝐹𝑠]{𝑘𝑠}  
(14b) 

Axial and bending rigidities (𝐴, 𝐵, 𝐷, 𝐸, 𝐹, 𝐻), and shear 

rigidity 𝐹𝑠 matrices of FG beam appearing in Eqs. (10) 

and (11), are evaluated by  

(𝐴𝑖𝑗  , 𝐵𝑖𝑗  , 𝐷𝑖𝑗) = ∫ 𝑄𝑖𝑗[1 , 𝑧, 𝑧2] 𝑑𝑧
ℎ

2

−ℎ 2⁄
   

                         (𝑖, 𝑗 = 1,2) 

(15a) 

  (𝐸𝑖𝑗 , 𝐹𝑖𝑗 , 𝐻𝑖𝑗) = ∫ 𝑄𝑖𝑗 𝑓(𝑧) [1 , 𝑧, 𝑓(𝑧)] 𝑑𝑧
ℎ/2

−ℎ 2⁄

 (𝑖, 𝑗 = 1,2) 
(15b) 

𝐹55
𝑠 = ∫  𝑔(𝑧) ∗ 𝑔(𝑧) 𝑄55 𝑑𝑧

ℎ/2

−ℎ 2⁄

 (15c) 

Since the only nonzero force and moment resultant are 

𝑁𝑥, 𝑀𝑥 , 𝑃𝑥 and 𝑅𝑥𝑧. So, condensed force, the bending 

moment, and refined bending moment can be described as 

functions of strain components, and transformed rigidities 

as follows, Elather and Mohamed (2020) 

{

𝑁𝑥

𝑀𝑥

𝑃𝑥

} = [

𝐴̅11 𝐵̅11 𝐸̅11

𝐵̅11 𝐷̅11 𝐹̅11

𝐸̅11 𝐹̅11 𝐻11

] {

𝜀𝑥
0

𝑘𝑥
0

 𝑘𝑥
2

}  (16) 

in which 

[

𝐴̅11 𝐵̅11 𝐸̅11

𝐵̅11 𝐷̅11 𝐹̅11

𝐸̅11 𝐹̅11 𝐻11

] = [
𝐴11 𝐵11 𝐸11

𝐵11 𝐷11 𝐹11

𝐸11 𝐹11 𝐻11

] − [
𝐴12 𝐵12 𝐸12

𝐵12 𝐷12 𝐹12

𝐸12 𝐹12 𝐻12

 ] 

∗ [
𝐴22 𝐵22 𝐸22

𝐵22 𝐷22 𝐹22

𝐸22 𝐹22 𝐻22

 ]

−1

[
𝐴12 𝐵12 𝐸12

𝐵12 𝐷12 𝐹12

𝐸12 𝐹12 𝐻12

 ] 

(17) 

 

However, the nonzero shear force can be described as 

function of shear strain and transformed shear rigidities by  

𝑅𝑥𝑧 = (𝐹55)𝑘𝑥𝑧
𝑠    (18) 

 

2.3 Governing equilibrium equations 
 

Based on the Hamilton’s principle that states, Eltaher et 

al. (2020) 

∫ (𝛿𝑇 − 𝛿𝑉 + 𝛿𝑊)𝑑𝑡
𝑡2

𝑡1
= 0    (19) 

where 𝑇 , 𝑉 , and 𝑊  are the kinetic energy, potential 

energy, and work done by axial force, respectively. 𝛿 

denotes the first variation,  𝑡1 and 𝑡2 are arbitrary two 

instant times. Since, the current article focusing on the static 

stability of functionally graded composite beam, so that, the 

kinetic energy can be dropped and 𝑇 = 0. The potential 

energy for higher order shear theory can be evaluated by 

𝑉 =
𝑏

2
 ∫ (𝑁𝑥  𝜀𝑥

0 + 𝑀𝑥 𝑘𝑥
0 + 𝑃𝑥 𝑘𝑥

2 + 𝑅𝑥𝑧𝑘𝑥𝑧
𝑠 )

𝐿/2

−𝐿/2

𝑑𝑥 (20) 

By substituting Eqs. (16)-(18) into Eq. (20), the 

potential energy can be rewritten as 

𝑉 =
𝑏

2
 ∫ [(𝐴̅11𝜀𝑥

0 + 𝐵̅11𝑘𝑥
0 + 𝐸̅11𝑘𝑥

2) 𝜀𝑥
0

𝐿/2

−𝐿/2

+ (𝐵̅11𝜀𝑥
0 + 𝐷̅11𝑘𝑥

0 + 𝐹̅11𝑘𝑥
2) 𝑘𝑥

0

+ (𝐸̅11𝜀𝑥
0 + 𝐹̅11𝑘𝑥

0 + 𝐻11𝑘𝑥
2) 𝑘𝑥

2

+ 𝐹55 𝑘𝑥𝑧
𝑠 ∗ 𝑘𝑥𝑧

𝑠 ] 𝑑𝑥 

(21) 

In the current analysis, it is assumed that the in-plane 

axial load density (load per unit length) is varied 

continuously along the beam length by different profiles. It 

is proposed that, the function depicting the variation of in-

plane axial load density can be portrayed by 

𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥) = 𝑁𝑎𝑚𝑝 [𝛼2 (
𝑥

𝐿
+

1

2
)

2

+ 𝛼1 (
𝑥

𝐿
+

1

2
) + 𝛼0] 

                      = 𝑁𝑎𝑚𝑝 𝐶(𝑥) 

(22) 

in which 𝑁𝑎𝑚𝑝 is the average axial load density. According 

to Eq. (19), the variation profile of axial load distribution 

can be controlled by the constant coefficients  (𝛼𝑖), 𝑖 =
0,1,2 . In this work, the numerical computations are 

performed for six different axial load distributions as 

presented in Table 1 and Fig. 3. 

It must be mentioned that the coefficients for each of 

these six types of axially variable load distributions are 

chosen such that the integral of 𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥) along the beam 

length are equal. Accordingly, the total axial in-plane force 

for the considered load types is given by 

∫ 𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥) 𝑑𝑥

L/2

–L/2

= 𝑁𝑎𝑚𝑝 ∫ 𝐶(𝑥)𝑑𝑥

L/2

–L/2

= 𝑁𝑎𝑚𝑝𝐿 (23) 
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Fig. 3 Axial in-plane load distribution along beam length 

𝐶(𝑥) = 𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥)/𝑁𝑎𝑚𝑝 

 

 

The normalized axial force parameter is defined such 

that λ = (𝑁𝑎𝑚𝑝𝐿)
𝐿2

𝐸𝐼
= 𝑁𝑎𝑚𝑝

𝐿3

𝐸𝐼
 and similarly, the critical 

load parameter is λcr = 𝑁𝑎𝑚𝑝
𝑐𝑟 𝐿3

𝐸𝐼
.  

So, the work done by the in-plane axial distributed load 

is evaluated by 

𝑊 =
𝑏

2
 ∫ 𝑅(𝑥) (

𝜕𝑤0

𝜕𝑥
)

2

𝑑𝑥

𝐿/2

−𝐿/2

 (24) 

where 

𝑅(𝑥) = ∫ 𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥) 𝑑𝑥
𝐿/2

𝑥
= 𝑁𝑎𝑚𝑝𝐿 [(

𝛼2

3
+

𝛼1

2
+

𝛼0

2
) − (

𝛼2

3
(

𝑥

𝐿
+

1

2
)

3

+
𝛼1

2
(

𝑥

𝐿
+

1

2
)

2

+ 𝛼0 (
𝑥

𝐿
))] =

𝑁𝑎𝑚𝑝𝑅̂(𝑥)  

(25) 

The variational of the work done can be described as 

𝛿𝑊 = 𝑏 ∫ 𝑅(𝑥) (
𝜕𝑤0

𝜕𝑥
) (

𝜕 (𝛿𝑤0)

𝜕𝑥
) 𝑑𝑥

𝐿/2

–𝐿/2
=

𝑏 [𝑅(𝑥) (
𝜕𝑤0

𝜕𝑥
) 𝛿𝑤0]

−𝐿/2

𝐿/2

− ∫
𝜕

𝜕𝑥
(𝑅(𝑥)

𝜕𝑤0

𝜕𝑥
)  𝛿𝑤0 𝑑𝑥

𝐿

2

–
𝐿

2

  
(26) 

 

 

 

Now, since 
𝜕𝑅(𝑥)

𝜕𝑥
= −𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥) , so the variation of 

work done can be represented by 

𝛿𝑊 = 𝑏 [𝑅(𝑥) (
𝜕𝑤0

𝜕𝑥
) 𝛿𝑤0]

𝑥=−𝐿/2

𝐿/2

− ∫ (𝑅(𝑥)
𝜕2𝑤0

𝜕𝑥2 −
𝐿/2

–𝐿/2

𝑁𝑎𝑥𝑖𝑎𝑙(𝑥)
𝜕𝑤0

𝜕𝑥
)  𝛿𝑤0 𝑑𝑥   

(27) 

By computing the variation of potential energy (𝑉), and 

substituting the resultant equation and Eq. (24) into 

variation form of Hamilton principle, the equilibrium 

equations of higher order shear deformation of FG beam 

under the in-plane distributed load can be described by 

𝐴̅11
𝑑2𝑢0

𝑑𝑥2 − 𝐵̅11
𝑑3𝑤0

𝑑𝑥3 + 𝐸̅11
𝑑2𝜑

𝑑𝑥2 = 0   (28a) 

𝐵̅11  
𝑑3𝑢0

𝑑𝑥3 − 𝐷̅11
𝑑4𝑤0

𝑑𝑥4 + 𝐹̅11
𝑑3𝜑0

𝑑𝑥3 +

𝑁𝑎𝑚𝑝 [ 𝐶(𝑥)
𝑑𝑤0

𝑑𝑥
− 𝑅̂(𝑥)

𝑑2𝑤0

𝑑𝑥2 ] = 0  
(28b) 

𝐹̅55 𝜑 − 𝐸̅11
𝑑2𝑢0

𝑑𝑥2 + 𝐹̅11
𝑑3𝑤0

𝑑𝑥3 − 𝐻̅11
𝑑2𝜑

𝑑𝑥2 = 0  (28c) 

subjected to the following boundary conditions 

[𝐴̅11  
𝑑𝑢0

𝑑𝑥
− 𝐵̅11

𝑑2𝑤0

𝑑𝑥2 + 𝐸̅11
𝑑𝜑

𝑑𝑥
] 𝛿𝑢0 = 0  (29a) 

[−𝐵̅11  
𝑑2𝑢0

𝑑𝑥2 + 𝐷̅11
𝑑3𝑤0

𝑑𝑥3 − 𝐹̅11
𝑑2𝜑

𝑑𝑥2 +

𝑁𝑎𝑚𝑝 𝑅̂(𝑥)
𝑑𝑤0

𝑑𝑥
] 𝛿𝑤0 = 0  

(29b) 

[−𝐸̅11
𝑑𝑢0

𝑑𝑥
+ 𝐹̅11

𝑑2𝑤0

𝑑𝑥2 − 𝐻̅11
𝑑𝜑

𝑑𝑥
] 𝛿𝜑 = 0  (29c) 

[𝐵̅11  
𝑑𝑢0

𝑑𝑥
− 𝐷̅11

𝑑2𝑤0

𝑑𝑥2 + 𝐹̅11
𝑑𝜑

𝑑𝑥
] 𝛿𝑤0

′ = 0  (29d) 

 

 

3. Solution methodology 
 

The governing equilibrium equations of FG beam under 

the axial distributed load Eq. (28), and corresponding 

boundary conditions Eq. (26), are differential equations 

with variable coefficients. This system of equations requires 

numerical procedure to be solved. The differential 

quadrature method (DQM) is proposed to solve this system 

Table 1 Values of the coefficients in Eq. (22) characterizing different types of the axial varying load profile Karamanli 

and Aydogdu (2019a) 

Load Type Load Symbol 𝛼2 𝛼1 𝛼0 

Constant Load 𝑁𝑐𝑜𝑛  0 0 1 

Linear Load-zero from left side 𝑁𝐿𝐿  0 2 0 

Linear Load-zero from right side 𝑁𝐿𝑅  0 -2 2 

Parabolic Load-zero from left side 𝑁𝑃𝐿  3 0 0 

Parabolic Load-zero from right side 𝑁𝑃𝑅  3 -6 3 

Symmetric Parabolic Load 𝑁𝑃𝑆  -6 6 0 
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of equations as following: -  

Let the beam length −
𝐿

2
≤ 𝑥 ≤

𝐿

2
 be discretized by 𝑁 

nodes using the Chebyshev–Gauss–Lobatto distribution as 

𝑥𝑖 = −
𝐿

2
+

𝐿

2
(1 − 𝑐𝑜𝑠 (𝜋

𝑖−1

𝑁−1
)) ,    𝑖 = 1,2, ⋯ , 𝑁  (30) 

The first order derivative of function 𝑓(𝑥) at node 𝑥𝑖 can 

be approximated using the DQM as 

𝑑𝑓

𝑑𝑥
|

𝑥=𝑥𝑖

= ∑ 𝒸𝑖𝑗   𝑓𝑗
𝑁

𝑗=1
   ,    𝑖 = 1,2, ⋯ , 𝑁  (31) 

where 𝑓𝑗 = 𝑓(𝑥𝑗)  and 𝒸ij  denote the corresponding 

weighting coefficients. The weighting coefficients can be 

expressed as follows, Shu (2012) 

𝒸𝑖𝑗 =
1

𝑥𝑗−𝑥𝑖
(

𝑃𝑖

𝑃𝑗
) ,   𝑖 ≠ 𝑗        𝑎𝑛𝑑       𝒸𝑖𝑖 =

− ∑ 𝒸𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖   

(32) 

where 

𝑃𝑖 = ∏ (𝑥𝑖 − 𝑥𝑗)𝑁
𝑗=1,𝑗≠𝑖 , 𝑖, 𝑗 = 1,2, ⋯ , 𝑁   (33) 

In matrix form, let the discrete values of 𝑓𝑖 = 𝑓(𝑥𝑖) at 

different nodes be given as a vector  𝑓 = [𝑓1, 𝑓2, ⋯ , 𝑓𝑁]𝑇. 

Also, let its first derivative vector be F, then 

𝐹 = 𝒞(1) 𝑓  (34) 

where 𝒞(1) = [𝒸ij] is the weighting 𝒩 × 𝒩 matrix of the 

first order derivative. The weighting coefficients matrices 

for higher-order derivatives can be determined via matrix 

multiplication. Matrices 𝒞(1), 𝒞(2), 𝒞(3) and 𝒞(4) are 

coefficients matrices corresponding to the first, second, 

third and fourth derivatives, respectively. The unknown 

variables in Eq. (28) are discretized to three unknown 

vector  𝑈 = [𝑢1, 𝑢2, … , 𝑢𝑖 , … , 𝑢𝑁]𝑇 , 𝑊 =
[𝑤1, 𝑤2, … , 𝑤𝑖 , … , 𝑤𝑁]𝑇  and  𝜑 = [𝜑1, 𝜑2, … , 𝜑𝑖 , … , 𝜑𝑁]𝑇 

where, 𝑢𝑖 = 𝑢0(𝑥𝑖), 𝑤𝑖 = 𝑤0(𝑥𝑖), and 𝜑𝑖 = 𝜑0(𝑥𝑖), 𝑖 =
1,2, ⋯ , 𝒩.   Also, the given axial load functions 

𝐶(𝑥) and 𝑅̂(𝑥) appearing in Eq. (25(b)) are discretized, 

respectively, as known vectors 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑖 , … , 𝑐𝒩]𝑇 

and 𝑅̂ = [𝑟1, 𝑟2, … , 𝑟𝑖 , … , 𝑟𝒩]𝑇. 

Accordingly, terms as 𝑢0
′  , 𝑤0

′′′, 𝜑′′  are discretized 

respectively, by the vectors 𝒞(1)𝑈, 𝒞(3)𝑊  and  𝒞(2)φ . 

However, to discretize the function ( 𝑅̂(𝑥)𝑤0
′′ − 𝐶(𝑥)𝑤0

′ ) 

in Eq. (25(b)), the previously mentioned special matrices 

multiplications operators are essential. The discrete vector 

of ( 𝑅̂(𝑥)𝑤0
′′ − 𝐶(𝑥)𝑤0

′ )  is given by  𝑉 = 𝑅 ∘

(𝒞(2)𝑊) − 𝐶 ∘ (𝒞(1)𝑊). Using the operator ⨂, this vector 

can be better written as  𝑉 = (𝑅̂⨂𝒞(2))𝑊 − (𝐶⨂𝒞(1))𝑊, 

or as  𝑉 = 𝑆𝑊, where matrix S is defined by 

𝑆 = (𝑅̂⨂𝒞(2)) − (𝐶⨂𝒞(1))   (35) 

The discrete algebraic system corresponding to Eqs. (28) is 

written as 

[

𝐴̅11𝒞(2) −𝐵̅11𝒞(3) 𝐸̅11𝒞(2)

𝐵̅11𝒞(3) −𝐷̅11𝒞(4) 𝐹̅11𝒞(3)

−𝐸̅11𝒞(2) 𝐹̅11𝒞(3) 𝐹̅55𝐼 − 𝐻11𝒞(2)

] [
𝑈
𝑊
𝜑

] = (36) 

𝑁𝑎𝑚𝑝 [
𝑂 𝑂 𝑂
𝑂 𝑆 𝑂
𝑂 𝑂 𝑂

] [
𝑈
𝑊
𝜑

]     

where I is the identity matrix of order 𝑁, and O is the 

zero matrix of order 𝑁 × 𝑁. The boundary conditions Eq. 

(29) are discretized and properly substituted into Eq. (36). 

The resulting system is a generalized eigenvalue problem, 

that can easily be solved for the eigenvalues (𝑁𝑎𝑚𝑝
𝑐𝑟 ), and 

corresponding eigenvectors or mode-

shapes  [𝑈𝑇 , 𝑊𝑇 , 𝜑𝑇]𝑇 . The smallest eigenvalue of the 

system defines the fundamental buckling load. 

 

 

4. Numerical results 
 

This section is devoted to three main subsections. The 

first subsection is focused on validation of proposed model 

with previous published work. The second one is concerned 

with physical phenomena and effects of gradation type, 

gradation index, axial load function, slenderness ratio, and 

boundary conditions on the critical buckling load of FG 

thin/thick beams. The last subsection is devoted to the 

buckling mode-shapes analysis and its effect by loading 

type. Through current analysis, the critical buckling load 

parameter 𝜆 will be evaluated by 

𝜆 =  𝑁𝑎𝑚𝑝
𝑐𝑟

𝐿3

𝐸𝑐  𝐼
 

in which 𝑁𝑎𝑚𝑝
𝑐𝑟  is the critical axial load density obtained as 

the smallest eigenvalue of Eq. (23). 

 

4.1 Model validation  

 
Since no published results are available in literature for 

the buckling of SP-FGM or sigmoid-FGM beams under 

nonuniform distributed axial load, the present approach is 

validated by considering an isotropic beam subjected to 

various axially varying distributed loads. In this validation, 

the present model of CMC- SP-FGM is reduced to represent 

isotropic beam by setting the gradation index 𝑘 = 0 in 

Eqs. (2) and (3). The results are presented in Table 2 and 

compared with those in Eltaher et al. (2020) (Ref [1]) and 

Karamanli and Aydogdu (2019a) (Ref. [2]) for different 

boundary conditions (BCs). As depicted, the present results 

are very closed and excellent agreement to previous works 

by Eltaher et al. (2020) and Karamanli and Aydogdu 

(2019a) for all boundary conditions and axial load type. 

 

4.2 Parametric analysis 
 

This section is devoted to present impacts of FG 

distribution, grading index  𝑘 , boundary conditions, and 

slenderness ratio on the critical buckling loads for different 

axial loading types. The symmetric power and sigmoid FG 

beams are assumed to be made of aluminum metal [𝐸𝑚 =
70𝐺𝑃𝑎, 𝜌𝑚 = 2700 𝑘𝑔/𝑚3 and 𝜈𝑚 = 0.3] and ceramics 

of alumina [ 𝐸𝑐 = 380 𝐺𝑃𝑎 , 𝜌𝑐 = 3960 𝑘𝑔/𝑚3 

and 𝜈𝑐 = 0.3]. Unless mentioned otherwise, the L/h ratio is 

taken as 20. 
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4.2.1 Influence of FG distribution types 
Influences of gradation function and gradation index on 

the critical buckling load for different boundary conditions 

under the parabolic load-zero from right side (𝑁𝑃𝑅 ) is 

presented in Fig. 4. As shown, for all boundary condition, 

the effect of gradation index on the buckling load is 

dependent mainly on the gradation function type. This 

means, in case of symmetric power MCM, the critical 

buckling load is decreased in exponential form as the 

gradation index increased and reached to steady state at 

30 < 𝑘. However, the inverse effect of gradation index on 

the critical buckling load has been observed in case of 

symmetric CMC functions distribution. This means, the 

reduction of critical buckling load by increasing in 

gradation index. For sigmoid function distribution, the 

gradation index is insignificant on the critical buckling load 

for SS boundary condition. However, in cases of other 

boundary conditions (CC, CS, CF) for sigmoid function 

distribution, the critical buckling load is decreased 

significantly by increasing gradation index. 

Quantitative effects of gradation function and gradation 

index on the critical buckling load for SS and CC FG beam 

structure under the parabolic axial load-zero from right side 

(𝑁𝑃𝑅 ) is illustrated in Table 3. For SS boundary condition, 

by increasing the gradation index from 0 to 0.2, the critical 

buckling load decreases by 5.2% and 0.4% for CMC and 

sigmoid functions, respectively. However, the buckling load 

increases by 28.2% as the gradation index from 0 to 0.2 for 

MCM gradation type. In case of CC boundary condition, 

the critical buckling load is decreased by 5.7% and 2% for 

CMC and sigmoid functions, respectively, by changing 

gradation index from 0 to 0.2. As the gradation index 

increased from 0 to 100, CMC decreases by 78% for SS and 

CC boundary conditions, sigmoid function decreases by 

11% and 35% for SS and CC boundary conditions 

respectively, and MCM increases by 430% for SS and CC 

boundary conditions. 

 

 

 

 
(a) 

 

 
(b) 

Continued- 

Table 2 Critical buckling load parameter 𝛌 of isotropic beams subjected to various varying axial loads for different 

BCs. (L/h=100) 

  Axial Load Type 

  𝑁𝑐𝑜𝑛  𝑁𝐿𝐿  𝑁𝐿𝑅  𝑁𝑃𝐿  𝑁𝑃𝑅  𝑁𝑃𝑆  

SS Present  18.5698 15.3529 23.2451 14.1542 26.6870 18.3458 

  Ref. [1] 18.564 15.35 23.233 14.152 26.667 18.341 

  Ref. [2]  18.5640 15.35 23.2330 14.1520 26.6670 18.3410 

CS Present  52.4704 38.7579 78.9382 34.0914 103.9929 52.2966 

  Ref. [1] 52.473 38.749 78.933 34.096 103.973 52.293 

  Ref. [2]  52.5759 38.8129 79.1395 34.1485 104.3113 52.5759 

CC Present  74.5419 56.2043 107.6766 50.1905 139.3196 72.6488 

  Ref. [1] 74.563 56.219 107.714 50.203 139.382 72.671 

  Ref. [2]  74.7772 56.3635 108.0932 50.3271 139.9629 74.7772 

CF Present  7.8487 5.1290 16.0318 4.2280 26.4623 8.7724 

  Ref. [1] 7.838 5.122 16.099 4.222 27.252 8.709 

  Ref. [2]  7.8548 5.1319 16.1484 4.2292 27.3565 8.7313 

where SS (simply-simply BCs), CS (clamped-simply BCs), CC (clamped-clamped BCs), and CF (clamped-free BCs) 
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(c) 

 

 
(d) 

Fig 4 Influence of gradation index k on dimensionless 

critical buckling load of beams under 𝑁𝑃𝑅 varying axial 

loading with different FGM types for (a) SS, (b) SC, (c) CC 

and (d) CF 

 

 

It is noticed that at 𝑘 = 0, the higher buckling load is 

observed for CMC gradation function and lower buckling 

load is noticed for MCM gradation type. For higher value of 

gradation index at 5 < 𝑘  , the higher buckling load is 

observed for MCM gradation function and lower buckling 

load is noticed for CMC gradation type. 

The effect of boundary conditions on the buckling mode 

shapes of FG beam under 𝑁𝑃𝑅 is presented in Fig 5. It is 

noticed that the first mode shape for SS and CC is 

asymmetric, even though the boundary conditions are 

symmetric. This due to the distribution of the 𝑁𝑃𝑅 load is 

asymmetric. The current mode shapes can be applicable for 

any gradation index or gradation function because the 

variation of material constitution occurs in the thickness 

direction and not in the axial direction. In other words, the 

mode shapes are independent neither on type nor index 

value of the FGM distribution. 

 

 

Table 3 Critical buckling load parameter 𝜆 = 𝑁𝑎𝑥𝑖𝑙
𝑐𝑟 ×

12𝐸𝑐𝐿3/ℎ3 for SS and CC FG beams under 𝑁𝑃𝑅  

𝒌 ↓ 
SS 

CMC MCM Sigmoid 

0 26.509 4.883 15.696 

0.2 25.108 6.259 15.622 

0.5 23.311 8.009 15.409 

1 20.929 10.335 15.068 

2 17.640 13.585 14.628 

5 12.832 18.445 14.189 

100 5.508 25.884 13.976 

𝒌 ↓ 
CC 

CMC MCM Sigmoid 

0 134.344 24.748 79.540 

0.2 126.637 32.035 77.935 

0.5 117.084 41.078 73.578 

1 104.060 53.030 67.357 

2 86.929 69.584 60.458 

5 63.220 94.063 54.563 

100 27.846 131.250 51.989 

 

 

 

 
 

Fig. 5 Buckling mode shapes of FG beams under 𝑁𝑃𝑅  

axial load for different boundary conditions 

 

 

4.2.2 Influence of axial load type 
The impact of axial load type and gradation index on the 

critical buckling load for SS boundary condition beam at 

different gradation functions is presented in Fig. 6. As 

illustrated in Figs. 6(a) and 6(c) for CMC and sigmoid 

gradation types, the buckling load is decrease significantly 

by increasing the gradation index. For MCM gradation type 

as shown in Fig. 6(b), the critical buckling load is increased 

by increasing the gradation index. The lowest buckling load 

is observed in case of loading type of 𝑁𝑃𝐿 , and the highest 

buckling load is noted in case of 𝑁𝑃𝑅 for all gradation 

types. It is also noted that the critical buckling loads for 

loading conditions 𝑁𝑐𝑜𝑛 and  𝑁𝑃𝑠 are very close to each  
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other. Generally, the critical buckling load is highly 

dependent on the axial varying load type and its values 

decreases in the order: 𝑁𝑃𝑅 ,𝑁𝐿𝑅 , 𝑁𝑐𝑜𝑛 ,𝑁𝑃𝑠 , 𝑁𝐿𝐿 , and 

then 𝑁𝑃𝐿 . A quantitative analysis of Fig. 6 is presented in 

Tables 4 and 5 for SS and CC FG beams. 

 

4.2.3 Influence of aspect ratio  
The effects of slenderness ratio on FG beam subjected to 

parabolic distribution axial load from right 𝑁𝑃𝑅for different 

gradation index, gradation function, boundary conditions 

 

 
(a) 

 
(b) 

Continued- 

 

 
 

 
(c) 

Fig. 6 Influences of the gradation index k on the critical 

buckling load parameter λ of a SS beam under different 

axial varying load types and different FG distribution 

types (a) CMC-SPFGM, (b) MCM-SPFGM and (c) 

sigmoid-FGM 

 
 
 
are presented in Table 6. As shown the buckling load is 

decreased significantly by increasing the slenderness ration 

from 10 to 20 for the same conditions, due to the 

contribution of the shearing effect. However, increasing 

slenderness ration more than the 20, the FG beam becomes 

thin and effect of shearing is reduced and hence, the 

slenderness ratio has not significant influence on buckling 

loads. Qualitative analysis of Table 6 is presented in Fig. 7, 

to illustrate the significance region of slenderness ratio on 

the critical buckling load for FG beam with different 

gradation index, gradation function, and boundary 

conditions. The same observation deduced from Table 6 is 

noted in Fig. 7. 
 
 
 
 
 

Table 4 Critical buckling load parameter 𝝀 for SS FG beams under different axial varying load types and different FG  

distribution types 

 𝐹𝐺_𝑡𝑦𝑝𝑒 ↓ 𝑘 ↓ 𝑁𝑐𝑜𝑛 𝑁𝐿𝐿 𝑁𝐿𝑅 𝑁𝑃𝐿 𝑁𝑃𝑅 𝑁𝑃𝑆 

SS CMC 0 18.441 15.245 23.084 14.055 26.509 18.212 

  1 14.581 12.059 18.237 11.119 20.929 14.397 

  10 6.822 5.642 8.532 5.202 9.792 6.736 

 MCM 0 3.397 2.808 4.252 2.589 4.883 3.355 

  1 7.185 5.939 8.998 5.475 10.335 7.097 

  10 14.988 12.390 18.765 11.422 21.551 14.802 

 Sigmoid 0 10.919 9.027 13.668 8.322 15.696 10.783 

  1 10.458 8.631 13.105 7.955 15.068 10.312 

  10 9.706 7.988 12.189 7.357 14.046 9.548 
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4.3 Buckling mode-shape 
 

Impacts of the proposed loading types on the first 

buckling mode-shapes on different boundary conditions are 

illustrated in Fig. 8. It is observed that for beams with 

symmetric boundary conditions (SS, CC) even in case of 

constant density axial load distribution, the buckling mode 

shapes are asymmetric due to the accumulated nature of the 

axial load. It is also observed that for all boundary 

conditions, the mode shapes are dependent on the axial 

varying load type and they are shifted to left in the order: 

𝑁𝑃𝑅 ,  𝑁𝐿𝑅  , 𝑁𝑐𝑜𝑛 , 𝑁𝑃𝑠 , 𝑁𝐿𝐿 , and then 𝑁𝑃𝐿 .  

Fig. 9 presents the effect of parabolic distrbution of 

axial compressive load on the first buckling mode of FG 

beam under different boundary conditions. As shown for all 

boundary conditions, with respect to the buckling mode 

shapes of 𝑁𝑃𝑠 , the mode shapes of 𝑁𝑃𝑅  and 𝑁𝑃𝐿  are 

shifted to left and right, respectively. 

 

 
 

 
 
 

 
(a) 

Continued- 

 Table 5 Critical buckling load parameter 𝝀 for CC FG beams under different axial varying load types and different FG  

distribution types  

 𝐹𝐺_𝑡𝑦𝑝𝑒 ↓ 𝑘 ↓ 𝑁𝑐𝑜𝑛 𝑁𝐿𝐿 𝑁𝐿𝑅 𝑁𝑃𝐿 𝑁𝑃𝑅 𝑁𝑃𝑆 

CC CMC 0 72.647 54.755 104.296 48.923 134.344 70.594 

  1 56.553 42.753 81.058 38.205 104.060 54.988 

  10 26.454 19.993 37.907 17.872 48.668 25.729 

 MCM 0 13.359 10.082 19.213 9.013 24.748 13.003 

  1 28.518 21.503 41.064 19.209 53.030 27.753 

  10 59.109 44.617 85.058 39.863 109.609 57.535 

 Sigmoid 0 42.939 32.422 61.736 28.980 79.540 41.793 

  1 36.317 27.409 52.256 24.488 67.357 35.348 

  10 28.415 21.443 40.933 19.155 52.815 27.669 

Table 6 Critical buckling load parameter for beams under 𝑵𝑷𝑹 axial load and different FGM types, gradation index 

and boundary conditions 

  CMC MCM Sigmoid 

 𝑳/𝒉 ↓   𝒌 → 0 1 100 0 1 100 0 1 100 

SS 10 25.631 19.7677 5.312 4.721 10.143 25.038 15.176 14.596 13.600 

 20 26.509 20.9290 5.507 4.883 10.335 25.883 15.696 15.067 13.975 

 30 26.654 21.1536 5.541 4.910 10.359 26.023 15.782 15.142 14.027 

 50 26.696 21.2433 5.552 4.917 10.361 26.062 15.807 15.160 14.034 

 100 26.687 21.2486 5.550 4.916 10.357 26.052 15.801 15.152 14.026 

CS 10 94.151 70.1282 19.401 17.342 38.235 92.124 55.707 48.184 38.466 

 20 101.592 79.3527 21.079 18.716 39.865 99.299 60.183 51.476 40.168 

 30 103.021 81.3343 21.404 18.977 40.172 100.585 60.986 52.094 40.312 

 50 103.714 82.3396 21.562 19.105 40.317 101.258 61.409 52.388 40.242 

 100 103.992 82.7222 21.622 19.153 40.372 101.507 61.565 52.492 40.143 

CC 10 120.487 145.938 24.750 22.201 49.544 116.895 71.031 61.362 48.547 

 20 134.343 104.059 27.846 24.748 53.030 131.250 79.539 67.356 51.988 

 30 137.180 107.868 28.486 25.269 53.637 133.956 81.226 68.560 52.669 

 50 138.675 109.927 28.823 25.545 53.971 135.394 82.111 69.189 53.022 

 100 139.319 110.764 28.970 25.664 54.111 136.017 82.492 69.460 53.174 

CF 10 28.974 24.9175 5.951 5.238 10.666 27.074 16.917 13.877 10.468 

 20 26.882 21.6653 5.604 4.958 10.375 26.263 15.963 13.394 10.210 

 30 26.666 21.3469 5.549 4.911 10.310 26.027 15.790 13.274 10.140 

 50 26.524 21.1636 5.518 4.886 10.281 25.892 15.704 13.214 10.105 

 100 26.462 21.077 5.503 4.8746 10.267 25.833 15.668 13.188 10.090 
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(b) 

Fig. 7 Influence of aspect ratio L/h on critical buckling 

load parameter of (a) SS and (b) CC beams under 𝑁𝑃𝑅 

varying axial load for different FGM types and gradation 

index 

 
 
 

 

 
Continued- 

 
 
 
 

 
 

 

 

Fig. 8 Influence of axial load distributions on buckling 

mode shapes of FGM beams for different boundary 

conditions 

 
 
 

 

 

Continued- 
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Fig. 9 Influence of axial parabolic load distributions: 

𝑁𝑃𝑅 ,𝑁𝑃𝐿 , and 𝑁𝑃𝑠 , on buckling mode shapes of FGM 

beams for different boundary conditions 

 
 
5. Conclusions 

 
Through this manuscript, buckling stability and mod-

shapes of symmetric and sigmoid FG beams are 

investigated under distributed axial loads for different 

boundary conditions. The higher order shear deformation 

beam theory is exploited to include the shear effect, 

extension bending, and rigidity of the beam structure. 

Numerical DQM with the Chebyshev–Gauss–Lobatto 

distribution is employed to solve the equilibrium equations 

and evaluate critical buckling loads and associated mode-

shapes. The finding of the current analysis can be 

summarized as:  

 The effect of gradation index on the buckling load 

is dependent mainly on the gradation function type.  

 In cases of symmetric power MCM and Sigmoid 

functions, critical buckling loads are decreased in 

exponential form as the gradation index increased 

and reached to steady state at 30 < 𝑘.  

 However, the inverse effect of gradation index on 

the critical buckling load has been observed in case 

of symmetric CMC functions distribution.  

 It is noticed that at 𝑘 = 0, the higher buckling 

load is observed for CMC gradation function and 

lower buckling load is noticed for MCM gradation 

type.  

 For higher value of gradation index at 5 < 𝑘 , the 

higher buckling load is observed for MCM 

gradation function and lower buckling load is 

noticed for CMC gradation type.   

 The loading type has effect on the critical buckling 

loads. The highest buckling load is observed in 

case of 𝑵𝑷𝑹  and the smallest buckling load is 

noticed in case of 𝑵𝑷𝑳 for all boundary conditions 

 The type of axial load and boundary conditions 

have notable effects on the buckling mode shapes 

of FG beams.  
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