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1. Introduction 
 

Nanotechnology is primarily concerned with fabrication 

of nanostructure elements (i.e., nanobars, nanobeams, 

nanoplates, and nanoshells), which enables a new 

generation of devices and systems with revolutionary 

properties and enhanced functionality. The understanding of 

mechanical behavior of nanostructures is essential in the 

development of such structures for  engineering 

applications. Among these nanostructures are nanobeams 

that attract more and more attention due to their great 

potential engineering applications, such as nanowires, nano-

probes, micro/nano-electromechanical systems (MEMS and 

NEMS), atomic force microscope (AFM), nanoactuators 

and nanosensors, Eltaher et al. (2013). Nanobeams are 

prone to buckling when they are subjected to inplane 

compressive forces. References dealing with buckling can 

be classified into two categories: the first is concerned with 

the linear buckling problem and the second is concerned 

with the nonlinear buckling problem. Within the linear 

buckling analysis, the main outcome is to find the critical 

buckling loads and the associated mode shapes, Eltaher et  
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al. (2016a). 

Fu et al. (2010) illustrated influences of the surface 

energies on the static buckling and dynamic behaviors of 

geometry nonlinear nanobeams by using Galerkin method. 

Ansari and Sahmani (2011) developed a non-classical 

solution to analyze bending and buckling responses of 

nanobeams including surface stress effects. Wang (2012) 

studied post-buckling behavior of supported nanobeams 

containing internal flowing fluid with two surface layers 

based on a nonlinear theoretical model. Eltaher et al. 

(2013a, 2014a) analyzed static and buckling behaviors of 

functionally graded Euler and Timoshenko nonlocal 

nanobeams by using finite element method. Eltaher (2014b) 

figured out effective of higher order strain gradient 

nanobeam model in analysis of static buckling stability of 

nanobeams. Sedighi and Daneshmand (2014) studied 

nonlinear transversely vibrating beams by the homotopy 

perturbation method with an auxiliary term. Khater et al. 

(2014) presented the impact of surface energy and thermal 

loading on the static stability of nanowires modeled as 

curved fixed–fixed Euler-Bernoulli beam. Oveissi et al. 

(2015) investigated axial wave propagation of CNTs 

conveying fluid. Chaht et al. (2015) addressed theoretically 

the bending and buckling behaviors of size-dependent 

nanobeams made of functionally graded materials (FGMs) 

including the thickness stretching effect based on the 

nonlocal continuum model. Sedighi and Bozorgmehri 

(2016) studied dynamic instability analysis of doubly 

clamped cylindrical nanowires in the presence of Casimir 

attraction and surface effects using modified couple stress 
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theory. Eltaher et al. (2016b) illustrated effects of thermal 

load and shear force on the buckling of nonlocal nanobeams 

by using higher-order beam theories. Ahouel et al. (2016) 

developed a nonlocal trigonometric shear deformation beam 

theory based on neutral surface position for bending, 

buckling, and vibration of FG nanobeams using the 

nonlocal differential constitutive relations of Eringen.  

Oveissi et al. (2016a, b, 2017) studied longitudinal and 

transverse vibrations and instabilities of CNTs conveying 

fluid considering size effects of nanoflow and 

nanostructure. Ouakad et al. (2017) investigated nonlinear 

internal resonances of MEMS arch excited by static (DC) 

and dynamic (AC) electric forces. Shen et al. (2017) 

developed a microstructure-dependent dynamic model for 

silicon nanobeams with axial motion by considering the 

effects of nonlocal elasticity and surface energy. Ebrahimi 

et al. (2017) developed modified continuum model by using 

Gurtin-Murdach surface energy theory to investigate free 

vibration and buckling behaviors of nanobeams. Saffari et 

al. (2017) studied dynamic stability of functionally graded 

nanobeam based on nonlocal Timoshenko theory 

considering surface effects. Bellifa et al. (2017) developed 

nonlocal zeroth-order shear deformation theory in analysis 

of nonlinear postbuckling behavior of nanoscale beams. 

Mercan and Civalek (2017) investigated stability of the 

Silicon carbide nanotube in the static buckling case with 

surface effect and nonlocal continuum theory. Mirkalantari 

et al. (2017) developed a modified continuum model based 

on strain gradient and surface stress effect to study pull-in 

instability analysis of rectangular nanoplate. Based on the 

nonlocal elasticity differential model of Eringen and 

nonlinear Bernoulli-Euler beam theory, Emam et al. (2018) 

studied the postbuckling and free vibration response of 

geometrically imperfect multilayer nanobeams subjected to 

a pre-stress compressive load. Foroutan et al. (2018) 

analyzed buckling of current-carrying nanowires in the 

presence of a longitudinal magnetic field accounting for 

both surface and nonlocal effects. Mohammadimehr et al. 

(2018) explored static, buckling and free vibration 

behaviors of a micro compositebeam reinforced by single-

walled carbon nanotubes (SWCNTs) with considering 

temperature-dependent material properties and surface 

effect properties. Oveissi et al. (2018) investigated effects 

of axially moving carbon nanotube, nanoflow, and Knudsen 

number on the vibrational behavior of the system by using 

nonlocal elasticity. Almitani (2018) studied buckling 

characteristics of both nonlinear symmetric power and 

sigmoid FG beams. 

Mohamed et al. (2019) and Eltaher et al. (2019) 

investigated buckling and post-buckling behaviors of 

imperfect single walled carbon nanotube (SWCNT) 

modeled as a beam structure by using energy-equivalent 

model to include the size scale effect. Barati and Zenkour 

(2019) studied thermal post-buckling of a geometrically 

imperfect nanoscale piezoelectric beam under closed circuit 

condition accounting for the flexoelectricity and surface 

effects. Hashemian et al. (2019a) presented comprehensive 

beam models for buckling and bending behavior of simple 

nanobeam based on nonlocal strain gradient theory and 

surface effects. Hashemian et al. (2019b) investigated 

viscous fluid flow and dynamic stability of CNTs subjected 

to axial harmonic load coupled using Bolotin’s method. 

Benahmed et al. (2019) derived analytically critical 

buckling loads of FG nanoscale beam with porosities using 

nonlocal higher-order shear deformation. Esmaeili and Beni 

(2019) examined buckling and vibration behaviors of FG 

flexoelectric nanobeam. Jena et al. (2019) presented effects 

of surface energy and surface residual stresses on the 

stability of different types of SWCNTs rested in Winkler 

elastic foundations and exposed to the low and high 

temperature environments. Yousefzadeh et al. (2019) 

analyzed buckling of a multi-layered nanocomposite 

rectangular plate reinforced by SWCNTs rested on elastic 

medium considering nonlocal theory of Eringen. 

Mohamed et al. (2020) studied buckling and post-

buckling of SWCNT by using energy-equivalent model and 

higher order shear deformation of beam. Hamidi et al. 

(2020) presented theoretical analysis of thermoelastic 

damping of silver nanobeam resonators based on Green–

Naghdi via nonlocal elasticity with surface energy effects. 

Khabaz et al. (2020) presented optimal vibration control of 

multi-layer micro-beams actuated by piezoelectric layer 

based on modified couple stress and surface stress elasticity 

theories. Eltaher et al. (2020a) and Hamed et al. (2020) 

studied the buckling of composite beam structure with and 

without elastic foundation under varying axial load. 

Hadipeykani et al. (2020) predicted the glass transition 

temperature and volumetric thermal expansion coefficient 

of thermoset polymer-based epoxy nanocomposite 

reinforced by CNT by using molecular dynamics 

simulation. Malikan and Eremeyev (2020) predicted 

theoretically post-critical axial buckling behavior of conical 

carbon nanotubes based on the Euler-Bernoulli beam 

model, Lagrangian strains, and nonlocal strain gradient 

theory, and surface effect. Pirmoradian et al. (2020a) 

investigated thermo-mechanical stability of single-layered 

graphene sheets embedded in an elastic medium under 

action of a moving nanoparticle. Pirmoradian et al. (2020b) 

studied the effect of size-dependent on vibration and 

stability of DWCNTs subjected to moving nanoparticles 

and embedded on two-parameter foundations.  

 Etching holes, perforation and cutouts of structures are 

compulsory in some modern applications such as in heat 

exchangers, nuclear power plants, filtration and 

microeletromicanical system (MEMS), Almitani et al. 

(2019). In micro and nanostructures, perforation is often 

necessary for sacrificial-layer removal, representing a 

technological constraint for the designer, De Pasquale et al. 

(2010). The perforated beam and plates of MEMS are used 

to reduce the gas forces of oscillating structures, the 

squeeze film damping, and increase the switching speed, 

Rebeiz (2003). Further analysis reveals that perforated 

structure improves the switching time of the switch and also 

affects the capacitance of the switch, Bendali et al. (2006). 

Luschi and Pieri (2014, 2016) developed closed expressions 

for the equivalent bending and shear stiffness of clamped–

clamped beams with regular square perforations and 

determined their resonance frequencies. Guha et al. (2015) 

developed a modified capacitance model of RF MEMS 

shunt switch incorporating fringing field effects of 
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perforated beam. Bourouina et al. (2016) investigation of 

thermal loads and small-scale effects on free dynamics 

vibration of slender simply supported nonlocal perforated 

nanobeams with periodic square holes network. Guha et al. 

(2017) presented novel analytical model for optimizing the 

pull-in voltage in a flexure MEMS switch incorporating 

beam perforation effect. Eltaher et al. (2018a, b) developed 

an analytical model capable of predicting bending response, 

critical buckling loads and natural frequencies of perforated 

thin and thick nanobeams by using nonlocal differential 

form of Eringen model. Abdelrahman et al. (2019) and 

Almitani et al. (2019) studied the free and forced vibration 

of perforated beam with regular array of squares by using 

analytical method and derived closed forms for resonant 

frequencies, corresponding Eigen-mode functions. Rao et 

al. (2019) presented new analytical capacitance modeling of 

the perforated switch considering the fringing effect. Kerid 

et al. (2019) explored the magnetic field, thermal loads and 

small-scale effects on the dynamic vibration of Euler–

Bernoulli nanobeam structure composed of a rectangular 

configuration perforated with periodic square holes network 

and subjected to axial magnetic field. Bourouina et al. 

(2020) illustrated the influence of hole networks on the 

adsorption-induced frequency shift of a nonlocal perforated 

nanobeam. Eltaher and Mohamed (2020) derived closed 

form solution to evaluate the natural frequencies and mode 

shapes of nonlocal perforated nanobeams under general 

boundary conditions. Eltaher et al. (2020b) studied bending 

and vibration of piezoelectric nonlocal Euler-Bernoulli 

nanobeam with cutouts by using finite element method.  

Corresponding to author’s information, the analysis of 

static stability of perforated nanobeam with nanoscale and 

surface energy has not be considered elsewhere. So, this 

manuscript tends to fill this gap and present a unified 

comprehensive model including surface energy effects to 

study a buckling of perforated nanostructure. The 

manuscript is ordered as follows: equivalent geometrical 

and material properties of beams perforated are described in 

section 2. Kinematic relations, surface elasticity, nonlocal 

constitutive equations, and equilibrium equations of thin 

and thick perforated nanobeam are presented in section 3. 

Analytical solutions for critical buckling load of perforated 

nanobeam including surface effects are presented in section 

4. Model validation and parametric studies to present 

influences of filling ratio, the number of hole rows, surface 

material characteristics, beam slenderness ratio as well as 

the boundary conditions on the critical buckling loads are 

presented in section 5. Discussion and main points are 

summarized in Section 6. 

 

 

2. Geometrical modification 
 

Consider a regularly squared perforated nanobeam has 

the following geometrical characteristics: length L, 

thickness h, and width w. The regular squared pattern of 

perforation has the following characteristics: the spatial 

perforation period ls, hole side ls -ts, and the number of 

holes throughout the cross section is N, as shown in Fig. 1. 

 

 

 

Fig. 1 A perforated beam with the geometrical parameters 

Eltaher and Mohamed (2020) 

 

 

 

The perforated beam filling ratio (α) can be expressed as 

𝛼 =
𝑡𝑠
𝑙𝑠
,              0 < 𝛼 ≤ 1 (1) 

where ts is spatial period, and ls spatial perforation period. 

Assume that the total induced stress throughout the cross 

section is the same for both fully filled solid nanobeam and 

the corresponding perforated one. Also, the stress 

distribution throughout the filled segment in the perforated 

nanobeam is assumed to be linear and continuous. 

So, the equivalent bending stiffness and shear stiffness can 

be represented by Abdelrahman et al. (2019) 

2 2

2 3 3 2

2 3 2 3

( ) ( ) [ ( 1)( 2 )

/ ((1 ) 3

(3 2 3 ) )]

Perf SolidEI EI N N N

N N

N

 

  

    

   

   

   

 (2a) 

3( ) ( ) [( ( 1)) / 2 ]perf solidGA GA N N   (2b) 

in which E and 𝐺  are the elasticity modulus and shear 

modulus of the fully filled beam material, 𝐴 and I are the 

area and the second moment of area of the fully filled beam. 

The equivalent mass [(𝜌𝐴)𝑃𝑒𝑟𝑓]  and moment of inertia 

[(𝜌𝐼)𝑝𝑒𝑟𝑓] per unit length of the perforated nanobeam can 

be also expressed by Eltaher et al. (2018a,b) 

(𝜌𝐴)𝑃𝑒𝑟𝑓 = (𝜌𝐴)𝑠𝑜𝑙𝑖𝑑 {
[1 − 𝑁(𝛼 − 2)]𝛼

𝑁 + 𝛼
} (3a) 

(𝜌𝐼)𝑝𝑒𝑟𝑓 = (𝜌𝐼)𝑠𝑜𝑙𝑖𝑑

{
 
 

 
 𝛼(2 − 𝛼)𝑁3 + 3𝑁2

(𝑁 + 𝛼)3
−

2𝛼(𝛼 − 3)(𝛼2 − 𝛼 + 1)𝑁 + 𝛼2 + 1

(𝑁 + 𝛼)3 }
 
 

 
 

 (3b) 

Assuming small unit cells and N>>1, the equivalent 

mass density is obtained by averaging the unit cell mass 

over its volume, thus giving, Luschi and Pieri (2016) 

(𝜌)𝑃𝑒𝑟𝑓 = (𝜌)𝑠𝑜𝑙𝑖𝑑{[(2 − 𝛼)]𝛼} (4) 

From Eqs. (3) and (4) the equivalent cross-sectional area 

and 2nd moment of area of perforated nanobeam are  
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(𝐴)𝑃𝑒𝑟𝑓 =
(𝜌𝐴)𝑠𝑜𝑙𝑖𝑑

(𝜌)𝑃𝑒𝑟𝑓
{
[1−𝑁(𝛼−2)]𝛼

𝑁+𝛼
}  

    = (𝐴)𝑠𝑜𝑙𝑖𝑑  {
[1−𝑁(𝛼−2)]

(𝑁+𝛼)(2−𝛼)
} 

(5a) 

(𝐼)𝑝𝑒𝑟𝑓 = (𝐼)𝑠𝑜𝑙𝑖𝑑

{
 
 

 
 (2 − 𝛼)𝑁3 + 3𝑁2

(2 − 𝛼)(𝑁 + 𝛼)3
−

2(𝛼 − 3)(𝛼2 − 𝛼 + 1)𝑁 + 𝛼2 + 1

(2 − 𝛼)(𝑁 + 𝛼)3 }
 
 

 
 

 (5b) 

Consequently, the equivalent geometrical characteristics of 

the surface layer can be expressed as 

(𝐴𝜏𝑠)𝑝𝑒𝑟𝑓 = (𝐴𝜏𝑠)𝑠𝑜𝑙𝑖𝑑  {
[1 − 𝑁(𝛼 − 2)]

(𝑁 + 𝛼)(2 − 𝛼)
} (6) 

in which 𝜏𝑠 is the surface residual stress.  
 
 
3. Mathematical formulation 
 

In this section, the mathematical formulation of 

perforated nanobeams considering surface energy effects is 

presented through this section. Both Euler Bernoulli beam 

theory (EBBT) and Timoshenko beam theory, (TBT) are 

considered throughout this study. 

 
3.1 Strain-Displacement relation  
 
The displacement field of beam generalized beam theory 

can be depicted in a general form as 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢𝑜(𝑥, 𝑡) − 𝑧
∂𝑤(𝑥, 𝑡)

𝜕𝑥

+ 𝛾(𝑧) (
∂𝑤(𝑥, 𝑡)

𝜕𝑥
+ Φ(𝑥, 𝑡)) 

(7a) 

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) (7b) 

where ux, and uz  are the total displacements along the 

coordinate directions (x, z), and uo, w, and Φ denote the 

axial, transverse and angular displacements of a point on the 

neutral axis. While γ(z) is the beam shape function which 

can be written as, Ansari and Sahmani (2011)  

𝛾(𝑧) = 0      (𝐸𝐵𝐵𝑇) 

   &      𝛾(𝑧) = 𝑧           (𝑇𝐵𝑇) 
(8) 

Using the linear strain-displacement relations, the 

components of normal strain εxx, shear strain, εxz are, Yang 

et al. (2002), Ansari and Sahmani (2011) 

𝜀𝑥𝑥(𝑥, 𝑡)

=

{
 

  
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥, 𝑡)

𝜕2𝑥
    (𝐸𝐵𝐵𝑇)  

𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥, 𝑡)

𝜕𝑥
   (𝑇𝐵𝑇)

 (9a) 

𝜀𝑥𝑧(𝑥, 𝑡)

= {

0                                  (𝐸𝐵𝐵𝑇)

 
1

2
(
𝜕w(𝑥, 𝑡)

𝜕𝑥
+   Φ(𝑥, 𝑡))   (𝑇𝐵𝑇)

 (9b) 

 
3.2 Constitutive equations  
 

Considering the Poisson’s effect, the constitutive 

equations are given by, Yang et al. (2002) 

𝜎𝑥𝑥

=

{
 
 

 
 (1 − 𝜈)𝐸

(1 + 𝜈)(1 − 2𝜈)
(
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2w(𝑥, 𝑡)

𝜕𝑥2
)   (𝐸𝐵𝐵𝑇)

(1 − 𝜈)𝐸

(1 + 𝜈)(1 − 2𝜈)
(
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥, 𝑡)

𝜕𝑥
)     (𝑇𝐵𝑇)    

 (10a) 

𝜎𝑦𝑦 = 𝜎𝑧𝑧

=

{
 
 

 
 𝜆 (

𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2w(𝑥, 𝑡)

𝜕𝑥2
) = (

𝜈

1 − 𝜈
)𝜎𝑥𝑥   (𝐸𝐵𝐵𝑇)

𝜆 (
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥, 𝑡)

𝜕𝑥
) = (

𝜈

1 − 𝜈
)𝜎𝑥𝑥       (𝑇𝐵𝑇)

 (10b) 

𝜎𝑥𝑧 = {

2𝜇𝜀𝑥𝑧 = 0                           (𝐸𝐵𝐵𝑇)

2𝜅𝜇𝜀𝑥𝑧 =
𝜅𝐸

2(1 + 𝜈)
  (

𝜕w(𝑥, 𝑡)

𝜕𝑥
+   Φ(𝑥, 𝑡))  (𝑇𝐵𝑇) 

 (10c) 

with 𝐸̂ = 2𝜇 + 𝜆 is the equivalent modulus of elasticity, k 

is the shear correction factor, σxx and σxz denote to the 

components of the Cauchy normal and shear stress 

components, respectively, λ and μ are Lame's constants in 

classical elasticity which are related to the elasticity 

modulus and Poisson’s ratio as 

𝜇 =
𝐸

2(1 + 𝜈)
,       𝜆 =

𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
 (11) 

 

3.3 The surface elasticity theory 
 
According to the surface elasticity theory, developed by 

Gurtin and Murdoch (1975,1978), the surface layer of an 

elastic material satisfies distinct constitutive equations 

involving surface elastic constants and surface residual 

stress. The non-zero components of the surface stresses are, 

Mahmoud et al. (2012) 

𝜏𝑥𝑥 =

{
 
 

 
 𝜏𝑠 + (2𝜇𝑠 + 𝜆𝑠) (

𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2w(𝑥, 𝑡)

𝜕𝑥2
)   (𝐸𝐵𝐵𝑇)

𝜏𝑠 + (2𝜇𝑠 + 𝜆𝑠) (
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥, 𝑡)

𝜕𝑥
)      (𝑇𝐵𝑇)

 (12a) 

𝜏𝑧𝑥 = 𝜏𝑠𝑛𝑧  
𝜕w(𝑥, 𝑡)

𝜕𝑥
 (12b) 

where nz is the z-component of the unit outward normal 

vector to the beam lateral surface. μs and λs are the surface 

elastic constants and τs is the residual surface stress (i.e., the 

surface stress at zero strain). τzx is the out-of-plane 

components of the surface stress tensor.  In order to satisfy 

the surface conditions of the Gurtin Murdoch model, it is 

assumed that σzz varies linearly through the thickness of 
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nanobeam and satisfies the balance conditions on the 

surfaces, Lu et al. (2018). Therefore, σzz is given for both 

EBBT and TBT as follows, Eltaher et al. (2013b) 

𝜎𝑧𝑧 =
1

2
(𝜎𝑥𝑧

𝑠+ − 𝜎𝑥𝑧
𝑠−) +

𝑧

ℎ
(𝜎𝑥𝑧

𝑠+ + 𝜎𝑥𝑧
𝑠−) (13) 

𝜎𝑥𝑧
𝑠+ and 𝜎𝑥𝑧

𝑠− are the top and bottom fibers’ stresses, 

respectively. By substituting Eqs. (10) into Eq. (13), σzz can 

be obtained as; 

𝜎𝑧𝑧 =
1

2
(𝜏𝑛𝑥,𝑥

+ + 𝜏𝑛𝑥,𝑥
− ) +

𝑧

ℎ
(𝜏𝑛𝑥,𝑥

+ − 𝜏𝑛𝑥,𝑥
− ) 

    =
1

2
(𝜏𝑠𝑤𝑧,𝑥𝑥

+ − 𝜏𝑠𝑤𝑧,𝑥𝑥
− ) +

𝑧

ℎ
(𝜏𝑠𝑤𝑧,𝑥𝑥

+ + 𝜏𝑠𝑤𝑧,𝑥𝑥
− ) 

(14) 

Eq. (14) can be simplified as  

𝜎𝑧𝑧 =
2𝑧

ℎ
(𝜏𝑠

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
) (15) 

By using the expression for σzz, the components of stress 

for the bulk of nanobeam can be modified as 

𝜎𝑥𝑥 = 𝐸̂𝜀𝑥𝑥 + 𝜈𝜎𝑧𝑧 = 

{
 
 

 
 𝐸̂ (

𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
) +

2𝜈𝑧

ℎ
(𝜏𝑠

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
)  𝐸𝐵𝐵𝑇

𝐸̂ (
𝜕𝑢𝑜(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕Φ(𝑥, 𝑡)

𝜕𝑥
) +

2𝜈𝑧

ℎ
(𝜏𝑠

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
)   𝑇𝐵𝑇

 
(16) 

 

3.4 Equilibrium equations of perforated beams 
According to EBBT the equilibrium equations of perforated 

nanobeams with surface energy effects can be written as 

[(𝐸̂𝐼)
𝑒𝑞
−

2𝜈ℎ

12
(𝐴𝜏𝑠)𝑒𝑞 + (𝐸𝑠𝐼𝑝)𝑒𝑞]

𝑑4𝑤

𝑑𝑥4
− [

2(𝐴𝜏𝑠)𝑒𝑞

ℎ
−

𝑃𝑜]
𝑑2𝑤

𝑑𝑥2
+ 𝑞 = 0   

(17) 

Considering the TBT, the equilibrium equations can be 

expressed as 

2𝜈

ℎ
(𝐼𝜏𝑠)𝑒𝑞

𝑑3𝑤

𝑑𝑥3
+ [(𝐸̂𝐼)

𝑒𝑞
+ (𝐸𝑠𝐼𝑝)𝑒𝑞]

𝑑2Φ

𝑑𝑥2
−

𝜅(𝐺𝐴)𝑒𝑞 (Φ +
𝑑𝑤

𝑑𝑥
) = 0   

(18a) 

(
2

ℎ
(𝐴𝜏𝑠)𝑒𝑞 + 𝜅(𝐺𝐴)𝑒𝑞 − 𝑃0)

𝑑2𝑤

𝑑𝑥2
+ 𝜅(𝐺𝐴)𝑒𝑞

𝑑Φ

𝑑𝑥
+ 𝑞 = 0 (18b) 

Assuming rectangular cross-sectional area of the perforated 

nanobeam  

(𝐸𝑠𝐼𝑝)𝑒𝑞 = 𝐸𝑠 (
(𝐴)𝑒𝑞ℎ

2
+

ℎ3

6
)      &  

(𝐼𝜏𝑠)𝑒𝑞 =
ℎ2

12
 (𝐴𝜏𝑠)𝑒𝑞   

(19) 

 
 
4. Analytical solution 
 

In this section, closed form solutions for static 

deflection profile throughout the perforated nanobeam with 

different nonclassical boundary conditions considering both 

PEBBT and PTBT theories are presented.  

 

 

4.1 Critical buckling load for PEBNBs 
 
To develop a closed form solution for both the critical 

buckling load of PEBNBs, the components of both 

displacement and rotation can expressed in the following 

generalized form that satisfies all boundary conditions:  

𝑤(𝑥) = ∑𝑊𝑛 sin(𝛼𝑥)

∞

𝑛=1

   

   𝜑(𝑥) = ∑ Φ𝑛cos (𝛼𝑥)
∞
𝑛=1   

(20b) 

Where  

𝛼 =

{
  
 

  
 (

𝑛𝜋

𝐿
)               (𝑆 − 𝑆)

(
(2𝑛 + 1)𝜋

2𝐿
)           (𝐶 − 𝐶)

(
(2𝑛 − 1)𝜋

2𝐿
)           (𝐶 − 𝐹)

 
(20b) 

Substituting with Eqs. (20) in the governing equations 

of different beam theories, the critical buckling load of 

nanobeams considering the surface energy effects can be 

obtained by solving the resulting eigenvalue problems as 

[−(𝐸̂𝐼)
𝑒𝑞
+

2𝜈ℎ

12
(𝐴𝜏𝑠)𝑒𝑞 − 𝐸𝑠 (

(𝐴)𝑒𝑞ℎ

2
+

ℎ3

6
)]

𝑑4𝑤

𝑑𝑥4
+

[
2(𝐴)𝑒𝑞

ℎ
𝜏𝑠 − 𝑃𝑐𝑟]

𝑑2𝑤

𝑑𝑥2
= 0  

(21a) 

∑((𝛼)2𝐷𝐸 − 𝐾𝑠𝐸 + 𝑁0𝑃𝐸𝐵𝑁𝐵)(𝛼)
2𝑊𝑛 sin(𝛼𝑥)

∞

𝑛=1

= 0 (21b) 

𝐷𝐸 = [−(𝐸̂𝐼)𝑒𝑞 +
2𝜈ℎ

12
(𝐴𝜏𝑠)𝑒𝑞 − 𝐸𝑠 (

(𝐴)𝑒𝑞ℎ

2
+

ℎ3

6
)] , and    𝐾𝑠𝐸 = (

2(𝐴)𝑒𝑞

ℎ
) 𝜏𝑠  

(21c) 

(𝑃𝑐𝑟)𝑃𝐸𝐵𝑁𝐵 = 𝐾𝑠𝐸 − (𝛼)
2𝐷𝐸 (21d) 

 

4.2 Critical buckling load for PTNBs 
 

The critical buckling load of the PTNBs can be obtained 

by substituting Eq. (20) into Eqs. (18), thus one can write 

0 = −∑[(𝛼)3𝐾𝑆𝑇1 + (𝛼)𝐾𝑠ℎ𝑇]𝑊𝑛 cos(𝛼𝑥)

∞

𝑛=1

−∑[(𝛼)2𝐷𝑇

∞

𝑛=1

+ 𝐾𝑠ℎ𝑇] Φ𝑛 cos(𝛼𝑥)  

(22a) 

0 = −∑(𝛼)2(𝐾𝑆𝑇2 + 𝐾𝑠ℎ𝑇 − 𝑃𝑐𝑟)𝑊𝑛 sin(𝛼𝑥)

∞

𝑛=1

−∑(𝛼)𝐾𝑠ℎ𝑇

∞

𝑛=1

Φ𝑛 sin(𝛼𝑥) 

(22b) 

𝐾𝑆𝑇1 =
2𝜈ℎ(𝐴)𝑒𝑞𝜏𝑠

12
, 𝐾𝑆𝑇2 =

2(𝐴)𝑒𝑞

ℎ
𝜏𝑠, (22c) 
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  𝐷𝑇 = [(𝐸̂𝐼)
𝑒𝑞
+ (

(𝐴)𝑒𝑞ℎ

2
+
ℎ3

6
)𝐸𝑠], 

 𝐾𝑠ℎ𝑇 =  𝜅(𝐺𝐴)𝑒𝑞 

Eqs. (22(a)) and (22(b)) can be written as 

[
[(𝛼)3𝐾𝑆𝑇1 + (𝛼)𝐾𝑠ℎ𝑇] [(𝛼)2𝐷𝑇 + 𝐾𝑠ℎ𝑇]

[(𝛼)2(𝐾𝑆𝑇2 + 𝐾𝑠ℎ𝑇 − 𝑃𝑐𝑟)] (𝛼)𝐾𝑠ℎ𝑇
] {
𝑊𝑛
Φ𝑛
} = {

0
0
}  (23) 

The critical buckling load can be obtained from the 

following characteristic equation  

[(𝛼)3𝐾𝑆𝑇1+(𝛼)𝐾𝑠ℎ𝑇][(𝛼)𝐾𝑠ℎ𝑇]

(𝛼)2[(𝛼)2𝐷𝑇+𝐾𝑠ℎ𝑇]
− (𝐾𝑆𝑇2 + 𝐾𝑠ℎ𝑇 − 𝑃𝑐𝑟) = 0    (24a) 

(𝑃𝑐𝑟)𝑃𝑇𝑁𝐵𝑠 = 𝐾𝑆𝑇2 + 𝐾𝑠ℎ𝑇 −
[(𝛼)2𝐾𝑆𝑇1+𝐾𝑠ℎ𝑇][𝐾𝑠ℎ𝑇]

[(𝛼)2𝐷𝑇+𝐾𝑠ℎ𝑇]
  (24b) 

 

 

5. Numerical results 
 
5.1 Model Validation 
 
Within this section, the validity of the developed 

analytical procedure is verified by comparing the obtained 

results for both the critical buckling load of simply 

supported nanobeams with the corresponding results 

obtained by Ansari and Sahmani (2011). Consider a simply 

supported solid nanobeam having a slenderness ratio; (L/h) 

ranged from 10 to 50, width of w=h= 1 nm. The beam is 

made of iron with the following bulk characteristics are 

E=177.3 GPa, ν=0.27, and ρ=7000 kg/m3. The surface 

characteristics are; τs=1.7 N/m, us=2.5 N/m, λs=-8 N/m.  

 

 

 

Table 1 Classical and non-classical critical buckling loads 

corresponding to the lowest three buckling    modes for 

simply supported nanobeams EBBT (nN) 

(L/h) 

Ansari and Sahmani  

(2011) 
Present 

EBBT 

CL NCL CL NCL 

Critical buckling load for the 1st mode (nN) 

10 1.4582 4.6039 1.4582 4.6533 

20 0.3646 3.7010 0.3646 3.7133 

30 0.1620 3.5338 0.1620 3.5393 

40 0.0911 3.4752 0.09114 3.4783 

50 0.0583 3.4482 0.05833 3.4501 

Critical buckling load for the 2nd  mode (nN) 

10 5.8329  8.2158  5.8329 8.4132 

20 1.4582  4.6039  1.4582 4.6533 

30 0.6481  3.9351  0.6481 3.9570 

40 0.3646  3.7010  0.3646 3.7133 

50 0.2333  3.5926  0.2333 3.6005 

Critical buckling load for the 3rd mode (nN) 

10 13.1241  14.2355  13.1241 14.6796 

20 3.2810  6.1089  3.2810 6.2199 

30 1.4582  4.6039  1.4582 4.6533 

40 0.8203  4.0772  0.8203 4.1050 

50 0.5250  3.8334  0.5250 3.8512 

 

 

 

 

Table 2 Classical and non-classical critical buckling loads 

corresponding to the lowest three buckling    modes for 

simply supported nanobeams TBT (nN) 

(L/h) 

Ansari and Sahmani  

 (2011) 
Present 

TBT 

CL NCL CL NCL 

Critical buckling load for the 1st mode (nN) 

10 1.4226 4.5549 1.4226 4.6267 

20 0.3623 3.6932 0.3623 3.7116 

30 0.1616 3.5307 0.1616 3.5389 

40 0.0910 3.4736 0.0910 3.4782 

50 0.0583 3.4471 0.0583 3.4501 

Critical buckling load for the 2nd  mode (nN) 

10 5.3013  7.7531  5.3013 8.0132 

20 1.4226  4.5549  1.4226 4.6267 

30 0.6410  3.9192  0.6410 3.9517 

40 0.3623  3.6932  0.3623 3.7116 

50 0.2324  3.5880  0.2324 3.5998 

Critical buckling load for the 3rd mode (nN) 

10 10.7081  12.3356  10.7081 12.8384 

20 3.1058  5.9339  3.1058 6.0888 

30 1.4226  4.5549  1.4226 4.6267 

40 0.8089  4.0555  0.8089 4.0965 

50 0.5203  3.8213  0.5203 3.8477 

 

 

The developed procedure is applied to obtain both the 

critical buckling load for simply supported nanobeam for 

filling ratio, α=1 (fully filled) for classical (CL) and non-

classical (NCL) cases using the following beams theories: 

EBBT and TBT. The obtained critical buckling loads for the 

lowest three bucking modes and that obtained by Ansari and 

Sahmani (2011) are shown in Tables 1 and 2. It is noticed 

that good agreement is found between the obtained results 

and that obtained by Ansari and Sahmani (2011) for the 

three buckling modes for the two considered beams 

theories. 

 

5.2 Buckling analysis 
 

Variations of the lowest buckling load with the 

perforated beam filling ratio at N =4 for different boundary 

conditions (BCs) for both classical and nonclassical 

analysis are illustrated in Fig. 1. It may be seen that, for 

both classical and nonclassical analysis, the magnitude of 

the critical buckling loads are increased with increasing the 

filling ratio for both PEBBT and PTBT due to increasing 

the beam rigidity. Also, the deviation between the 

nonclassical and classical values of the critical buckling 

loads is increased with increasing beam filling ratio. 

Moreover, the magnitude of these loads are significantly 

influenced by the presence of surface effects. Depending on 

the material surface characteristics, the critical buckling 

loads could either be increased or decreased compared to 

the corresponding classical values. Additionally, it could be 

seen that the boundary conditions significantly affect the 

critical buckling load, smaller values of the nonclassical 

buckling load (Pcr[NCL])are obtained compared to the 

corresponding classical values (Pcr[CL]) for clamped – 

clamped (C_C) BCs while higher values of (Pcr[NCL]) are 
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detected for  both clamped -free(C_F) and Simply 

supported (S_S) BCs compared with the corresponding 

classical values (Pcr[CL]). 

Additionally, higher deviation between the nonclassical 

and classical values of Pcr is detected for C_F compared to 

that obtained for both C_C and S_S boundary conditions 

(BCs). Moreover, the surface residual stress, τs has a 

significant effect on the critical buckling load compared 

with that of the surface elasticity modulus, Es. It is also 

noticed that, for the considered slenderness ratio (L/h=10), 

smaller values of the critical buckling loads are obtained for 

PTBT compared to the PEBBT due to the shear deformation 

effect. The slenderness ratio significantly affects the critical 

buckling loads. The dependency of the lowest critical 

buckling loads on the perforated beam filling ratio for both 

PEBBT and PTBT at (L/h=40) at different boundary 

conditions is illustrated in Fig. 2. Increasing the beam 

perforated beam slenderness ratio (L/h=40) results in 

smaller values of the corresponding critical buckling loads 

of thick perforated beams (L/h=10). On the other hand, the 

shift between the classical and nonclassical critical buckling 

loads is increased due to increasing perforated beam surface 

area. Moreover, for thin beams (L/h=40) both PEBBT and 

PTBT give almost the same values of the critical buckling 

loads for C_F and S_S boundary conditions while small 

deviation is detected for C_C boundary conditions. 

Dependency of the critical buckling loads on the number 

of hole rows (N) at a fixed value of filling ratio (α=0.5) is 

illustrated in Fig. 3. It is seen that for both beams’ theories, 

the magnitude of the critical buckling loads is decreased 

with increasing the number of hole rows for both classical 

and nonclassical analysis due to the decrease of the beam 

rigidity. Moreover, due to the shear deformation effect, 

smaller values of the critical buckling loads are obtained for 

PTBT compared to the corresponding PEBBT. On the other 

hand, the surface elasticity and the surface residual stress 

are significantly affect the critical buckling loads for both 

PEBBT and PTBT. Large deviation between the 

nonclassical and classical critical buckling loads is detected 

because of residual stress compared with that obtained due 

to the surface elasticity. Also, the boundary conditions 

significantly affect the magnitude and deviation between 

the nonclassical and classical critical buckling loads. Higher 

deviation is detected for C_F compared to both C_C and 

S_S boundary conditions. 

To demonstrate the effect of slenderness ratio on the 

critical buckling load, the critical buckling load is detected 

for perforated beams with slenderness ratio of (L/h=40), as 

illustrated in Fig. 4. It may be noticed that both PEBBT and 

PTBT results in the same critical bulking loads for S_S and 

C_F BCs while small deviation is still found for C_C BCs. 

Moreover, the deviation between the classical and 

nonclassical critical buckling loads is increased by 

increasing the perforated beam slenderness ratio due to 

increasing the perforated beam surface area to bulk volume 

ratio. 

 

 

 

 
Fig. 1 Variation of the critical buckling load with the filling 

ratio for both PEBBT and PTBT for different BCs at 

L/H=10 
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Fig. 2 Variation of the critical buckling load with the filling 

ratio for both PEBBT and PTBT for different BCs at 

L/H=40 

 

 

 

Fig. 3 Variation of the critical buckling load with the 

number of hole rows for both PEBBT and PTBT for 

different BCs at L/H=10 
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Fig. 4 Variation of the critical buckling load with the 

number of hole rows for both PEBBT and PTBT for 

different BCs at L/H=40 

6. Conclusions 
 

An analytical methodology capable of investigating the 

critical buckling for perforated beams incorporating the 

surface stress effects is presented. The Gurtin-Murdoch 

(GM) surface elasticity theory is adopted to incorporate the 

surface energy effects. Regular square holes are considered 

through perforation process. Both PEBBT and PTBT are 

considered to explore the shear deformation effect 

associated with the perforation process. Explicit forms for 

the non-classical critical buckling loads are developed 

relevant to each type of beam theory considering different 

nonclassical boundary and loading conditions. The 

proposed non-classical procedure is verified by comparing 

the obtained results with the previous published results and 

an excellent agreement is obtained. The obtained numerical 

results revealed the following concluding remarks: 

 

 Surface stresses significantly affect the critical 

buckling loads. this effect is mainly due to size 

dependent. The difference of the obtained results 

obtained based on the nonclassical surface elasticity 

model and the corresponding results based on 

classical models relies on the magnitudes of the 

surface properties.  

 Increasing the perforated nanobeam aspect ratio 

results in increasing the difference between the 

classical and nonclassical values of critical buckling. 

 The surface residual stress,  has more significant 

effect on the critical buckling loads with the 

corresponding effect of the surface elasticity, Es.  

 As the number of holes throughout the cross section 

of the perforated nanobeams increases the lowest 

critical buckling load decreases due to decreasing the 

beam bending stiffness.  

 The perforated nanobeams filling ratio significantly 

affects buckling behavior of perforated nanobeams. 

As the filling ratio increases the lowest critical 

buckling load increases due to increasing the beam 

bending stiffness.   

 For perforated nanobeams with lower aspect ratio 

(L/h) the Euler Bernoulli beam theory can’t 

effectively investigate the buckling behavior of 

perforated nanobeams especially at lower values of 

filling ratio (α<0.5).  

 The nonclassical boundary conditions significantly 

affect the buckling behaviors of perforated 

nanobeams. 
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