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1. Introduction 
 

Steel moment frames (SMFs) are widely used all over 

the world. In order to understand the behavior of SMFs, 

extensive experimental and analytical researches have been 

conducted. Among these, a considerable number of studies 

are related to the beam-to-column joints, and more 

precisely, to the area of column web between beam flanges 

which is called panel zone (PZ) (Krawinkler et al. 1971, 

Slutter 1982, Kawano 1984, Krawinkler and Mohasseb 

1987, Liew and Chen 1995, Castro et al. 2005, Adan and 

Reaveley 2006, Lu et al. 2018a, Lu et al. 2018b, Lu et al. 

2017, Kim and Engelhardt 1995, Kim and Engelhardt 2002, 

Popov et al. 1985, Fielding and Huang 1971, Eduardo 

Nuñez et al. 2017, Bertero et al. 1973, Lee 1987, Elkady 

and Lignos 2015, Bayat and Zahrai 2017).  

PZ deformations have a significant contribution to the 

global behavior of SMFs. An analytical study by Kawano 

(1984) on a 5-story SMF under earthquake excitation 

showed the PZ shear distortions affect energy dissipation 

over the height of the structure. Krawinkler and Mohasseb 

(1987) also examined two SMFs, 7- and 10-story, with 

different PZ strengths, and it was recommended to design 

PZ such that both PZ and beams contribute to the energy  
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dissipation mechanism. Liew and Chen (1995) had shown 

that the PZ shear deformations increased the drift response, 

and also decreased the global stiffness and strength of the 

structures. A study by Castro et al. (2005) showed that in 

the elastic range, the behavior of PZ was generally affected 

by the shear behavior of the panel area. For these reasons, 

consideration of PZ behavior is of great importance to the 

analysis of structures. However, there are sources of 

uncertainty that lead to inaccurate prediction of the PZ 

behavior as well as structural responses.  

The boundary condition at the connection joint affects 

both PZ and connection performance. Kim and Engelhardt 

(1995, 2002) demonstrated that current PZ models are not 

able to accurately predict the PZ behavior when the 

columns have flange thickness greater than 2.5 cm. The 

experimental and numerical investigation by Lu et al. 

(2018a) on the performance of weak-axis steel moment 

connections revealed that the stress distribution at the 

connection joint depends on the location of the applied load, 

whether it is the end of the beam or column. Also, a study 

on the fracture behavior of reduced beam section (RBS) 

connections by Lu et al. (2018b) showedthe significance of 

the distance between the column face and the beginning of 

the RBS cut. It was concluded that with increasing this 

distance, the performance of the connection improves while 

reducing this distance adversely affects the beam flange 

groove weld and PZ deformation. The study by Lu et al. 

(2017) on the weak-axis cover-plate steel moment 

connections showed the PZ behavior is dependent on the 

loading condition. A parametric study by Bayat and Zahrai 
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same structure with the AREZ model. Then, the degree of accuracy of the resulting relationship is examined in several 

connections of generic SMFs. Also, in order to demonstrate the applicability of the proposed model in SMFs, several SMFs 
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(2017) on the seismic performance of SMFs with semi-rigid 

connections showed the beneficial effects of such 

connections on the story drift, roof acceleration, PZ 

demands, and base shear of the structures. A numerical 

investigation by Nuñez et al. (2017) on the seismic 

performance of steel moment connections with HSS 

columns showed that this type of column section prevents 

stress concentration in the column, specifically in the PZ, 

and develops significant energy dissipation in the beam.  

Bertero et al. (1973) reviewed the results of experimental 

data provided by Popov and Stephen (1970) and Krawinkler 

et al. (1971). They mentioned that because the test 

specimens had medium sizes, a general conclusion for other 

member sizes should be drawn carefully. Therefore, it can 

be inferred from the previous studies that the stiffness and 

strength properties of the current PZ models are 

representative of a limited number of experimental results. 

The presence of column stiffeners and doublar plates 

increase uncertainty in the PZ response prediction. Popov et 

al. (1985) examined the PZ performance with different 

types of stiffeners. The research showed that in the column 

sections with thick flanges, the existence of column 

stiffeners has a considerable effect on the PZ performance. 

Fielding and Huang (1971) examined the condition of high 

shear stress, high axial load, and various types of column 

stiffeners of the beam-to-column connections under 

monotonic loading. The test results demonstrated that under 

different types of column stiffeners and due to varying 

levels of reserve strength in the PZ area, the prediction of 

PZ strength and stiffness becomes uncertain. An 

experimental study by Adan and Reaveley (2006) on the 

RBS connections showed the beneficial effect of stiffeners 

on some column sections while they were not effective in 

some other column sections. Doublar plate is another source 

of uncertainty. Although Slutter (1982) mentioned some 

beneficial effects of doublar plates on the PZ behavior, Kim 

and Engelhardt (1995, 2002) showed that the doublar plates 

are not as useful as expected in some cases. In addition to 

the column stiffeners and doublar plates, concrete slab 

makes the PZ behavior prediction difficult. An experimental 

study by Lee (1987) and an analytical investigation by 

Elkady and Lignos (2015) showed a stable hysteresis 

behavior and high reserve strength of the PZs and an 

increase in flexural strength in the positive direction of the 

beams.  

Another issue of concern, which is also the most 

important one, is the PZ modeling approach. Several PZ 

models have been developed by previous researchers 

(Fielding and Huang 1971, Krawinkler et al. 1971, Wang 

1989). Kim and Engelhardt (1995) examined the PZ models 

of the past researches and compared the results with the 

results of experimental data. Research showed that in the 

elastic range, all PZ models are almost similar in behavior. 

However, in the inelastic range, the applicability of some of 

the developed models is questionable. Among all models, 

the model which was developed by Krawinkler et al. (1971) 

showed a reasonable behavior in comparison with test data. 

This model has been called krawinkler’s PZ model (see Fig. 

1). Saffari et al. (2016) carried out a finite-element 

parametric study and proposed a mathematical relationship  

 
 

Fig. 1 Krawinkler’s PZ model 

 

 

to consider the PZ deformations of flanged cruciform 

columns. They showed the importance of the web 

thicknesses of the column in the PZ deformations. Mansouri 

and Saffari (2014, 2015) developed a mathematical PZ 

model to estimate the PZ strength based on several exterior 

beam-to-column connections considering thick column 

flanges and axial load effects. The resulting PZ model was 

calibrated with the results of some finite element simulation 

of SAC connection specimens. As a result, the proposed PZ 

model showed a relatively accurate prediction of the PZ 

behavior. Kim and Engelhardt (1995, 2002) developed a 

model to capture the PZ deformations accurately. The 

resulting model performed well in comparison with the 

results of experimental data. However, from a practical 

point of view, it has complex parameters regarding material 

properties as well as deterioration laws. Also, it is hard to 

use the model in commercial structural analysis software. 

Having known the concerns about the PZ behavior and 

its modeling techniques, researchers have been looking for 

more straightforward procedures to model PZ effects in the 

SMFs indirectly. Tsai and Popov (1990) examined two 

SMFs, 6- and 20-story, considering different conditions of 

the PZ. The building frames were designed per 1990 

American Institute of Steel Construction Specification 

(AISC 1990)  and 1998 Uniform Building Code 

requirements (UBC 1998). The PZs were designed for 

0.8Mp, where Mp is the flexural plastic strength of beam(s). 

The PZ behavior was explicitly modeled via the Scissors PZ 

model (see Fig. 2). Also, the PZ effect was implicitly 

modeled using different rigid-end-zone factors. In the 

former case, the rotational spring characteristics were 

adopted from previous (Krawinkler et al. 1975, FEMA 2000, 

Downs 2002, Charney and Downs 2004, Krawinkler and 

Mohasseb 1987, Popov 1987). In the latter case, two 

different rigid-end-zone factors were adopted; 0% and 50%. 

It was demonstrated that the roof drift results of the SMFs 

with PZ are relatively close to the results of the SMFs with 

0% rigid-end zones. Also, the roof drift results of the SMFs 

with 50% rigid-end zones were approximately 27% less 

than those of the SMFs with PZ. Schneider and Amidi 

(1998) examined an 8-story SMF through non-linear static 

and dynamic analyses. Two conditions were considered; 

SMF with PZ and one centerline SMF model with rigid- 
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Fig. 2 Scissors PZ model 

 

 

end-zone factor equals unity. It was shown that the drift 

responses for the centerline model with rigid-end zones are 

25% smaller than those SMFs with PZ. Also, based on the 

results of pushover analysis, the stiffness of the SMFs with 

rigid-end zones is 30% greater than that of the SMF with 

PZ. Having seen the results of previous researches, 

Hamburger et al. (2009) recommended that a rational 

method should be adopted to model the PZ deformation in 

SMFs via a rigid-end-zone factor.  

Recently, an Equivalent End Zone (EEZ) model was 

proposed to consider PZ deformations implicitly in the 

SMFs (Rafezy et al. 2014). The formulation of this model is 

based on the Scissors PZ model. However, researchers have 

mentioned some limitations and assumptions regarding this 

PZ model. Krawinkler et al. (1975) and FEMA (2000) 

stated that the PZ shear force and shear distortion have to be 

based on the difference between the beams’ moments at the 

column face in the beam-to-column connection. Research 

showed that because the Scissors PZ model relates shear 

force and shear distortion of the PZ to the difference 

between the beams’ moments at the beam-to-column 

intersection point, it leads to an approximate calculation of 

the shear force and shear distortion of the PZ. Another issue 

regarding the Scissors PZ model is its strength and stiffness 

characteristics (Downs 2002, Charney and Downs 2004). 

Downs (2002) and Charney and Downs (2004) stated that 

using the stiffness and strength characteristics of 

krawinkler’s PZ model for the Scissors PZ model leads to 

inaccurate prediction of the deformations and stiffness of 

the PZ. Research also mentioned that there is not a clear 

relationship to define the stiffness of the Scissors PZ model. 

Based on the discussions in the previous paragraphs, 

explicit modeling of the PZ in SMFs is of great importance. 

One way to contribute PZ effects into SMFs is to utilize 

Krawinkler’s PZ model. However, the elements of the 

elements of the parallelogram of the Krawinkler’s PZ model 

must be completely rigid, and due to computational 

problems, it cannot be applied in many software. As such, 

the PZ elements are modeled using elements with high axial, 

shear, and flexural rigidity. Given that utilizing these types 

of members raises issues regarding numerical convergence 

problems, the extent of the rigidity of these elements should 

be chosen carefully. Also, from a practical point of view, 

Krawinkler’s PZ model requires considering more degrees 

of freedom in the analytical model, and thus, the analysis 

will be time-consuming, especially in the case of dynamic 

time-history analysis. More importantly, practitioners prefer 

to adopt a more straightforward procedure than modeling 

PZ in the analytical model during the design procedure. 

Hence, it is worth finding an alternative method to avoid 

complexities regarding Krawinkler’s PZ model and 

computational problems.  

In this study, the authors try to simplify Krawinkler’s PZ 

model and to propose an alternative approach to include PZ 

effect into SMFs. In this approach, the Krawinkler’s PZ 

model is implicitly applied to SMFs using an Adjusted 

Rigid-End Zone (AREZ) model. The dimension of the 

AREZ will be calculated by an appropriate rigid-end-zone 

factor, β. The β depends on the properties of the connecting 

elements (i.e., beam(s) and columns) at each connection 

joint. In order to validate the proposed model, several 

interior and exterior connections are modeled utilizing the 

Open System for Earthquake Engineering Simulation 

software, OpenSees (Mckenna 1997). Furthermore, to 

demonstrate the applicability of the proposed model in 

SMFs, several SMFs ranging from 3- to 30-story, 

representing low- to high-rise buildings, are examined 

through linear static and dynamic time history analysis. In 

the analysis procedure, both Krawinkler’s PZ model and 

AREZ are considered.  Besides, two other extreme cases, 

β=0 and β=1, are considered to show the significance of PZ 

modeling in SMFs. The former represents a centerline SMF 

model, and the latter one is representative of a SMF with 

completely rigid-end zones. Also, non-linear dynamic 

analyses of three SMFs conducted to validate the degree of 

accuracy of the proposed model in the non-linear analysis 

of structures. Based on the analytical results, in addition to 

ease of implementation of the proposed model in the SMFs, 

the inter-story drift ratio (IDR) results of SMFs with the 

AREZ model show a good agreement with the IDR results 

of the same SMFs with Krawinkler’s PZ model. The 

efficiency of the proposed model is evident in both linear 

and non-linear analysis of SMFs in this study.  This simple 

model allows practitioners to consider PZ effects in the 

design procedure. Also, it can simply be applied to any 

structural frame analysis software. 

 

 

2. Proposed model  
 

The proposed model simplifies Krawinkler’s PZ model 

(see Fig. 3(a)) through the AREZ, which is shown in Fig. 

3(b). The dimensions of the AREZ are defined by an 

appropriate β factor, which is applied to the centerline 

model. In determining the β factor, the stiffness of the 

connection model with the AREZ is equalized to the 

stiffness of the connection with Krawinkler’s PZ model. 

In addition to the properties and geometries of a 

connection, the type of the connection (i.e., interior or 

exterior) plays an essential role in the response of PZ under 

lateral loads. Hence, in this study, the mentioned procedure 

in obtaining β is implemented for both interior and exterior 

connections, and Individual formulations are derived. 
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Several assumptions have been made during the 

formulation procedure. In the connection modeling, it is 

assumed that the moment at mid-span and mid-height of the 

story are zero. Also, it is assumed that the bay length and 

beam sections are equal in the left and right side of the 

connection. Furthermore, it is assumed that the story height 

and the column sections above and below the connection 

are the same. In the next subsections, for both interior and 

exterior connections, procedures to derive a relationship for 

β are presented in detail. 

 

 
3. Interior connection   

  

In order to obtain β for the interior connection type, two 

cases of the connections are considered; one connection 

with Krawinkler’s PZ model, which is shown in Fig. 3(a), 

and one connection with the AREZ model (Fig. 3(b)). In the 

first model, there are rigid elements which form a 

parallelogram. 

 

 

(a) Connection with Krawinkler’s PZ model  

 

 

(b) Connection with AREZ 

Fig. 3 Typical interior connection 

Simple pin connections connect the corners of the 

parallelogram. A rotational spring, which represents the 

strength and stiffness behavior of the PZ, is attached to one 

of the four corners (i.e., the upper right corner). In the case 

of the AREZ model, the dimension of rigid-end-zones at the 

end of the members can be calculated by the β factor (Fig. 

3(b)). The total deflection at the end of the beam, ΔA, 

consists of the beam, column, and PZ deformations (see 

Fig. 4).  For the case in which Krawinkler’s PZ model is 

considered, ΔA is as follows 

∆𝐴= 𝛿𝑏 + 𝛿𝑐 + 𝛿𝑝𝑧 (1) 

Where δb, δc, δpz are the deflection components of the 

cantilever beam, the deflection component due to the 

rotation of the column (θc) at the connection joint, and the 

deflection component due to PZ distortion, respectively. δb 

can be calculated as follows 

𝛿𝑏 =
𝑃 (

𝐿 − 𝑑𝑐

2
)

3

3𝐸𝐼𝑏

 
(2) 

In the above equation, dc is the column depth, E is the 

modulus of elasticity, L is the beam span length (centerline 

dimension), Ib is the beam moment of inertia, and P is a 

concentrated force applied at the mid-span of the beam, 

respectively. 

In order to calculate δc, first, a procedure to obtain θc is 

presented. Fig. 5 shows the columns above and below the 

connection joint. By using the conjugate beam method, θc is 

calculated as follows 

𝜃𝑐 =
𝑃𝐿𝐻(1 − 𝜓)3

12𝐸𝐼𝑐

 (3) 

In the Eq. (3), H is the column height, 𝐼𝑐 is the column 

moment of inertia, and 𝜓 is defined as the ratio of beam 

depth to the column height. 

𝜓 =
𝑑𝑏

𝐻
 (4) 

Where db is the beam depth. Subsequently, δc can be 

calculated as follows 

 

 

 
Fig. 4 The deformed shape of interior connection 

considering PZ 

 

 

 

582



 
A simple panel zone model for linear analysis of steel moment frames 

 

 

 
 

𝛿𝐶 =
𝑃𝐿2𝐻(1 − 𝜓)3

24𝐸𝐼𝑐

 (5) 

Fig. 6 schematically shows the elements of PZ 

distortion, which is used to calculate δpz. 
As shown in Fig. 6, δpz is written with respect to γ1 and 

γ2. 

𝛿𝑝𝑧 = −𝛾1𝑑𝑐 +
𝛾2(𝐿 − 𝑑𝑐)

2
 (6) 

In the above equation,  γ1 and γ2 are distortion angles of the 

PZ with respect to horizontal and vertical axes, respectively. 

These parameters can be calculated by utilizing Eqs. (7) and 

(8), respectively. The mentioned equations are based on the 

deformed position of the PZ, which is shown in Fig. 6.  

𝛾1 =
𝛥

(𝛨 − 𝑑𝑏)/2
 (7) 

𝛾2 =
2𝛥

𝑑𝑏

 (8) 

 

 

 
 
In the above equations, Δ is the horizontal displacement 

of the column above or below the connection joint at the 

proximity of the PZ from corresponding original positions. 

The net PZ distortion, γpz, can be written as Eq. (9). 

𝛾𝑝𝑧 = 𝛾1 + 𝛾2 =
2𝛥𝐻

𝑑𝑏(𝛨 − 𝑑𝑏)
 (9) 

Therefore, γ1 and γ2 can be rewritten as follows 

𝛾1 = 𝜓𝛾𝑝𝑧 (10) 

𝛾2 = (1 − 𝜓)𝛾𝑝𝑧 (11) 

In the following, γpz can be calculated by Eq. (12). 

𝛾𝑝𝑧 =
𝑀𝑝𝑧

𝐾𝑝𝑧

 (12) 

In Eq. (12), Mpz is the bending moment of the PZ, Kpz is the 

stiffness of the PZ (Kim and Engelhardt 1995, Kim and 

Engelhardt 2002). The mentioned variables are as follows 

 

 

 

   
(a) The undeformed shape of the 

columns above and below the 

connection joint 

(b) The deformed shape of the 

columns above and below the 

connection joint 

(c) Conjugate beam 

Fig. 5 Columns above and below the connection joint 

 

Fig. 6 The deformed shape of Krawinkler’s PZ model 
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Fig. 7 The deformed shape of interior connection with 

AREZ 

 
 

𝑀𝑝𝑧 = 𝑃(𝐿 − 𝑑𝑐) (13) 

𝐾𝑝𝑧 =
𝐺(𝑑𝑐 − 𝑡𝑐𝑓)𝑡𝑝𝑑𝑏

(1 − 𝜌)
 (14) 

In Eq. (14), tcf is the column flange thickness, tp is the 

PZ thickness (column web thickness plus doublar plate 

thickness), G is the elastic shear modulus, and 𝜌 is defined 

as below (Kim and Engelhardt 1995, Kim and Engelhardt 

2002) 

𝜌 =
𝑑𝑏 − 𝑡𝑏𝑓

𝐻
 (15) 

In the above equation, Eq. (15), tbf is the thickness of the 

beam flange.  Substituting Eqs. (10)-(14)into Eq. (6), δpz 

can be rewritten as follows 

𝛿𝑝𝑧 =
𝑃(𝐿 − 𝑑𝑐)(1 − 𝜌)

2𝐺(𝑑𝑐 − 𝑡𝑐𝑓)𝑡𝑝𝑑𝑏

[𝐿(1 − 𝜓) − 𝑑𝑐(1 + 𝜓)] (16) 

In a connection joint with the AREZ, Fig. 7, the total 

deflection at the end of the beam is as follows 

∆A′= δb′ + δc′ (17) 

Where ΔA’, δb’, δc’, are total deflection at the end of the beam, 

the deflection component of the cantilever beam, the 

deflection component due to the rotation of the column at 

the connection joint, respectively. The procedures are the 

same as those in the case of the connection with 

Krawinkler’s PZ. δb’ and δc’ are written as below. 

𝛿𝑏′ =
𝑃 (

𝐿 − 𝛽𝑑𝑐

2
)

3

3𝐸𝐼𝑏

 (18) 

𝛿𝑐′ =
𝑃𝐿2𝐻(1 − 𝛽𝜓)3

24𝐸𝐼𝑐

 (19) 

Equating the end beam deflections of two connection 

models, connection with Krawinkler’s PZ model and the 

one with the AREZ, leads to a cubic equation, Eq. (20), 

with respect to β. Solving the Eq. (20) leads to a β factor, 

which can be applied as the rigid-end-zone factor in a 

centerline model. This β is specific to each connection joint 

and is based on the specification of connecting elements. 

−𝑎1𝛽3 + 𝑎2𝛽2−𝑎3𝛽 + 𝑎4=0 (20) 

In the Eq. (20), a1, a2, a3, a4, are coefficients of the 

cubic equation. These coefficients depend on the beam(s) 

and columns specifications in the connection joint, the 

length of the beam span, and the height of the column. The 

coefficients are as follows 

𝑎1 =
𝑑𝑐

3(1 + 𝜉 𝜐2𝜇3)

24𝛦𝛪𝑏

 (21) 

𝑎2 =
𝑑𝑐

2𝐿(1 + 𝜉 𝜐 𝜇2)

8𝛦𝛪𝑏

 (22) 

𝑎3 =
𝑑𝑐𝐿2(1 + 𝜉 𝜇)

8𝛦𝛪𝑏

 (23) 

𝑎4 = 𝑎1 − 𝑎2 + 𝑎3 … 

−
[𝐿(1 − 𝜓) − 𝑑𝑐][𝐿(1 − 𝜓) − 𝑑𝑐(1 + 𝜓)](1 − 𝜌)

2𝐺(𝑑𝑐 − 𝑡𝑐𝑓)𝑡𝑝𝑑𝑏

 

 

(24) 

Where 

𝜉 =
𝛪𝑏

𝛪𝑐

 (25) 

𝜇 =
𝑑𝑏

𝑑𝑐

 (26) 

𝜐 =
𝐿

𝐻
 (27) 

 
 

4. Exterior connection 
 

Figs. 8(a) and 8(b) show exterior connections with both 

Krawinkler’s PZ and AREZ schematically. The deflection 

components of the exterior connections are shown in Figs. 

9-10. The procedures for calculating the deflection 

components for the exterior connection are the same as 

those of the interior connection. To calculate the β factor for 

the exterior connection, an equation similar to that of the 

interior connection, Eq. (20), is obtained except that the 

coefficients of the Eq. (20) for the exterior connection differ 

from the interior connection. The coefficients of the Eq. (20) 

for the exterior connection are presented through Eqs. (28)-

(31). 

𝑎1 =
𝑑𝑐

3(2 + 𝜉 𝜐2𝜇3)

48𝛦𝛪𝑏

 (28) 

𝑎2 =
𝑑𝑐

2𝐿(2 + 𝜉 𝜐 𝜇2)

16𝛦𝛪𝑏

 (29) 

𝑎3 =
𝑑𝑐𝐿2(2 + 𝜉 𝜇)

16𝛦𝛪𝑏

 (30) 

𝑎4 = 𝑎1 − 𝑎2 + 𝑎3 … 

−
[𝐿(1 − 𝜓) − 𝑑𝑐][𝐿(1 − 𝜓) − 𝑑𝑐(1 + 𝜓)](1 − 𝜌)

4𝐺(𝑑𝑐 − 𝑡𝑐𝑓)𝑡𝑝𝑑𝑏

 

 

(31) 
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(a) Connection considering PZ 

 

 

(b) Connection with AREZ 

Fig. 8 Typical exterior connection 

 

 
 

Fig. 9 The deformed shape of the exterior connection 

considering PZ 

 
 

5. Validation procedure 
 
In order to show the efficiency of the proposed model, a 

validation procedure is conducted. Several interior and 

exterior connections have been taken apart from well-

known SMFs. These connections and their specifications 

are summarized in Table 1. 
 

 
 

Fig. 10 The deformed shape of the exterior connection 

with AREZ 

 
 
 

 
(a) Connection with krawinkler’s PZ model 

 

 

(b) Connection with AREZ model 

Fig. 11 The modeling details of an interior connection 

in the OpenSees software 
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Then, these connections are modeled in the OpenSees 

software (Mckenna 1997) in two manners; connections with 

krawinkler’s PZ model, and connections with the AREZ 

model. In the former case, beam and column elements are  

 

 

 

modeled using the elasticBeamColumn element of the 

OpenSees library. The PZ is modeled utilizing eight rigid 

elements (elasticBeamColumn with high axial, shear, and 

flexural rigidity), which are connected through twelve 

Table 1 Proposed model validation results 

Building Conn.                                  

No 

Beam section Column 

Section 

Conn. Type Bay 

Width 

(m) 

Story 

Height 

(m) 

Beam end deflection 

Connection with 

AREZ model 

ΔA’(m) 

Connection with 

Krawinkler’s PZ 

model 

ΔA(m) 

SAC 3 Loss 

Angeles 

 (Gupta and 

Krawinkler 

1999) 

1 W33x118 W14x311 Interior 9.14 3.96 .0 41903 0.4203 

2 W24x68 W14x311 Interior 9.14 3.96 0.1064 0.1065 

3 W30x116 W14x257 Exterior 9.14 3.96 0.4208 0.4232 

4 W24x68 W14x257 Exterior 9.14 3.96 0.9709 0.9747 

SAC 9 Loss 

Angeles  

(Gupta and 

Krawinkler 

1999) 

5 W36x135 W14x455 Interior 9.14 3.96 0.2409 0.2417 

6 W36x135 W14x370 Interior 9.14 3.96 0.3094 0.3104 

8 W36x160 W14x370 Exterior 9.14 3.96 0.2098 0.2114 

10 W27X84 W14X233 Exterior 9.14 3.96 0.6790 0.6822 

SAC20 Loss 

Angeles  

(Gupta and 

Krawinkler 

1999) 

11 W30x99 W24x335 Interior 6.10 3.96 0.1254 0.1262 

12 W30x108 W24x229 Interior 6.10 3.96 0.1373 0.1384 

13 W30x99 W24x192 Interior 6.10 3.96 0.1600 0.1613 

14 W30x99 W24x131 Interior 6.10 3.96 0.1634 0.1642 

SAC 3 Seattle 

(Gupta and 

Krawinkler 

1999) 

17 W24x76 W14x176 Interior 9.14 3.96 0.1139 0.1141 

18 W24X84 W14x176 Interior 9.14 3.96 0.1006 0.1008 

19 W24X76 W14x176 Exterior 9.14 3.96 0.9587 0.9625 

SAC 9 Seattle 

(Gupta and 

Krawinkler 

1999) 

20 W30x116 W24x229 Interior 9.14 3.96 0.3950 0.3963 

21 W24x76 W24x207 Interior 9.14 3.96 0.8265 0.8282 

22 W24x76 W24x162 Interior 9.14 3.96 0.8735 0.8754 

23 W30x116 W24x229 Exterior 9.14 3.96 0.3443 0.3467 

24 W24x76 W24x207 Exterior 9.14 3.96 0.7539 0.7575 

25 W24x76 W24x162 Exterior 9.14 3.96 0.7871 0.7909 

SAC 20 Seattle 

(Gupta and 

Krawinkler 

1999) 

26 W30x132 W24x229 Interior 6.10 3.96 0.1110 0.1119 

27 W30x132 W24x192 Interior 6.10 3.96 0.1207 0.1217 

28 W27x94 W24x162 Interior 6.10 3.96 0.3464 0.3481 

29 W30x132 W24x229 Exterior 6.10 3.96 0.0900 0.0919 

30 W30x132 W24x192 Exterior 6.10 3.96 0.0963 0.0984 

31 W27x94 W24x192 Exterior 6.10 3.96 0.1503 0.1530 

32 W24x62 W24x162 Exterior 6.10 3.96 0.2902 0.2942 

6 Story 

 (Kalkan and 

Kunnath 2006, 

Kalkan and 

Chopra 2010) 

33 W27x102 W14x176 Interior 6.10 3.96 0.2926 0.2983 

34 W24x68 W14x132 Interior 6.10 3.96 0.4900 0.5192 

36 W24x68 W14x132 Exterior 6.10 3.96 0.3726 0.3765 

37 W24x84 W14x90 Exterior 6.10 3.96 0.3769 0.3980 

13 Story  

(Kalkan and 

Kunnath 2006, 

Kalkan and 

Chopra 2010) 

38 W33x152 W14x426 Interior 9.75 3.96 0.3465 0.3475 

39 W33x152 W14x398 Interior 9.75 3.96 0.3587 0.3598 

40 W33x152 W14x426 Exterior 9.75 3.96 0.2822 0.2839 

41 W33x152 W14x398 Exterior 9.75 3.96 28.871 0.2905 
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nodes to form a parallelogram (see Fig. 11(a) and 11(b)). 
Four corners of the parallelogram are connected as 

simple pin connections. In order to model the stiffness of 

the PZ in the connection joint, a rotational spring is placed 

at one corner of the parallelogram (e.g., the upper right 

corner). This spring has a linear behavior and affects the 

elastic stiffness of the connection joint, and consequently, 

beam tip deflection or story drift. In the connection joint 

with the AREZ, the effect of krawinkler’s PZ model is 

applied to the connection area through rigid-end zones of 

the connecting beam(s) and columns. The rigid-end zones at 

the end of each connecting element (i.e., beam(s) and 

columns) are modeled using rigid elements as defined 

before for the krawinkler’s model. The dimensions of the 

rigid-end zones are determined by multiplying β, which is 

obtained from Eq. (20), to the depth of the beam(s) and 

columns of the connection joint. Table 1 shows the 

comparison between the analysis results of the connections 

with both Krawinkler’s PZ and AREZ models. 
 
 
6. Structural frame models 

 
In order to show the efficiency of the proposed model, a 

series of six SMFs ranging from 3- to 30-story is selected. 

Three of the building frame models are as part of the SAC 

steel project; 3- and 9-story of Lose Angeles structures, 

SAC 3 and SAC 9, and 20-story of Seattle structures, SAC 

20 (Gupta and Krawinkler 1999). Two other building frame 

models are 6- and 13-story SMFs, which have been used as 

case studies in several researches (Kalkan and Kunnath 

2006a, Kalkan and Kunnath 2006b, Kalkan and Chopra 

2010). The last building frame model is a 30-story SMF 

(Poursha et al. 2010). The information, including section 

properties, dimensions, and seismic mass of model 

buildings, are provided in the appendix.   

SAC 3 is a three-story and four-bay perimeter SMF, 

which is an office building, that was designed for the city of 

Loss Angeles, California. The bay width and story heights 

are 9.15m and 3.96m, respectively. The design yield 

strengths of beams and columns are 248106 Pa and 

345106 Pa, respectively. The structure was designed based 

on the seismic design requirements of the 1994 Uniform 

Building Code (UBC 94). At one bay, the first one from the 

right, all the beam connections are simple pin connection. 

Detailed information is provided in (Gupta and Krawinkler 

1999).  

SAC 9 is a nine-story and five-bay perimeter SMF, 

which is an office building. The building was designed for 

the city of Loss Angeles, California. The building has one 

basement, and its bay width and the height of typical stories 

are 9.15 m and 3.65 m, respectively. The height of the 

basement is 5.49 m. The design yield strengths of beams 

and columns are 248106 Pa and 345106 Pa, respectively. 

The structure was designed based on UBC 94. At one bay, 

the exterior one on the right-hand side, all the right beam 

connections are simple pin connection. At the ground level, 

the building is restrained in a horizontal direction. Detailed 

information is provided in (Gupta and Krawinkler 1999). 

 

SAC 20 is a twenty-story and five-bay perimeter SMF, 

which is used as an office building. The building was 

designed for the city of Seattle, Washington. The building 

has two basements. The bay width and the height of typical 

stories are 6.1 m and 3.96 m, respectively. The height of the 

basements is 3.65 m, and the height of the first story is 

5.49m. The design yield strength of beams and columns is 

345106 Pa. The structure was designed based on UBC 94. 

At the ground level and also at the level of basement 1, the 

building is restrained in the horizontal direction. Detailed 

information is provided in (Gupta and Krawinkler 1999). 

The 6-story SMF building is an instrumented building 

which is located in Burbank, California. The building has a 

rectangular plan, and its dimensions are 36.6 m by 36.6 m. 

The bay width is 6.1 m. The height of the first story and 

typical stories are 5.3 m and 4.0 m, respectively. The design 

yield strength of beams and columns is 303106 Pa, as 

established by coupon tests (Anderson and Bertero 1997). 

The structure was designed based on seismic design 

requirements of the 1973 Uniform Building Code (UBC 73). 

At one bay, the first one from the right, all the right beam 

connections are simple pine connection. Detailed 

information is provided in (Kalkan and Kunnath 2006a, 

Kalkan and Kunnath 2006b).  

The 13-story SMF building is an instrumented building 

which is located in South San Fernando Valley, California, 

about 5 km southwest of the Northridge epicenter. The N-S 

direction frame was adopted. The building has a rectangular 

plan, and its dimensions are 53.3 m and 53.3 m. The 

building has one basement. The bay width, the height of the 

basement, and the height of the first story are 9.75 m, 4.42 

m, and 4.88 m, respectively. The height of typical stories is 

4.013 m. The design yield strength of beams and columns is 

303106 Pa, as established by coupon tests (Anderson and 

Bertero 1997). The structure was designed based on UBC 

73. At the ground level, the building is restrained in a 

horizontal direction. Detailed information is provided in 

(Kalkan and Kunnath 2006a, Kalkan and Kunnath 2006b, 

Kalkan and Chopra 2010).  

The 30-story SMF building is a thirty-story and three-

bay perimeter steel moment frame as an office building. 

The building was designed for the city of Tehran, Iran. The 

bay width and the height of all stories are 5.0 m and 3.2 m, 

respectively. The design yield strength of beams and 

columns is 230106 Pa. The structure was designed based 

on the Iranian code of practice for the seismic resistant 

design of buildings (2800 standard 2005). The seismicity of 

the location is the highest based on the 2800 standard.  

Detailed information is provided in (Poursha et al. 2010). 

All SMFs are modeled in the OpenSees platform 

(Mckenna 1997). All Beam and column members are 

modeled as linear elastic elements (elasticBeamColumn 

elements). The PZ spring was modeled by a linear-elastic 

material, and the stiffness of the spring is given by Eq. (14). 

In order to include the second-order effects, P-Δ, leaning 

columns are modeled, and the gravity load tributary to the 

half of the building is applied to the leaning columns at the 

level of stories. Structural frame models are examined with 

the various condition of the PZs. First, the SMF models  
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with Krawinkler’s PZ model. Second, the frame models 

with the AREZ. The third and fourth cases consider two 

extreme conditions; β=0 represents the centerline model, 

and β=1 is a representative of completely rigid PZ. For the 

non-linear cases, non-linear models of 3-, 9-, and 20-story 

SMFs are developed in the OpenSees platform (Mckenna 

1997). Model buildings are idealized based on the 

concentrated plasticity approach. Rotational springs, located 

at the plastic hinge regions, are used to model the non-linear 

behavior of the beams and PZs. Columns were assumed to 

remain elastic except the column bases, which are assigned 

the non-linear rotational springs to simulate the expected 

behavior of SMFs at the base connections. 

The bilin material was assigned to rotational springs of 

beam elements to simulate the modified Ibarra-Medina-

Krawinkler deterioration model with a bilinear hysteretic 

response. The hysteretic response of this material had been 

calibrated with respect to experimental data, and regression 

formulas have been provided to estimate the deterioration 

parameters of the model. These relationships were 

developed by Lignos and Krawinkler (2009, 2011). The 

non-linear behavior of the PZ was simulated using the 

three-linear relationship developed by Krawinkler et al. 

(1971). Characteristics of Krawinkler’s PZ model can be 

found in Gupta and Krawinkler (1999). For each SMF 

model, four types of numerical models are employed. The 

first one represents the SMF with krawinkler’s PZ model. 

the second one considers the centerline SMF model with 

AREZ. the third and fourth models are SMFs with two 

extreme PZ conditions, β=0 and β=1. Table 2 summarizes 

the building models’ characteristics. 
 

 
7. Analysis procedure  
 

Linear static and dynamic time-history analyses are 

conducted to demonstrate the efficiency of the proposed 

model. Furthermore, non-linear dynamic analyses were 

conducted to validate the proposed model, AREZ, in the 

non-linear analysis of SMFs.  

 

 

 

 

 

Table 3 Equivalent static lateral force method information 

for frame building under investigation 

No. 

Stories 
h(m)1 Rw2 T(sec)3 W(N)4 V(N)5 

3 11.88 12 0.546 14676996.13 1098732.08 

6 25.3 12 0.962 13733403.78 704555.60 

9 40.84 12 1.378 49790189.87 2008745.70 

13 57.5 12 1.781 77026828.65 2621034.51 

20 88.08 12 2.452 55130902.65 1515726.17 

30 96 8 2.616 16560195.23 654137.67 

1: Height of building; 2: Response modification factor; 3: Code-

based period; 4: Total seismic weight; 5: Static base shear 

 

 

7.1 Static analysis 
 

For the linear analysis of building models, the 

Equivalent Lateral Force (ELF) method is used in the static 

lateral load analysis. Given that this paper just compares the 

frame models with krawinkler’s PZ model and the AREZ, 

for the sake of simplicity, the base shear and distribution of 

lateral forces over the height of the buildings are per UBC 

94 for all building models. Table 3 shows the base shear 

values as well as the weights of building frame models 

under consideration. 

 

7.2 Dynamic analysis 
 

In the case of linear and non-linear dynamic time-

history analysis, an ensemble of 20 scaled ground motion 

records is used. The ground motion records were provided 

for the Loss Angeles area (la records) as part of the SAC 

steel research project. These records have a return period of 

475 years. All ground motion records belong to the stiff soil 

condition. Table 4 shows ground motion characteristics. It 

should be noted that in this study, the authors just used the 

scaled record and did not conduct any further scaling 

procedures. As mentioned in the static analysis section, the 

goal is the comparison of the story drift ratios of SMFs with  

Table 2 Characteristics of building models 

No.  

Stories 
h (m) Ru

 
Period of vibrational modes (sec) 

T1
(1) T1

(2) T1
(3) T2

(1) T2
(2) T2

(3) T3
(1) T3

(2) T3
(3) 

3 11.88 12 1.01 0.9797 0.9798 0.3271 0.2978 0.3159 0.1714 0.1360 0.1602 

6 25.30 12 1.40 1.44 1.43 0.51 0.52 0.52 0.31 0.29 0.30 

9 40.84 12 2.2529 2.2119 2.1918 0.8374 0.8155 0.8264 0.4876 0.4771 0.66 

13 57.50 12 3.08 2.9773 3.0014 1.10 1.0458 1.0617 0.66 0.6185 0.6361 

20 88.08 12 3.7619 3.5813 3.5201 1.3587 1.2873 1.2725 0.7927 0.7487 0.7418 

30 96.0 8 3.8605 3.5271 3.5393 1.3911 1.2757 1.2773 0.8040 0.7397 0.7409 

h: Building height  

Ru: Response modification factor  

(1): Centerline model; (2): Model with PZ (Krawinkler’s PZ model); (3): Model with AREZ 
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krawinkler’s PZ model and those of SMFs with the AREZ 

model. More details about the selection and scaling 

procedure of the ground motion records are provided in 

(Somerville 1997). Table 5 shows the median base shear 

forces for individual buildings for this ground motion 

ensemble.  

 

 

 

 

 

 

8. Numerical results 
 

In this section, the IDR results from linear static and 

dynamic time history analysis of steel moment frames are 

presented (Figs. 12-23). In the dynamic time history 

analysis, the median IDR results of SMFs for ground 

motion ensemble are considered here. Besides, Figs. 24-26 

show the IDR results for 3-, 9-, and 20-story SMFs under 

non-linear time-history analysis. The median IDR results of  

Table 4 Ground motion characteristics 

Record Earthquake 

Name 

Earthquake Distance Scale Number of DT Duration PGA 

Name Magnitude (km) Factor Points (sec) (sec) (g) 

LA01 
Imperial Valley, 

1940, El Centro 
6.9 10 2.01 2674 0.02 39.38 0.461 

LA02 
Imperial Valley, 

1940, El Centro 
6.9 10 2.01 2674 0.02 39.38 0.676 

LA03 
Imperial Valley, 

1979, Array #05 
6.5 4.1 1.01 3939 0.01 39.38 0.394 

LA04 
Imperial Valley, 

1979, Array #05 
6.5 4.1 1.01 3939 0.01 39.38 0.488 

LA05 
Imperial Valley, 

1979, Array #06 
6.5 1.2 0.84 3909 0.01 39.08 0.302 

LA06 
Imperial Valley, 

1979, Array #06 
6.5 1.2 0.84 3909 0. 01 39.08 0.235 

LA07 
Landers, 1992, 

Barstow 
7.3 36 3.2 4000 0.02 79.98 0.421 

LA08 
Landers, 1992, 

Barstow 
7.3 36 3.2 4000 0.02 79.98 0.426 

LA09 
Landers, 1992, 

Yermo 
7.3 25 2.17 4000 0.02 79.98 0.520 

LA10 
Landers, 1992, 

Yermo 
7.3 25 2.17 4000 0.02 79.98 0.360 

LA11 
Loma Prieta, 1989, 

Gilroy 
7 12 1.79 2000 0.02 39.98 0.665 

LA12 
Loma Prieta, 1989, 

Gilroy 
7 12 1.79 2000 0.02 39.98 0.970 

LA13 
Northridge, 1994, 

Newhall 
6.7 6.7 1.03 3000 0.02 59.98 0.678 

LA14 
Northridge, 1994, 

Newhall 
6.7 6.7 1.03 3000 0.02 59.98 0.657 

LA15 
Northridge, 1994, 

Rinaldi  
6.7 7.5 0.79 2990 0.005 14.945 0.534 

LA16 
Northridge, 1994, 

Rinaldi  
6.7 7.5 0.79 2990 0.005 14.945 0.580 

LA17 
Northridge, 1994, 

Sylmar 
6.7 6.4 0.99 3000 0.02 59.98 0.569 

LA18 
Northridge, 1994, 

Sylmar 
6.7 6.4 0.99 3000 0.02 59.98 0.817 

LA19 
North Palm Springs, 

1986 
6 6.7 2.97 3000 0.02 59.98 1.019 

LA20 
North Palm Springs, 

1986 
6 6.7 2.97 3000 0.02 59.98 0.987 

Table 5 Median base shear values from time history analysis for individual buildings 

Buildings 3-Story 6-Story 9-Story 13-Story 20-Story 30-Story 

V (N) 
a b a b a b a b a b a b 

1574314.6 1539440.5 1028286.5 998394.4 2757043.3 2700248.4 2645446.3 2501964.5 1593246.2 1588264.2 848934.2 836977.3 

a) Frames with Krawinkler’s PZ; b) Frames with AREZ 
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Fig. 12 The 3-story IDRs for ELF method 

 
 

  

Fig. 13 The 3-story median IDRs under earthquake 

excitation 

 
 

  

Fig. 14 The 6-story IDRs for ELF method 

 
 

building models are provided to compare the results for 

different PZ conditions. 
 
 
 

 

  

Fig. 15 The 6-story median IDRs under earthquake 

excitation 

 
 
 

  

Fig. 16 The 9-story IDRs for ELF method 

 
 
 

  

Fig. 17 The 9-story median IDRs under earthquake 

excitation 

 
 
 
 
 
 

590



 
A simple panel zone model for linear analysis of steel moment frames 

 

 

  

Fig. 18 The 13-story IDRs for ELS method 

 
 
 

  

Fig. 19 The 13-story median IDRs under earthquake 

excitation 

 
 
 

  

Fig. 20 The 20-story IDRs for ELF method 

 
 
 

 

  

Fig. 21 The 20-story median IDRs under earthquake 

excitation 

 
 

  

Fig. 22 The 30-story IDRs for ELF method 

 
 

  

Fig. 23 The 30-story median IDRs under earthquake 

excitation 
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Fig. 24 The 3-story median IDRs for non-linear time-

history analysis 

 
 

  

Fig. 25 The 9-story median IDRs for non-linear time-

history analysis 

 
 

  

Fig. 26 The 20-story median IDRs for non-linear time-

history analysis 

 
 

9. Discussion of the numerical results 
 
As shown in Figs. 12-23, there is a good agreement 

between the IDR results of SMFs with Krawinkler’s PZ 

model and those of SMFs with the AREZ model under 

static and dynamic analyses. These figures clearly show the 

efficiency of the proposed model, as it reasonably calculates 

the deformation of Krawinkler’s PZ model, and 

subsequently, the IDRs of SMFs under consideration. As 

can be seen in Figs. 12-23, while the number of stories in 

the SMFs increases, the effect of PZ deformations becomes 

smaller, specifically in the case of dynamic analysis. Also, 

these figures show that the impact of PZ modeling in SMFs 

is more pronounced in the case of static analysis than 

dynamic analysis. Another observation from the IDR results 

of static and dynamic analysis of SMFs is that neither β=0 

nor β=1 is reliable factors to consider PZ deformations. 

Although the centerline model assumption may sometimes 

predict IDR response of SMFs accurately, there is not a 

specific situation to rely upon centerline model assumption 

as an alternative to PZ modeling in SMFs. In order to 

demonstrate the efficiency of Krawinkler’s model and the 

AREZ model compared to the Scissors PZ model, the 6-, 9-, 

and 20-story SMFs under consideration are also modeled 

considering the Scissors PZ model. These building frames 

are selected since they have relatively weak PZ to show the 

superiority of the krawinkler’s PZ model, and subsequently, 

the AREZ model over the Scissors PZ model. The stiffness 

relationship of the Scissors PZ model is the same as the 

relationship in (Rafezy et al. 2014). These SMFs are 

analyzed through static and dynamic time-history analyses. 

The results from both the static and dynamic analyses show 

the superiority of the krawinkler’s PZ model, as well as the 

AREZ model, over the Scissors PZ model. Figs. 14-17 and 

20-21 show the comparison of the IDR results of building 

frame models with different PZ conditions; Krawinkler’s 

PZ model, SMFs with the AREZ model, centerline model, 

SMFs with completely rigid-end zones, and Scissors PZ 

models. As these figures show, for SMFs with relatively 

weak PZs, the centerline model (i.e., β= 0) predicts IDRs 

better than SMFs with the Scissors PZ model; however, 

none of them has the accuracy of Krawinkler’s model. 

These figures also show the IDR results of the SMFs with 

two extreme PZ conditions; β= 0 and β=1. These two 

extreme conditions are considered to emphasize the 

accuracy of the Krawinkler’s PZ model, and as such, the 

accuracy and efficiency of the AREZ model in comparison 

with the Scissors PZ model.  

When it comes to the non-linear analysis of SMFs, Figs. 

24-26 show the applicability of the proposed model, even in 

the non-linear analysis of SMFs. These figures clearly show 

how accurately the AREZ model can predict the 

Krawinkler’s PZ deformations in SMFs. In the authors’ 

opinion, this is due to the increased length of the Beams and 

columns in SMFs with AREZ, such that this increase in the 

length of beams and columns reduces their stiffness, and to 

some extent, compensate the non-linear behavior of the PZ. 

Above all, based on the analysis results, in addition to the 

simplicity of the proposed model and its accuracy in the 
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linear analysis of SMFs, this model is capable of predicting 

the non-linear behavior of SMFs with acceptable accuracy. 

 

 

10. Conclusions 
 

In Krawinkler’s PZ model, it is assumed that the 

elements of the parallelogram are rigid; however, they 

cannot be modeled completely rigid. Instead, they are 

modeled using elements with high axial, shear, and flexural 

rigidity. Given the fact that utilizing these types of elements 

causes some issues regarding numerical convergence 

problems, the amount of rigidity of these elements should 

be chosen carefully. Besides, from a practical point of view, 

Krawinkler’s PZ model requires considering more degrees 

of freedom in the analytical model. Subsequently, the 

modeling and analysis will be time-consuming, especially 

in the case of dynamic time-history analysis. More 

importantly, practitioners prefer to adopt a more 

straightforward procedure to consider PZ deformation in the 

analytical model during the design procedure instead of 

some complex concepts related to PZ calibration parameters. 

Hence, in this study, an attempt is made to find a practical 

and straightforward approach to consider Krawinkler’s PZ 

deformation effect in SMFs. The proposed model will help 

to overcome the uncertainties and complexities regarding 

Krawinkler’s PZ model. In the proposed model, AREZ, the 

PZ effect is modeled implicitly through an appropriate rigid 

end-zone factor, which is applied to the centerline model. 

Also, it is feasible to apply to any structural analysis 

software. The AREZ model is compatible with both exterior 

and interior connections. It is believed that the AREZ model 

accurately takes into account the PZ deformations of 

Krawinkler’s model. In order to show the efficiency of the 

proposed model, a validation procedure is conducted in two 

steps. In the first step, the proposed model is applied to 41 

connection specimens, which have been taken apart from 

well-known building models. In the second step, linear 

static and dynamic time-history analyses are performed on 

the building models ranging from 3- to 30-story. Further 

non-linear time-history analyses have shown the validity of 

the proposed model in the non-linear analysis of SMFs. In 

these building models, four conditions of the PZ are 

considered; Krawinkler’s PZ model, the AREZ model, the 

centerline model, β=0, and a model with a completely rigid-

end zone, β=1. Both validation steps showed an acceptable 

accuracy of the proposed model.   

Following conclusions can be drawn from this study:  

 The proposed model avoids complexities regarding 

modeling procedure as well as complex concepts 

related to behavioral parameters of the Krawinkler’s 

PZ model. 

 When non-linear analysis of SMFs was adopted, the 

AREZ model showed that it has a reasonable 

accuracy on predicting the IDR demands of SMFs.  

 The proposed model has superiority over the EEZ 

model and the Scissors PZ model.   

 This simple model, AREZ, allows practitioners to 

consider PZ effects in the design procedure simply, 

and also it can simply be applied to any structural 

frame analysis software. 

 The proposed model, AREZ, reasonably predicts 

deformations related to Krawinkler’s PZ model in 

SMFs both in the static and dynamic time-history 

analysis. 

 The centerline model, β=0, and a completely rigid-

end zone, β=1, are not reliable models for 

considering PZ behavior in SMFs. 
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Appendix 
 
In this appendix, section properties, as well as 

dimensions of model buildings used in this paper, are 

presented. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table A1 Beam, column, doublar plate, and seismic mass for 3-story model building  

Story 

Columns 

Girder 

D o u b l a r  p l a t e  ( m ) 
Seismic Mass 

(kg) Exterior Interior 
Gravity (Axis 

F) 
Exterior  Interior 

1 W14x257 W14x311 W14x68 W33x118 0.0 0.0 4.78x10^5 

2 W14x258 W14x312 W14x68 W30x116 0.0 0.0 4.78x10^5 

3 W14x259 W14x313 W14x68 W24x68 0.0 0.0 5.17x10^5 

Note: The column on the axis F is gravity column and bend about weak axis 

The Beams between axes E and F have simple pin connections 

 

 

Fig. A1: Elevations for model buildings 
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Table A2 Beam, column, doublar plate, and seismic mass for 6-story model building 

Story 
Columns 

        Girder 
Doublar plate (m) 

Seismic Mass (kg) 
Exterior Interior Exterior Interior 

1 W14x176 W14x176 W30x116 0.0 0.0 2.714x10^5 

2 W14x176 W14x176 W27x102 0.0 0.0 2.312x10^5 

3 W14x132 W14x132 W24x68 0.0 0.0 2.312x10^5 

4 W14x132 W14x132 W24x68 0.0 0.0 2.312x10^5 

5 W14x90 W14x90 W24x84 0.0 0.0 2.312x10^5 

6 W14x90 W14x90 W24x68 0.0 0.0 1.821x10^5 

Note: The beam connections on the G axis are simple pin connections 

 

 

 

Table A3 Beam, column, doublar plate, and seismic mass for 9-story model building 

Story 
Columns 

Girder 
Doublar plate (m) 

Seismic Mass (kg) 
Exterior Interior Exterior Interior 

Ground Level W14x370 W14x500 W36x160 0.0 0.0 5.04x10^5 

1 W14x370 W14x500 W36x160 0.0 0.0 4.95x10^5 

2 
W14x370, 

W14x370 

W14x500, 

W14x455 
W36x160 0.0 0.0 4.95x10^5 

3 W14x370 W14x455 W36x135 0.0 0.0 4.95x10^5 

4 
W14x370, 

W14x283 

W14x455, 

W14x370 
W36x135 0.0 0.0 4.95x10^5 

5 W14x283 W14x370 W36x135 0.0 0.0 4.95x10^5 

6 
W14x283, 

W14x257 

W14x370, 

W14x283 
W36x135 0.0 0.0 4.95x10^5 

7 W14x257 W14x283 W30x99 0.0 0.0 4.95x10^5 

8 
W14x257, 

W14x233 

W14x283, 

W14x257 
W27x84 0.0 0.0 4.95x10^5 

9 W14x233 W14x257 W24x68 0.0 0.0 5.33x10^5 

Note: Column on line F bend about weak axis  

 

 

 

 

Table A4 Beam, column, doublar plate, and seismic mass for 13-story model building 

Story 
Columns 

Girder 
Doublar plate (m) 

Seismic  Mass (kg) 
Exterior Interior Exterior Interior 

Ground Level W14x500 W14x500 W36x194 0.0 0.0 7.13x10^5 

1 W14x500 W14x500 W36x230 0.0 0.0 6.81x10^5 

2 ,3 W14x426 W14x426 W33x152 0.0 0.0 6.13x10^5 

4,5 W14x398 W14x398 W33x152 0.0 0.0 6.13x10^5 

6,7 W14x311 W14x311 W33x152 0.0 0.0 6.13x10^5 

8,9 W14x283 W14x283 W33x141 0.0 0.0 6.13x10^5 

10,11 W14x257 W14x257 W33x130 0.0 0.0 6.13x10^5 

12 W14x159 W14x159 W33x118 0.0 0.0 6.13x10^5 

13 W14x159 W14x159 W27x84 0.0 0.0 3.065x10^5 
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Table A5 Beam, column, doublar plate, and seismic mass for 20-story model building 

Story 
Columns 

Girder 
Doublar plate (m) 

Seismic  Mass (kg) 
Exterior Interior Exterior Interior 

Basement 1 W24x229 W24x229 W12x14 0.0 0.0 - 

Ground Level W24x229 W24x229 W30x132 0.0 0.00635 - 

1 
W24x229, 

W24x229 

W24x229, 

W24x229 
W30x132 

0.0 0.00635 
2.82x10^5 

2 W24x229 W24x229 W30x132 0.0 0.00635 2.755x10^5 

3 
W24x229, 

W24x229 

W24x229, 

W24x229 
W30x132 

0.0 0.00635 
2.755x10^5 

4 W24x229 W24x229 W30x132 0.0 0.00635 2.755x10^5 

5 
W24x229, 

W24x192 

W24x229, 

W24x192 
W30x132 0.0 0.0127 2.755x10^5 

6 W24x192 W24x192 W30x132 0.0 0.0127 2.755x10^5 

7 
W24x192, 

W24x192 

W24x192, 

W24x192 
W30x132 

0.0 0.0127 
2.755x10^5 

8 W24x192 W24x192 W30x116 0.0 0.00635 2.755x10^5 

9 
W24x192, 

W24x192 

W24x192, 

W24x192 
W30x116 

0.0 0.00635 
2.755x10^5 

10 W24x192 W24x192 W27x114 0.0 0.00635 2.755x10^5 

11 
W24x192, 

W24x192 

W24x192, 

W24x192 
W27x114 

0.0 0.00635 
2.755x10^5 

12 W24x192 W24x192 W27x94 0.0 0.00635 2.755x10^5 

13 
W24x192, 

W24x162 

W24x192, 

W24x162 
W27x94 

0.0 0.00635 
2.755x10^5 

14 W24x162 W24x162 W27x94 0.0 0.00635 2.755x10^5 

15 
W24x162, 

W24x162 

W24x162, 

W24x162 
W27x94 

0.0 0.00635 
2.755x10^5 

16 W24x162 W24x162 W24x62 0.0 0.0 2.755x10^5 

17 
W24x162, 

W24x131 

W24x162, 

W24x131 
W24x62 

0.0 0.0 
2.755x10^5 

18 W24x131 W24x131 W21x57 0.0 0.0 2.755x10^5 

19 
W24x131, 

W24x131 

W24x131, 

W24x131 
W21x57 

0.0 0.0 
2.755x10^5 

20 W24x131 W24x131 W21x57 0.0 0.0 2.92x10^5 

Table A6 Beam, column, doublar plate, and seismic mass for 30-story model building 

Story 
Columns (BOX b*b*t) (m) 

G i r d e r 
D o u b l a r  p l a t e  ( m )  Seismic Mass 

(kg) Exterior Interior Exterior Interior 

1 to 11 B O X 0 . 5 x 0 . 5 x 0 . 0 3 5 B O X 0 . 5 x 0 . 5 x 0 . 0 3 5 B1 0.0 0.0 5.54x10^4 

12 to 14 B O X 0 . 4 5 x 0 . 4 5 x 0 . 0 3 B O X 0 . 5 x 0 . 5 x 0 . 0 3 5 B1 0.0 0.0 5.54x10^4 

15 to 19 B O X 0 . 4 5 x 0 . 4 5 x 0 . 0 3 B O X 0 . 5 x 0 . 5 x 0 . 0 3 5 B2 0.0 0.0 5.54x10^4 

20,21 B O X 0 . 4 5 x 0 . 4 5 x 0 . 0 3 B O X 0 . 4 5 x 0 . 4 5 x 0 . 0 3 B2 0.0 0.0 5.54x10^4 

22,23 B O X 0 . 4 5 x 0 . 4 5 x 0 . 0 3 B O X 0 . 4 5 x 0 . 4 5 x 0 . 0 3 B4 0.0 0.0 5.54x10^4 

24,25 B O X 0 . 4 5 x 0 . 4 5 x 0 . 0 3 B O X 0 . 4 5 x 0 . 4 5 x 0 . 0 3 B5 0.0 0.0 5.54x10^4 

26,27 B O X 0 . 4 0 x 0 . 4 0 x 0 . 0 2 5 B O X 0 . 4 0 x 0 . 4 0 x 0 . 0 2 5 B5 0.0 0.0 5.54x10^4 

28 B O X 0 . 3 0 x 0 . 3 0 x 0 . 0 2 B O X 0 . 3 0 x 0 . 3 0 x 0 . 0 2 B5 0.0 0.0 5.54x10^4 

29 B O X 0 . 3 0 x 0 . 3 0 x 0 . 0 2 B O X 0 . 3 0 x 0 . 3 0 x 0 . 0 2 B6 0.0 0.0 5.54x10^4 

30 B O X 0 . 2 5 x 0 . 2 5 x 0 . 0 1 5 B O X 0 . 2 5 x 0 . 2 5 x 0 . 0 1 5 B6 0.0 0.0 5.54x10^4 

597



 
Hamed Saffari and Esmaeil Morshedi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A7 Beam section properties for 30-story model building 

Beam Section ht              (m) tw (m) bf (m) tf  (m) 

 

B1 0.50 0.01 0.225 0.03 

B2 0.45 0.01 0.225 0.025 

B4 0.40 0.01 0.225 0.02 

B5 0.35 0.008 0.225 0.02 

B6 0.30 0.008 0.20 0.015 
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