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1. Introduction 
 

Nowadays, porous materials are widely being employed 

in lightweight structures for decreasing structural weight, 

damping vibrations, filtering, carrying catalysts, absorbing 

impact energies and managing thermal responses because of 

their specific structures and high stiffness to weight ratio 

(Sciamanna et al. 2015). Depends on the demand concerns, 

different preparation methods have been introduced such as 

freeze casting (Deville 2008), salt-leaching (Yan et al. 

2012), synthesis of bio-template (Wu et al. 2014), etc. 

According to the topology of such materials, they can be 

classified as close or open porous materials. Closed porous 

materials usually have higher thermal and sonic insulation 

effects as well as higher stiffness but less permeability 

(Studart et al. 2006). Laminated composite is material 

another widely used in different industries. This material is 

extensively utilized in the fabrications of engineering 

structures such as automotive, civil aircraft and civil 

infrastructures because laminated composites can address 

most of the structural concerns related to strength to weight 

ratio, design flexibility, corrosion resistance and fatigue 

(Vinson 2001, Zargar et al. 2017, Ghanati and Safaei 2019, 

Xu et al. 2019). Besides, sandwich structures basically 

include a thick low strength core layer to stabilize the 

structure and two thin stiff face sheets to support the applied 

loads. Also, the core layer significantly affects the thermo-

mechanical behavior and the strength-to-weight ratio of the  
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structure (Safaei et al. 2018a, Safaei et al. 2019a). 

Accordingly, it could be expected that the use of porous 

materials between the plies of laminated composites 

intensifies the advantages of the traditional laminated 

composites structures in terms of weight reduction, stiffness 

improvement, damping vibrations and thermal management 

(Chen et al. 2016, Cong et al. 2018). However, the precise 

design of such porous laminated composite or sandwich 

structures requires different mechanical analyses. 

Due to the significant impacts of composite materials in 

engineering applications, many researchers have been 

attracted to research on the mechanical behaviors of 

structures made of different classes of composites (Safaei et 

al. 2016, Babaei et al. 2017, Qin et al. 2018, Safaei et al. 

2019b, Yang et al. 2020, Zhang et al. 2020). For plates 

made of laminated composites, Mantari et al. (2012) 

developed an analytical model based on Navier solution and 

trigonometric theory of plates to study the deflections and 

stresses of the plates under static loads. For the same plates, 

Thai et al. (2013) established an isogeometric FEM to study 

vibrations and static responses. To eliminate shear 

correction factors, they considered FSDT for each layer. 

Malekzadeh et al. (2009) conducted a dynamic study for 

laminated composite plates subjected to moving loads using 

layerwise theory. Safaei et al. (2018b) investigated an FEM 

model based on the Galerkin method for analyzing elastic 

stress field in a platelet reinforced composite subjected to 

axial load. Setoodeh et al. (2009) utilized the theory of 3D 

elasticity and FEM to evaluate the transient response of 

laminated composite plates under low velocity impact 

loads. Tornabene et al. (2013) presented a higher order 

theory to study the vibrational frequencies of doubly-curved 

panels made of laminated composite materials. Wang 
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Abstract.  This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on 

the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic 

foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns 

which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In 

FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To 

derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been 

employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the 

mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical 

dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It 

is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. 

Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core. 
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(2014) studied the nonlinear wave vibrations of cylindrical 

shells made of laminated composite materials under radial 

loads using Galerkin’s method. To accomplish this purpose, 

To eliminate shear locking effect, Yu et al. (2016) 

developed an FSDT based isogeometric analysis on the 

buckling and vibrational behaviors of laminated composite 

plates with a random hole. Considering zig-zag effect and 

utilizing generalized differential quadrature (DQ) method, 

the static responses of doubly-curved panels made of 

laminated composite materials located on a nonlinear elastic 

foundation were presented by Tornabene et al. (2017). By 

developing a Navier’s method based on a refined theory of 

plates, the impact of plate dimensions on the mechanical 

deflections of laminate composite plates was studied in by 

Xiaohui et al. (2018). Other refined (Sehoul et al. 2017) and 

a higher order plate (Javed et al. 2018) theories were also 

proposed to study the natural frequencies of plates made of 

laminated composites. The effective material properties of 

bi-directional functionally graded material were extracted 

based on Mori-Tanaka, and Hashin–Shtrikman 

homogenization models proposed numerical analysis for the 

size-dependent nonlinear bending and postbuckling 

properties via different homogenization schemes (Sahmani 

and Safaei 2020). By using the Gurtin–Murdoch theory Li 

et al. (2020) studied nonlinear free vibration behavior of FG 

composite nanoshells incorporating the influence of modal 

vibration interaction. In the other work Yi et al. (2020) 

proposed the nonlinear large-amplitude free vibration 

response of FG porous materials nanoshells by taking into 

account higher symmetric vibration mode interactions and 

surface free energy effects. Lateral vibration analysis of 

simply-supported microbeam under thermal stress is 

investigated based on both classical and modified couple 

stress theories (Babaei and Rahmani 2018). Wave 

propagation was studied in a rotary laminated composite 

shell with an attached piezoelectric layer using FSDT and 

considering transverse shear effect in ((Bisheh and Wu, 

2018)). Sharma et al. (2018) conducted vibroacoustic 

analysis of laminated composite plates by developing a 

finite boundary element method. The effect of arbitrary 

boundary conditions on the natural frequency of laminate 

composite plates was numerically investigated in by 

Benhenni et al. (2019). Yuan et al. (2020) proposed shear 

buckling behavior of a skew nanoplate made of the FG 

composite material by using nonlocal theory of elasticity. 

Polymers reinforced with different types of nanofillers 

such as graphene and carbon nanotubes (CNTs) are another 

popular (nano)composite materials which are being used in 

engineering structures. Static (Moradi-Dastjerdi et al. 

2018), vibrations and dynamic behaviors of polymer/CNT 

(Moradi-Dastjerdi and Payganeh 2017a, 2018, Moradi-

Dastjerdi Payganeh et al. 2017) as well as 

polymer/graphene (Moradi-Dastjerdi and Behdinan 2019) 

cylinders, and polymer/nanoclay plates (Moradi-Dastjerdi et 

al. 2019) were investigated using an axisymmetric meshless 

method. A unified solution was proposed to study the effect 

of general boundary conditions on the vibrations and wave 

propagation responses of polymer/graphene shells in (Qin et 

al. 2019, 2020). The free vibrational responses of plates 

made of amorphous polyethylene/CNT were examined 

using DQ method based on different plate theories by 

Safaei et al. (2019c). The impact of CNT agglomeration 

formation on the nonlinear modal analysis and vibrations of 

sandwich beams with polymer/CNT was investigated in by 

Pourasghar and Chen (2019d). The effect of this factor on 

the thermoelastic dynamic responses of sandwich plates 

with polymer/CNT faces was also studied (Moradi-

Dastjerdi et al. 2017; Safaei et al. 2019d). Due to the 

astonishing thermal conductivity of CNTs, the heat transfer 

(Moradi-Dastjerdi and Payganeh 2017b, Pourasghar and 

Chen 2019a, Behdinan et al. 2020), thermoelastic 

(Pourasghar and Chen 2019c) and thermoelastic vibrations 

(Pourasghar et al. 2018, Pourasghar and Chen 2019b) of 

polymer/CNT cylinders, panels and plates have also 

intensively been analyzed. In addition, the above-mentioned 

works showed that the use of the concept of ceramic/metal 

FG materials (Jalali et al. 2018, Jalali et al. 2018, Fattahi et 

al. 2019a) in the dispersion of nanofillers resulted in 

significant changes on the thermo-mechanical responses of 

nanocomposite structures. 

Due to the weight advantage of porous materials, their 

application as single layer structures or as the middle layer 

of sandwich structures have become an interesting idea to 

propose lightweight engineering structures. Wang et al. 

(2016) successfully modeled a 3D porosity embedded in 

volume through an extended FEM simulation. The 

mechanical responses of metal/ceramic FG plates with FG 

patterns of embedded porosity dispersions were investigated 

using a developed polygonal FEM (Nguyen et al. 2018). 

Yang et al. (2018) conducted an FSDT based Chebyshev-

Ritz solution for the buckling and free vibration Eigenvalue 

equations of a single FG porous graphene/polymer. For 

rotary cylindrical shells made of the same porous 

nanocomposite materials, the backward and forward 

frequencies of moving waves were calculated by FSDT in 

(Dong et al. 2018). In addition, the static deflection and 

buckling responses of curved beams made of FG porous 

metal/graphene mixture were studied using Navier's 

technique by Polit et al. (2019). Zargar et al. (2019) 

employed homotopy approach to study temperature contour 

in an axisymmetric porous fin. They verified the obtained 

temperature contour with some numerical results. Xue et al. 

(2019) presented the mode shapes and natural frequencies 

of circular and rectangular plates with FG embedded voids 

along the thickness using an expanded isogeometric FEM. 

The same vibrational analysis was performed for FG porous 

axisymmetric panels using modified Fourier series (Zhao et 

al. 2019b). Moreover, the vibrations of circular sector plates 

and annular disks with FG profiles of embedded pores were 

presented by applying FSDT in by Zhao et al. (2019a). Xie 

et al. (2020) investigated the nonlinear resonance behavior 

of a silicon nanobeam with FG profiles of embedded pore 

dispersions using the surface theory of elasticity. Nonlinear 

free vibrations of plates made of an FG mixture of two 

different piezoceramics with symmetric and asymmetric 

patterns of porosity dispersions were investigated using an 

analytical method based on the refined theory of plates 

(Barati and Zenkour 2018). 

Regarding sandwich structures with porous layer(s), 

Jabbari et al. (2013) proposed a circular porous plate 
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located between piezoelectric layers and studied buckling 

responses of the proposed plate. Askari et al. (2018) also 

presented free vibrational analysis of sandwich plates with 

the same layer arrangement by applying Mindlin plate 

theory. Mohammadi et al. (2019) attached two piezoelectric 

faces as sensor and actuator, around FG porous metal 

cylinders and studied stress and displacement profiles under 

electro-mechanical loads. Nguyen et al. (2019) considered 

two piezoceramic layers attached onto the faces of an FG 

porous graphene/polymer with FG patterns of embedded 

porosity dispersions as sensor and actuator, and developed 

an FEM model to control the vibrational behavior of the 

obtained sandwich plates. Also, five-layer sandwich 

structures with an FG porous core, nanocomposite middle 

layers and piezoelectric faces have been proposed in 

literatures. In this regards, the vibrations and buckling loads 

of such sandwich plates with FG graphene/polymer plates 

as nanocomposite layers were presented by developing a 

meshless method in (Moradi-Dastjerdi and Behdinan, 

2020b, 2020a). Also, by similar method based on a 

modified Halpin-Tsai’ equation and Reddy’s third order 

theory (TSDT) they proposed the structural damping 

behavior for piezoelectric sandwich plate (Moradi-Dastjerdi 

et al. 2020c). Setoodeh et al. (2019) utilized FG 

CNT/polymer curved shells as nanocomposite layers and 

presented natural frequencies of such five-layer curved 

sandwich shells. Moreover, the buckling responses of 

polymeric plates located between FG CNT/polymer faces 

with uniform dispersion of pores embedded along the 

thickness were presented by applying meshless technique 

by Safaei et al. (2019e). In addition, the thermoelastic static 

performance of FG porous plates located between FG 

CNT/polymer faces was studied using a third order of plate 

theory by Safaei et al. (2019f). For rectangular sandwich 

plates with metal faces and an FG porous graphene/polymer 

core, a nonlinear natural frequency analysis was conducted 

in (Li et al. 2018). 

This paper examines the effect of embedding a porous 

core between the layers of laminated composite plates on 

the natural frequencies of the resulted PLCSP. A two-

parameter elastic foundation and FG profiles of porosity 

dispersion have been considered for PLCSP. To study the 

natural frequency of such structures, Hamilton’s principal and 

FSDT are employed to obtain the governing Eigen value 

equation. Based on the utilized FSDT, a finite element 

method is developed to solve the obtained Eigen value 

equation. The effects of porosity parameters, fiber orientation 

of laminated composite, geometrical dimension, boundary 

conditions and elastic foundation on the natural frequencies of 

the proposed PLCSPs are investigated. 

 

 

2. Modeling of PLCSP  
 

As shown in Fig. 1, the proposed PLCSP consists of a 

laminated composite plate which symmetrically integrated a 

porous core as its middle layer. The fiber orientations αi 

(i=1, 2, …, nl where nl is the number of laminated layers) 

of composite layers are labeled as [α1, α2, …, αnl] starting 

from the inner to outer layers of each face. In the proposed 

PLCSP, the length, width, core thickness, faces thickness 

and total thickness are shown with a, b, hc, hf and h, 

respectively. In addition, the normal and shear parameters 

of elastic foundation are sown with k1 and k2, respectively. 

Fig. 2 also illustrates the variations of porosity volume 

fraction Vp along the thickness of core layer for the three 

considered porosity patterns. The elasticity modulus 
cE , 

density 
c , and Poisson’s ratio c  of porous layer can 

be estimated as (Zhao et al. 2019b) 
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In all the profiles: 

 2( ) 0.221 0.342 1.21 1p mz         
(4) 

where p0 is porosity parameter, 01 1mp p   , 

1 p m     and superscript m shows the material 

properties of perfect (
0 0p  ) core. 

 

 

 

Fig. 1 The proposed PLCSP with a porous core integrated 

between two laminated composite faces [α1, α2, α3] and 

rested on an elastic foundation 
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Fig. 2 The distributions of the volume of porosities along 

the thickness of porous core 

 
 
3. Governing equations  

 

3.1 Basic equations  
 

For the proposed PLCSP, the equation of energy function U, 

which includes strain energy, the energy of the two 

parameter foundation and kinematic energy are determined 

as follows (Moradi-Dastjerdi et al. 2016) 
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  (5) 

where A and V are the toper (or downer) face area and the 

total volume of sandwich plate, σ  and τ  are out-of-

plane and in-plane stress vectors, bε  and γ  are out-of-

plane and in-plane strain vectors, and u, v and w are the 

components of displacement field along x, y and z directions, 

respectively. 

As mentioned before, a first order shear deformation 

theory is utilized to determine displacement field in the 

proposed PLCSP. This theory has five unknown parameters 

including u0, v0, w0, x  and y  which are the 

displacement components and normal rotations of mid line 

in sandwich plate. According to the utilized FSDT, the 

components of displacement field can be defined as (Reddy 

2004, Mohammadsalehi et al. 2017, Fattahi et al. 2019b; 

Liu et al. 2020) 
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Based on the defined displacement field, the relation 

between displacement and strain can be given as (Reddy 

2004) 
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By dividing strain components to in-plane and out-of-

plane terms, the strain vectors can be written as 

0
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These vectors can be rewritten as 

   1 ,
T T
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In addition, the constitutive equation, which relates the 

stress vectors (i.e., in-plane σ  and out-of-plane τ  stress 

vectors) to strain vectors, in the proposed PLCSP is defined 

as (Reddy 2004) 
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where D  is elastic constant matrix, and the value 5/6 in 

Eqs. (10) and (11) is came from the use of FSDT as shear 

correction factor.  

The utilized porous core is an isotropic material. In the 

isotropic materials, ijD  are defined as 
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(12) 

In each layer of laminated composite faces, the matrix 

of elastic constant is determined by reducing the 

components related to z direction as 
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However, Eq. (14) is valid only for laminated 

composites with 90  . For other fiber orientations the 

components of elastic matrix ijQ  are determined by the 

values of cosm   and sinn   as (Reddy 2004) 
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3.2 FEM formulations 
 

After generating elements, finite element methods 

approximate the real values of domain at some specific 

points called nodes. In this work, the desired domain is 

displacement field, and rectangular elements with only four 

nodes have been employed. The relation between the 

displacement field u and that approximated by FEM ui is 

determined as 
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

u   (16) 

where n is the total number of nodes and Ni is bilinear shape 

functions. The use of FSDT dictates five unknowns or 

degrees of freedom to each node. So, the vector of 

approximated nodal values is determined as (Moradi-

Dastjerdi et al. 2016) 
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Introducing Eq. (16) in Eq. (7) results in the FEM forms 

of strain vectors 
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Introducing the FEM definitions of displacement, strain 

and stress vectors in the total energy function (Eq. (15)) 

results in 
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In addition, 
0I , 

1I  and 
2I  are the coefficient of 

inertia which are defined as 


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dzzzzIII    (25) 

The use of Hamilton’s principle in Eq. (20) results in the 

following Eigen value governing equation for the proposed 

PLCSP 

0 Mu Ku  (26) 

where M and K are the global stiffness and mass matrices 

which are determined as 

dA
A

j
T
i GMGM  (27) 
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4. Results and discussions 

 

In this section, first, the reliability of the developed 

FEM is established and then, the free vibration behavior of 

the proposed PLCSP is studied. It is assumed that the 

laminate composite faces and the porous core of PLCSPs 
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are made of graphite–epoxy (Gr/Ep) and neat epoxy, 

respectively. Moreover, in the following simulations, 

clamped (CCCC) square PLCSPs with four-layer laminated 

composite faces [0, 90, 0, 90], hc/a = 0.01, hf/hc = 0.2, and 

K1= K2=0 (without elastic foundation) have been considered, 

unless otherwise clearly stated. In addition, the following 

material properties have been considered (Talebitooti et al. 

2016): 

Epoxy: ρ=1150 Kg/m3, E=4.5 GPa, υ=0.4 

Gr/Ep: ρ=1578 Kg/m3, E11=132.38 GPa, E12=E13=10.756 

GPa, G23=3.606e9 GPa, G12=G13=5.6537 GPa, υ23=0.49, 

υ12= υ13=0.24 

The following normalized parameters are also utilized 

for natural frequency Ω and foundation coefficients K1, K2 

in this section 

0

p pH E    

4

1 1 /K k a D , 
4

2 2 /K k a D  
(29) 

where 

  
2

3 /12 1p pD E h    and 0 0.1H m  (30) 

In this paper, sandwich plates with different types of 

boundary conditions on their edges including clamped (C), 

simply supported (S) and free (F) edges have been 

considered. To implement such boundary conditions, the 

following descriptions have been utilized: 

C edges: “u = v = w = φx = φy = 0” 

S edges: “u = w = φx = 0 at y = 0 or a” and “v = w = φy = 0 

at x=0 or b” 

 
4.1 Validation of models 
 

In order to examine the accuracy of the developed 

method, square simply supported isotropic plates with 

E=380 GPa, ρ=3800 Kg/m3, υ=0.3 and different thicknesses 

have been considered and their natural frequencies obtained 

from our developed FEM are compared with those available 

in literatures as summarized in Table 1. The comparison of 

the nondimensional fundamental frequency of plates shows 

that the developed FEM has a very good agreement with the 

reported results, especially for thin and moderately thick 

plates. This is because our formulation is based on FSDT 

formulation; however, higher order theories have been 

employed in by Baferani et al. (2011). This comparison also 

reveals that the formulation developed in this paper is 

computationally efficient because it is based on FSDT with 

only five unknowns and employs bilinear rectangular 

element which do not impose huge computational costs. 

In addition, the convergence of the developed FEM in 

the calculation of the fundamental natural frequency of the 

proposed PLCSP with a porous core is also examined. Fig. 

3 shows the variation of Ω as a function of node number 

along each direction N (x or y) when the porosity state is 

FG-S and p0=0.9. This figure shows that the addition of 

node number after the use of 15×15 nodes does not 

significantly change the value of Ω which shows the 

convergence of the developed FEM. 

 
 

 

Fig. 3 Nondimensional fundamental natural frequency of 

PLCSP as a function of node number 

 
Table1 The nondimensional fundamental natural frequency 

of square simply supported 

h/a Method Ω 

0.05 Baferani et al. (2011) 0.0291 

 Thai and Choi (2011) 0.0291 

 Moradi-Dastjerdi et al. (2016) 0.0291 

 Present 0.0292 

   

0.1 Baferani et al. (2011) 0.1134 

 Thai and Choi (2011) 0.1135 

 Moradi-Dastjerdi et al. (2016) 0.1135 

 Present 0.1136 

   

0.2 Baferani et al. (2011) 0.4154 

 Thai and Choi (2011) 0.4154 

 Moradi-Dastjerdi et al. (2016) 0.4167 

 Present 0.4159 

 
 

4.2 Free vibration of PLCSPs 
 

One of the main parameters in structures made of 

laminated composite materials is their fiber orientation or 

stacking sequence. For the proposed PLCSP with the 

porosity state of FG-S and p0=0.9, Table 2 shows the effect 

of stacking sequence in laminate composite faces on the 

first four natural frequencies. Among the four considered 

stacking sequence, it is observed that [0, 90, 0, 90] offers 

the highest values of natural frequencies while, PLCSP with 

[45, -45, 45, -45] faces has the lowest values of natural 

frequencies. 

Fig. 4 illustrates the first four mode shapes of vibrations 

for PLCSPs with [0, 90, 0, 90] and [45, -45, 45, -45]. This 

figure confirms that stacking sequence has a significant 

effect on the mode shapes of vibrations.  

Another parameter in such structures is the number of 

layers nl. The effect of this parameter on the fundamental 

natural frequency of PLCSPs with porous (FG-S and p0=0.2) 

and perfect cores is shown in Fig. 5. This figure shows that 

the increase of nl has an insignificant effect on natural 

frequency such that PLCSPs with nl >2 have almost the 

same Ω1. However, embedding porosity in core layer results 

in higher natural frequencies. 
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(a) [0, 90, 0, 90] (b) [45, -45, 45, -45] 

Fig. 4 First four mode shapes of vibration in PLCSP with 

(a) [0, 90, 0, 90] (b) [45, -45, 45, -45] faces 

 
 

 

Fig. 5 The variation of fundamental Ω versus the number 

of laminated layers in PLCSP with porous (FG-S and 

p0=0.2) and perfect core 

 
 
Table 2 The first four Ω for PLCSPs with FG-S, p0=0.9 and 

different stacking sequences 

[α1, α2, α3, α4] Ω1 Ω2 Ω3 Ω4 

[45, -45, 45, -45] 0.4613 0.9284 0.9441 1.4574 

[0, 30, 60, 90] 0.4648 0.8936 1.0270 1.3308 

[0, 45, 90, -45] 0.4702 0.9416 0.9922 1.4180 

[0, 90, 0, 90] 0.4784 0.9734 1.0203 1.3609 

 
 

The effect of porosity state, including the volume of 

porosity and the profile of their dispersion, is also 

investigated in Fig. 6. This figure shows the Ω1 of such 

PLCSPs with two different values of core thickness; i.e.,  

 

 
(a) 

 
(b) 

Fig. 6 The variation of fundamental Ω versus porosity 

parameter in PLCSPs with (a) hc/a = 0.01 (b) hc/a = 0.02 

 

 

hc/a = 0.01 and 0.02. The figures show that the increase of 

p0, which implies the increase of porosity volume, leads to 

the enhancement of natural frequency. The reason is the 

structural weight is remarkably reduced by embedding 

higher voids in the thickest layer of PLCSP. In addition, it is 

observed that the dispersion pattern of voids does not have a 

significant impact on the natural frequency of PLCSP 

although FG-S type sandwich plates have higher Ω1. The 

comparison between Figs. 6(a) and 6(b) shows that the 

increase of core thickness significantly enhances the natural 

frequency of the PLCSP. 
The effects of aspect ratio (b/a) and the length of sides 

(a/hc) on the natural frequency of PLCSPs are shown in 

Figs. 7 and 8, respectively. These figures show fundamental 

Ω1 for PLCSPs with porous and perfect cores and two 

values of hf/hc=0.1 and 0.2. Fig. 7 shows that, in all cases, a 

small increase of the aspect ratio of plates from b/a=1 

dramatically reduces the natural frequencies of PLCSPs. 

The rate of this reduction becomes insignificant for b/a>4. 

Fig. 8 also shows that the increase of the length of sides 

continuously reduces the natural frequency of PLCSPs. 

Moreover, the significant effect of the thickness of 

composite faces are evident in both perfect and porous 

sandwich plates such that the use of thicker composite faces 
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offers much higher natural frequencies. The comparison 

between the results of PLCSPs with porous and perfect 

cores (Figs. 7(a) and 7(b) and Figs. 8(a) and 8(b)) shows 

that the use of porous core results in higher PLCSPs with 

higher natural frequencies.  

Finally, the effect the remaining parameters of the 

PLCSP, i.e., boundary conditions (F, C and S imply free, 

clamped and simply supported edges, respectively) and the 

coefficients of elastic foundation, on the natural frequencies 

of the proposed PLCSPs are studied. Table 3 shows Ω1 for 

PLCSP with FG-S type core. As expected, PLCSPs with 

four clamped edges have the highest values of natural 

frequency and by changing clamped edges to simply 

supported and then free ones, the natural frequency of the 

plate is decreased due to losing some constrains in each 

edge such that the lowest natural frequencies are observed 

in sandwich SFSF plates. Moreover, the enhancement of 

natural frequency is observed due to the use of elastic 

foundation such that the shear effect of foundation K2 has 

stronger impact on the natural frequency of PLCSPs than 

the normal one K1. 

 
 

 
(a) 

 
(b) 

Fig. 7 The variation of fundamental Ω versus the aspect 

ratio of plate in PLCSPs with (a) perfect and (b) porous 

cores 

 
 
 

 

 
(a) 

 
(b) 

Fig. 8 The variation of fundamental Ω versus a/hc of for 

PLCSPs with (a) perfect and (b) porous cores 

 
 
Table 3 Fundamental Ω for PLCSPs with FG-S type core  

B.C. K1,K2 p0=0 p0=0.5 p0=0.9 

CCCC (0,0) 0.4106 0.4350 0.4784 

 (500,0) 0.4144 0.4391 0.4830 

 (0,50) 0.4199 0.4449 0.4895 

     

CSCS (0,0) 0.3273 0.3468 0.3815 

 (500,0) 0.3322 0.3520 0.3872 

 (0,50) 0.3379 0.3581 0.3941 

     

CFCF (0,0) 0.2905 0.3081 0.3392 

 (500,0) 0.2959 0.3139 0.3459 

 (0,50) 0.2972 0.3152 0.3471 

     

SSSS (0,0) 0.1940 0.2054 0.2259 

 (500,0) 0.2020 0.2140 0.2355 

 (0,50) 0.2096 0.2222 0.2446 

     

SFSF (0,0) 0.1279 0.1358 0.1498 

 (500,0) 0.1398 0.1486 0.1639 

 (0,50) 0.1398 0.1485 0.1638 
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5. Conclusions 
 

This paper examined the effect of embedding a porous 

core between the layers of laminated composite plates on 

the natural frequencies of a new PLCSP resting on elastic 

foundations. The governing Eigen value equation of such 

structures was obtained using Hamilton’s principal and 

FSDT. To solve the obtained equation, a finite element 

method was developed for this particular structure. The 

significant results of this study are as follows: 

 The use of laminated faces with stacking sequence of [0, 

90, 0, 90] results in PLCSPs with the highest natural 

frequencies. 

 The addition of layers in laminated composite faces 

after nl >2 has an insignificant effect on the natural 

frequency of PLCSPs. 

 Embedding a core between the layers of laminated 

composite plates enhances the natural frequencies of the 

resulted structures. 

 In addition, embedding porosity in core layer leads to a 

significant improvement in the natural frequencies of 

PLCSPs. 

 The natural frequencies of PLCSPs with FG porous 

cores are higher than those with UD porous cores. 

 A small increase in the aspect ratio of plates from b/a=1 

dramatically reduces the natural frequencies of PLCSPs. 

 The effect of face thickness on the natural frequency of 

PLCSPs are stronger than core thickness. 
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