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1. Introduction 
 

Metal foams are in the category of porous materials with 

low weight due to possessing different variations of 

porosities in them (Ahmed et al. 2019, Al-Maliki et al. 

2019). Applying mechanical loads to such material 

structures yields elastic deformations and changed 

vibrational properties. The variation of porosities in this 

material causes a significant difference between metal 

foams and other perfect metals. In a non-perfect metal, the 

material characteristics are notably influenced by pore 

variations. Also, this variation in pores can affect the 

vibration frequencies of engineering structures made of 

metal foams. This issue can be understood from the works 

done by Chen et al. 2015, 2016. Different from metal foams, 

there are also functionally graded (FG) or ceramic-metal 

materials in which pore variation effect is very important 

(Abdelaziz et al. 2017, Zarga et al. 2019, Zine et al. 2018, 

Medani et al. 2019, Meksi et al. 2019, Mahmoudi et al. 

2019, Draiche et al. 2019, Alimirzaei et al. 2019, Karami et 

al. 2019, Tlidji et al. 2019, Kaddari et al. 2020). In this 

material, pores may be produced in a phase between 

ceramic and material (Attia et al. 2018, Addou et al. 2019). 

Engineering structures made of this materials are studied to 

understand their vibration behaviors as reported in the 

works of Wattanasakulpong et al. (2014), Atmane et al. 

2015). This type of material is used in different structures 

such as beams, plates and shells (Bellifa et al. 2017, 

Boukhlif et al. 2019). There are some studies on different 

structures in the literature (Nebab et al. 2019, Mirjavadi et 

al. 2017, 2018, 2019, Azimi et al. 2017, 2018). 
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Curved shell structures with single or double curvatures 

have been placed in the category of modern structural 

elements, mostly employed in some industrial applications 

including space vehicles, aircrafts, ocean constructions and 

in other substantial industrial fields. The investigation of 

static and dynamic behaviors of such structures is vital for 

having an efficient and dependable design (Kim et al. 2019, 

Quan et al. 2019). Recently, some authors studied 

mechanical behaviors of curved shells made of different 

materials (Trinh and Kim 2018, 2019a). Zare Jouneghani et 

al. (2017) examined linear vibration properties of FG 

double-curve shells based on porosity effects. Zhao et al. 

(2019) examined linear vibrations of porous FG shells with 

considering general types of boundary conditions. Also, Li 

et al. (2019) provided a numerical solution for free 

vibrations of FG shells with double curvatures and non-

uniform thickness. Trinh et al. (2019) explored the 

temperature and porosity impacts on free vibration 

characteristics of FG double-curve shells. Most recently 

Trinh and Kim (2019b) presented a three-variable 

formulation for studying porous doubly-curved shells.  

All of above mentioned articles related to porous curved 

shells neglects the influences of geometrical imperfection 

and stiffeners. Geometry imperfections are created during 

operation life or set up of curved shells and result in 

changed mechanical properties (Barati and Zenkour 2018). 

Plates/shells having stiffeners have been classified as 

reinforced structures with enhanced load bearing capacity, 

and are extensively employed in novel industrial fields. 

Thus, there have been many studies on the stability and 

dynamics of stiffened structures (Duc et al. 2016). Based on 

above discussion, nonlinear stability analysis of 

geometrically imperfect and stiffened curved porous shells 

under mechanical loads is not performed yet.  
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Based on third-order shear deformation shell theory, the 

present paper investigates post-buckling properties of 

eccentrically stiffened metal foam curved shells/panels 

having initial geometric imperfectness. Metal foam is 

considered as porous material with uniform and non-

uniform models. The single-curve porous shell is subjected 

to in-plane compressive loads leading to post-critical 

stability in nonlinear regime. Via an analytical trend and 

employing Airy stress function, the nonlinear governing 

equations have been solved for calculating the post-

buckling loads of stiffened geometrically imperfect metal 

foam curved shell. New findings display the emphasis of 

porosity distributions, geometrical imperfectness, 

foundation factors, stiffeners and geometrical parameters on 

post-buckling properties of porous curved shells/panels. 

A porous material, for instance a steel foam, might be 

placed in the category of lightweight materials and can be 

applied in several structures such as curved panels. Often, 

pore variation along the thickness of shells results in a 

notable alteration in every kind of material property. When 

the pore distribution inside the material is selected to be 

non-uniform, the metal foam might be defined as a 

functionally graded material since its properties obey some 

specified functions. Herein, the following types of pore 

dispersion will be employed (Ahmed et al. 2019, Fenjan et 

al. 2019) 

 Uniform kind 
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The most important factors in above relations are the 

main values of material properties E2, G2 and 2 . Also, 

there are two important factors related to pores and mass 

which are e0 and em as 
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In above relations properties E1, G1 and 1 denote the 

material properties at top/bottom surfaces of the shell. 

Based on the open cell assumption of porous material, we 

use the following relations 
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Based on uniformly distributed pores, the following 

parameter is used in Eq. (1) as (Ahmed et al. 2019) 
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3. Governing equations 
 

In this article, third-order shell theory has been 

employed for mathematical modeling of the curved shells. 

Thus, the strain field can be introduced by (Duc and Quan 

2014, Zaoui et al. 2019) 
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(7) 

where 
2

1 4 / 3c h . The presented field contains 

transverse (w) and in-plane (u, v) components. Based on the 

higher-order shell assumption, stress-strain relations can be 

summarized as (Boulefrakh et al. 2019, Abualnour et al. 

2019, Addou et al. 2019, Balubaid et al. 2019, Bedia et al. 

2019, Belbachir et al. 2019, Berghouti et al. 2019, Bourada 

et al. 2019, Boutaleb et al. 2019, Chaabane et al. 2019, 

Khiloun et al. 2019, Hussain et al. 2019, Sahla et al. 2019) 

11 22 12 11 44 55 662

0 0 011 12

0 0 012 22

0 0 66

0 0 44

55

( ) ( )
, ,

1 2(1 )

0 0

0 0

0 0 0 0

x x

Qy y

xy xy

x

Q Q

Q

Q

Q

Q

E z E z
Q Q Q Q Q

z xz

yz yz

Q Q







 

 

 

 

 

  
   
   
   
    

   





   


    
   
    

    














 

(8) 

568



 
Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection 

 

where σi (i=x, y, xy) are stress field components. The 

stresses leads to below resultants via integrating Eq. (8) 

over shell thickness as 
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where Es is Young’s modulus of stiffeners; sx nd sy are 

spacing of longitudinal and lateral stiffeners; Asx and Asy are 

cross sections of stiffeners and 

0.5( ),    0.5( )x x y yz h h z h h     (21) 

Note that hx and hy are height of stiffeners; dx and dy are 

width of stiffeners. The well-known governing equations 

for a single-curved shells may be expressed by (Duc and 

Quan 2014) 
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in which kW and kp are linear and shear foundation 

parameters. Now, using Eqs. (9)-(19), it is feasible to 

achieve three strains based on below relations 
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(27) 

Now, the Airy stress function (F) can be introduced by 

(Chikh et al. 2016) 

2 2 2
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The specific compatibility relation of a single-curve 

shell taking into account geometric imperfectness might be 

written as (Duc and Quan 2014) 
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Placing Eq. (27) in Eq. (29) results in the compatibility 

equation of an imperfect metal foam curved shell as 
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(31) 

The post-buckling load of curved shell/panel may be 

calculated via solving Eqs. (24)-(26) and also Eq. (30). 

 

 

4. Solution approach 
 

Throughout the present chapter, the solution for the non-

linear governing equations related to post-buckling of a 

metal foam curved shell has been introduced. In order to 

investigate the mechanical post-buckling of simply-

supported shells, the freely moving boundary conditions 

become 

0
0,
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0
0,
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Next, the displacement components take the below forms 

(Ahmed et al. 2019, Khosravi et al. 2020) 
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where W and
*W define the deflection amplitudes and 

imperfectness amplitudes, respectively. For simply-

supported edges let  * sinyw w
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n n n ng g g y
    with 

/n n b  . In order to obtain stress function F , Eqs. 

(34)-(37) should be inserted into Eq. (30) together with 

satisfying boundary condition presented as Eqs. (32) and 

(33) which leads (Chikh et al. 2016) 
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The governing equation can be reduced to the following 

form via inserting Eqs. (34)-(38) into Eqs. (24)-(26) and 

simply collecting the coefficients of W and
*W by defining 

the coefficients as Sij 
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where Sij denote linear stiffness matrices and ni denote 

nonlinear stiffness components. Herein, Sij can be calculated 

by collecting the coefficients of W and
*W  and due to the 

reason that they have complex forms, it is not possible to 

express them in closed-form. Note that for studying 

nonlinear stability of single-curve shells under axial load 

(Px), it is crucial to consider Py=0. The nonlinear governing 

equation has been solved for finding post-buckling curves 

of the shell based on the variation of P =Px/(h*109) versus 

normalized deflection /W h . It must be stated that 

numerical investigations have been carried out based upon 

the following non-dimension definitions of the elastic 

foundation 

2
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5. Discussions on findings 
 

In this chapter, post-buckling of a porous single-curved 

shell modeled via nonlinear imperfect third-order shell  
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theory gas been represented based upon offered solution 

approach. The single curved shell with stiffeners is shown 

in Figs.1 and 2. Also, porosity distributions are indicated in 

Fig.3. The adherence of non-linear buckling loads to the 

porosity distributions, foundation parameters, dimensionless 

amplitude, stiffeners, geometrical imperfection and 

geometrical factors will be discussed. As the first step, post-

buckling behavior of ideal and imperfect flat panels 

(a/Rx=b/Ry=0) has been checked in comparison with those  

 

 

 

 

 

 

reported by Chikh et al. (2016) based on functionally 

graded (FG) flat panel model, as represented in Table 1. 

According to the table, buckling loads have been 

represented based upon both ideal (
* / 0W h  ) and 

imperfect ( * / 0.1W h  ) flat panel and diverse non-

dimension amplitude. In this research, obtained results 

based on metal foam material are presented using the below 

properties: 

 

 
Fig. 1 Geometry of stiffened curved shells 

 

Fig. 2 Geometry and spacing of stiffeners 

  
(a) Uniform (b) Non-uniform 

Fig. 3 Two types of porosity distributions inside metal foam 

571



 
Seyed Sajad Mirjavadi, Masoud Forsat, Mohammad Reza Barati and A.M.S. Hamouda 

 

 

 

 

 

 𝐸2 = 200 GPa, 𝜌2 = 7850 𝑘𝑔/𝑚3, 𝑣 = 0.33,  

 

Fig. 4 shows the influence of porosity coefficient on the 

post-buckling load of geometrically perfect and imperfect 

porous curved shells at a/h=50 and 
* / 0.1W h   for 

uniform porosity distribution. Various values of porosity 

coefficient are considered (e0=0, 0.2 and 0.5). For an ideal 

(perfect) curved shell, the starting point ( / 0W h  ) is 

critical buckling load. But, for an imperfect doubly-curved  

 

 

 

 

shell (
* / 0W h  ), there is no critical buckling load, since 

the shell is at its initial deflection. It is well-known that the 

nonlinear buckling load gets smaller with the increase of 

dimensionless amplitude. Then, it becomes larger with more 

increment in dimensionless amplitude. Actually, the post-

buckling path of the single-curved shell is un-stable 

immediately after critical buckling. Also, increase of 

porosity coefficient results in smaller buckling loads for 

both ideal and imperfect curved shells. This is due to a  

 

Fig. 4 Nonlinear buckling load versus normalized deflection of the shell for various porosity coefficients (a/h=15, R/a=4, 

W*/h=0.1) 

 

Fig. 5 Nonlinear buckling load versus normalized deflection of the shell for various porosity distributions (a/h=15, R/a=4, 

W*/h=0.1, e0=0.5) 
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significant reduction in stiffness of single-curved shell in 

the presence of porosities inside the material structure. 

In Fig. 5, the load-deflection curves have been 

illustrated based on the types of porosity distribution at a 

fixed value of porosity coefficient e0=0.5. Obtained results 

show that the curved shell with non-uniform porosity 

distribution has higher nonlinear buckling load and pressure 

than uniform porosity distribution. This indicates that the 

curved shell with non-uniform distributed porosity can  

 

 

 

 

achieve the highest shell stiffness hence the best mechanical 

performance. Therefore, porosity distribution has a major 

role on the buckling behavior and should be considered in 

stability analysis of curved shells. As stated, the material 

properties of porous curved shells are constant thorough the 

thickness for uniform porosity distribution. While, the 

material properties are maximum at upper and lower 

surfaces for non-uniform porosity distribution.  

 

 

Fig. 6 Nonlinear buckling load versus normalized deflection of porous shell with and without stiffeners (a/h=15, R/a=4, 

W*/h=0.1, e0=0.2, sx=0.2a, hx=0.1h, dx=0.01a) 

 

Fig. 7 Nonlinear buckling load versus normalized deflection of stiffened porous shell based on various length-to-thickness 

rations (R/a=4, W*/h=0.1, e0=0.2, sx=0.2a, hx=0.1h, dx=0.01a) 
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Fig. 6 indicates the post-bucking curves of the porous 

shell with and without the effect of stiffeners. Uniform 

porosity distribution with e0=0.2 is considered. Geometrical 

parameters of the stiffener are selected as sx=0.2a, hx=0.1h, 

dx=0.01a. This figure shows that stiffened curved shells 

have enhanced load carrying capacities since they are 

reinforced by a system of stiffeners. Therefore, post-

buckling loads of stiffened curved shells are higher than 

those of curved shells without stiffeners. As stated before,  

 

 

 

 

porous curved shells have smaller buckling loads than 

perfect one. So, their buckling curves can be enhanced by 

using stiffeners leading to higher buckling loads.  

Influence of length-to-thickness ratio (a/h) on post-

buckling behavior of metal foam single-curved shells is 

presented in Fig. 7. Both geometrically ideal (perfect) and 

imperfect curved shells are considered. It is evident that 

curved shells are more flexible at larger side-to-thickness 

ratios. Therefore, obtained post-buckling loads become  

 

Fig. 8 Nonlinear buckling load versus normalized deflection of porous shell based on various length-to-thickness rations 

(a/h=15, R/a=4, sx=0.3a, hx=0.1h, dx=0.01a, W*/h=0.1, e0=0.2) 

 

Fig. 9 Nonlinear buckling load versus normalized deflection of porous shell based on various length-to-thickness rations 

(a/h=50, R/a=4, e0=0.2) 
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smaller with increase of side-to-thickness ratio at a fixed 

value of normalized amplitude ( /W h ). However, obtained 

post-buckling loads for various values of side-to-thickness 

ratio depend on the magnitude of normalized amplitude. For 

smaller side-to-thickness ratios, post-buckling load 

increases with a higher rate with respect to normalized 

amplitude than higher side-to-thickness ratios or thinner 

shells. This is because the curved shell is stiffer at small 

side-to-thickness ratios. 

Fig. 8 indicates the variation of nonlinear buckling load 

of a metal foam single-curved shell versus dimensionless 

amplitude for various linear (KW), shear (KP) foundation 

parameters at e0=0.2. It should be mentioned that the shear 

layer provides a continuous interaction with the curved shell, 

while linear layer has a discontinuous interaction with the 

doubly-curved shell. Accordingly, shear coefficient (KP) has 

more effect on buckling loads than linear coefficient (KW). 

Increasing foundation parameters yields larger nonlinear 

buckling loads by enhancing the bending rigidity of the 

curved shell. 

Geometrical imperfection (
* /W h ) effect on post-

buckling behavior of metal foam doubly-curved shell is 

plotted in Fig. 11. One can see that the initial deflection of 

shell has a great influence on the post-buckling load-

deflection curves. As stated, the critical buckling load 

vanishes with the consideration of initial geometrical 

imperfection or in the region of the small bending. Actually, 

in the case of perfect configuration (
* / 0W h  ), the 

curved shell is first critically buckled. Then, shell buckling 

strength reduces with the rise of dimensionless amplitude 

until a minimum value then it increases. But, in the case of 

imperfect configuration (
* / 0W h  ), there is no buckling 

strength before the initial state of the shell. So, the buckling 

load is zero at the starting point for an imperfect curved 

shells. Finally, it can be deduced that post-buckling curves 

of perfect and imperfect curved shells become closer to 

each other at large dimensionless amplitudes. 

 
 

6. Conclusions 
 

The presented article dealt with the investigation of 

post-buckling behaviors of porous curved shells made from 

metallic foams having geometric imperfectness. The non-

linear imperfect third-order shell model was proposed for  

 

 

modeling of single curvature porous shells. Two kinds of 

pore dispersal were proposed. One could see that post-

buckling paths of metallic foam curved shell has 

dependency on the values of porosity factor, knowing that 

structural stiffness declines by the increase of porosity 

factor. Other substantial issue on post-buckling behaviors of 

the metallic foam curved shell was the kind of pore 

dispersal inside the material texture. The lowest post-

buckling loads were achieved for the case of uniform pore 

dispersal. Taking into account geometric imperfectness, the 

post-buckling loads were prominently distinct from ideal 

metallic foam curved shells. Also, it was reported that 

stiffened curved shells have enhanced load carrying 

capacities. 
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