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1. Introduction 
 

Nanocomposite structures are made from a matrix 

reinforced with nanoparticles for improving the property of 

the material. Recently, the properties of nanocomposite 

structures have encouraged researchers to investigate about 

these materials. These structures have many applications 

such as producing batteries with greater power output, 

speeding up the healing process for broken bones, 

producing structural components with a high strength-to-

weight ratio, structures and so on.  

Buckling analysis of composite structures has been 

presented by many researchers. Bending and local buckling 

of a nanocomposite beam reinforced by a single-walled 

carbon nanotube (SWCNT) were studied by Vodenitcharova 

and Zhang (2006) based on the Airy stress-function method. 

Buckling analysis of nanocomposite Timoshenko beams 

reinforced by SWCNTs resting on an elastic foundation was 

investigated by Yas and Samadi (2012) using the  

generalized differential quadrature method (GDQM). 

Kolahchi et al. (2015) investigated nonlocal nonlinear 
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buckling analysis of temperature-dependent microplates 

reinforced with FG-SWCNT resting on an elastic matrix as  

orthotropic temperature-dependent elastomeric medium. 

Based on harmonic differential quadrature (HDQ), Mehri et 

al. (2016) analyzed buckling and vibration responses of a 

composite truncated conical shell with embedded SWCNTs 

subjected to an external pressure and axial compression 

simultaneously. Buckling and vibration analysis of 

cantilever functionally graded (FG) beam that reinforced 

with carbon nanotube (CNT) were presented by Nejati et al. 

(2016). In this paper, an equivalent continuum model based 

on the Eshelby–Mori–Tanaka approach was obtained. 

Based on DQM and Bolotin's method, Kolahchi et al. 

(2016a,b) investigated nonlinear dynamic buckling analysis 

of embedded temperature-dependent viscoelastic plates 

reinforced by SWCNTs. Mosharrafian and Kolahchi (2016) 

presented buckling analysis of classical piezoelectric 

polymeric cylindrical shell reinforced by armchair double 

walled boron nitride nanotubes (DWBNNTs). The free 

vibration and linearized buckling analysis of laminated 

composite plates were studied using the Isogeometric 

approach (IGA) and Carrera's Unified Formulation (CUF) 

(Alesadi et al. 2017). Yang et al. (2017) studied buckling 

and postbuckling behaviours of functionally graded 

multilayer nanocomposite beams reinforced with a low 

content of graphene platelets (GPLs) resting on an elastic 

foundation. It was assumed that GPLs are randomly 

oriented and uniformly dispersed in each individual GPL-
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Abstract.  The buckling analysis of the embedded sinusoidal piezoelectric beam is evaluated using numerical method. The 

smart beam is subjected to external voltage in the thickness direction. Elastic medium is simulated with two parameters of spring 

and shear. The structure is modelled by sinusoidal shear deformation theory (SSDT) and utilizing energy method, the final 

governing equations are derived on the basis of piezo-elasticity theory. In order to obtaining the buckling load, the differential 

quadrature method (DQM) is used. The obtained results are validated with other published works. The effects of beam length 

and thickness, elastic medium, boundary condition and external voltage are shown on the buckling load of the structure. 

Numerical results show that with enhancing the beam length, the buckling load is decreased. In addition, applying negative 

voltage, improves the buckling load of the smart beam. 
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reinforced composite (GPLRC) layer with its weight 

fraction varying layerwise along the thickness direction. 

Zamanian et al. (2017) investigated buckling of an 

embedded straight  beams reinforced with silicon dioxide 

(SiO2) nanoparticles based on Euler- Bernoulli and 

Timoshenko beam  models. The nonlinear buckling of 

straight  beams armed with SWCNTs resting on 

foundation was investigated by Bilouei et al. (2016) using 

DQM. Khelifa et al. (2018) presented a multi-layer finite 

element for buckling and free vibration analyses of 

laminated beams based on a higher-order layer-wise theory. 

The influence of the initial lateral (sweep) shape and the 

cross-sectional twist imperfection on the lateral torsional 

buckling (LTB) response of doubly-symmetric steel I-

beams was investigated by Benahmed et al. (2019). Post-

buckling of a cut out plate reinforced through carbon 

nanotubes (CNTs) resting on an elastic foundation was 

studied by Motezaker and Eyvazian (2020a). In another 

work by the same authors, buckling and optimization of a 

nanocomposite beam was studied by Motezaker and 

Eyvazian (2020b). Eltaher and Mohamed (2020) presented 

a comprehensive model to study static buckling stability 

and associated mode-shapes of higher shear deformation 

theories of sandwich laminated composite beam under the 

compression of varying axial load function. 
However, to date, no research about the buckling of 

smart beam with mathematical models has been found in 

the literature. For the first time, buckling analysis of 

embedded smart beams under the buckling constraint is 

presented in this present work. The SSDT is used for 

modeling of structure and the corresponded governing 

equations are derived by energy method and Hamilton's 

principal. Using DQM, the buckling load of structure is 

calculated. The effects of the axial forces, applied voltage, 

beam length and thickness, spring constant and shear 

constant of foundation on the buckling load are studied. 

 

 

2. Formulation 
 

A smart beam with the length of L and cross section of 

b×h is shown in Fig. 1, where the structure is subjected to 

external applied voltage in thickness direction and 

surrounded by elastic foundation. 

Using SSDT, the displacement field can be written as 

(Thai and Vo 2012) 

1

( , )
( , , ) ( , ) ( , ) ,

w x t
u x z t u x t z f x t

x



  


 (1) 

 

 

Fig. 1 The schematic view of the nanocomposite beam 
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where ، 1u   2u  and are the displacement of the  3u  

mid plane in the axial, transverse and thickness directions; 

  represents the rotation of cross section about y axis; 
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 Using Eqs. (1) to (3), the nonlinear strain-

displacement relations based on Von -Karman theory are as 

follows 
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In piezoelectric material, stress ( ) and the strain ( ) 

from the side with an electrical displacement ( D ) and 

electric field ( E ) from the electrostatic side can be coupled 

as follows (Kolahchi et al. 2016a) 
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(7) 

where 
ijQ , eij  

and
 ij

 
are elastic, piezoelectric and 

dielectric constants, respectively. The electric field ( kE ) in 

terms of electric potential is defined as follows 

,kE    

where the electric potential distribution is assumed as 

follows (Kolahchi et al. 2016a) 
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where 0V
 

is the external voltage. However, based on 

SSDT (Thai and Vo 2012), Eqs. (13) and (14) can be 

simplified as 
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where u  and w  are the displacement of the mid plane in 

the axial and thickness directions;   represents the 

rotation of cross section about y axis; sin .
h z

f
h





 
  

 
  

The potential energy of structure can be written as 

follows 
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(13) 

The external work due to the foundation around the 

beams can be expressed as (Kolahchi et al. 2015): 

  
x
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(14) 

where wk
 

and gk
 

respectively are spring and shear 

constants. However, using Hamilton's principle, the 

governing equations can be expressed as 
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In the above equations, 
M

xN  is the internal applied force 

to the beam.  

 

3. DQM 
 

DQM is a numerical method which changes the 

differential equations to algebraic equations using 

weighting coefficients. Thus, at any point, derived as a 

linear sum of the weighted coefficients and values of the 

function at that point and other points in the direction of the 

axis will be expressed. The main relationship of DQM, can 

be expressed as follows (Kolahchi et al. 2016a, b): 

,
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So that )(xf is a function, N  is the number of grid 

points and ijC  presents weighting coefficients. The roots 

of the polynomial Chebyshev heavily used in solving 

engineering problems and bring good results. Of separation 

is expressed as follows 
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With the roots of polynomial Lagrange transferred as the 

algebraic relations for calculating the weighting coefficients 

obtained 
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In these two equations 
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Boundary condition equations are 
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(27) 

Boundary condition equations due to having weight 

coefficients, equations are coupled ruling. As a result of the 

boundary condition and the field should be separated from 

each other. The governing equations and boundary 

conditions can be written in matrix form as follows 
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In these relationships, P  is the buckling load. Also, 

][ LK ,
 

][ NLK
 

and ][ gK  respectively, represents the 

stiffness matrix linear, nonlinear part of stiffness matrix and 

geometric matrix . However, using eigenvalue problem, the 

buckling load of structure can be obtained. 

 

 

4. Numerical results 
 

In this chapter, using the DQM, buckling load of the 

structure is calculated and the effect of various parameters 

are examined. For this purpose, a bam made from ZnO is 

selected with elastic constants of 
11 207Q GPa  and 

55 44.6Q GPa , piezoelectric constants of 2

31 0.51 /e C m   
and

 
2

15 0.45 /e C m   
and dielectric constants of

 
8

11 7.77 10 /F m    and 
8

33 8.91 10 /F m   . It should 

be noted that buckling load provided in this section, is 

dimensionless (
11/ ( )M

xP N C h ). 

Fig. 2 represents the structural buckling load of beam 

versus the mode number for different DQ grid points. As 

can be seen, with increasing the number of grid points, the 

buckling load decreases as far as in 15N , it is converged. 

So the calculations in the project are done with 15 grid 

points. 

Buckling of smart beams has not been studied by any 

researcher. So to verify our results, eliminating the effects 

foundations ( 0w gk k  ) and piezoelectric properties, 

buckling analysis of a beam with SSDT is discussed. 

Considering the material and the geometric parameters 

similar to Thai and Vo (2012), buckling load was shown for 

different aspect ratios of structure in Table 1. As can be 

observed, the results of the present work in accordance with 

reference Thai and Vo (2012) show that the results are 

accurate. It should be noted that the small difference 

between current results and reference Thai (2012) is due to 

the difference in type theory. In this project, SSDT is used 

while in Thai (2012), Timoshenko beam theory is applied. 

The effect of beam thickness on the dimensionless 

buckling load of the structure versus the number of 

longitudinal mode is shown in Fig. 3. 

 

 

 

Fig. 2 Convergence and accuracy of DQM 

 

 

 

Fig. 3 Beam thickness effect on the dimensionless buckling 

load versus mode number 

 

 

Table 1 Validation of present work with other published 

works 

L/h TBT, Thai 

(2012) 

SSDT, Thai 

and Vo (2012) 

SSDT, 

present 

5 8.9509 8.9533 8.9532 

10 9.6227 9.6232 9.6231 

20 9.8067 9.8068 9.8068 

10 9.8671 9.8671 9.8671 

0    

 

 

To the point where it is minimal buckling load, is said to be 

critical buckling load. The critical buckling is reached in 

third longitudinal mode. Moreover, increasing the beam 

thickness increases the buckling load of beam. The reason 

for this is that by increasing the beam thickness, the 

stiffness is enhanced. 
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Fig. 4 External electric voltage effects on the dimensionless 

buckling load versus mode number 

 

 

 

Fig. 5 Foundation effects on the dimensionless buckling 

load versus mode number 

 

 

Fig. 4 shows the dimensionless external applied voltage 

(
*

0 11 11/ ( / )V V h C  ) effects on the dimensionless 

buckling load of beams versus the number of longitudinal 

mode. As can be seen, an applied negative external voltage 

causes to compressive force and increasing the buckling 

load of the system. This phenomenon is converse for 

positive external voltage. However, it can be concluded that 

applying external voltage is an effective controlling 

parameter for buckling behavior of smart beam. 

Fig. 5 demonstrates the foundation effect on the 

dimensionless buckling load based on the number of 

longitudinal mode. Three types of foundation are 

considered namely as without foundation, modeling 

foundation with vertical springs (Winkler) and modeling 

foundation with vertical springs and shear layer (Pasternak). 

It can be seen that the buckling load of the beam is 

increased with considering foundation. In addition, the  

 

 

Fig. 6 Boundary condition effects on the dimensionless 

buckling load versus mode number 

 

 

 

Fig. 7 The beam length effects on the dimensionless 

buckling load versus external electric voltage 

 

 

buckling load of the beam with Pasternak foundation is 

more than buckling of the beam with Winkler one. The 

reason for this is that in the model of Pasternak in addition 

to the flexibility factor, the effect of shear force is also 

considered. 

Fig. 6 illustrates the effect of boundary conditions on the 

buckling load against the number of longitudinal mode. It 

can be found that the boundary conditions have a significant 

effect on the system buckling. In the beam with the clamped 

boundary conditions at both ends, buckling load is 

maximum with respect to other cases. The reason is that the 

CC boundary condition yields to maximum stiffness in 

structure with respect to other cases. In addition, the 

buckling load of beam with fixed-simple boundary 

condition is higher than Simple-Simple one. 

Fig. 7 presents the dimensionless buckling load of 

structure versus mode number for different beam length. It 

is found that with enhancing the length of beam, the 

buckling load is decreased due to reduction in the stiffness 
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of structure. 

 

 

5. Conclusions 
 
In this study, buckling of embedded smart beams 

subjected to electric field was studied. The foundation was 

simulated by vertical springs and shear constants. The 

structure was modeled by SSDT mathematically. Using the 

strain-displacement equations, energy method and 

Hamilton’s principal, the coupled governing equations was 

derived. Finally, using DQM, the buckling load of the 

structure was calculated and the effects of various 

parameters such as beam thickness and length, external 

voltage and the foundation were investigated on the 

buckling behavior of structure. Results indicate that the 

critical buckling load occurs in approximately third 

longitudinal mode. With increasing the beam thickness, the 

buckling load was increased. In general, existence of 

foundation increases the buckling load of structure. In 

addition, the boundary conditions have a significant effect 

on the beam buckling load. The results were validated with 

other published works.  
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