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1. Introduction 
 

Recently, the development in the field of engineering 

materials has disclosed the advantages associated with the 

smart/intelligent materials (Sahu et al. 2018, Singhal et al. 

2018). Incorporation of these smart materials in various 

multifunctional structures has paved way for tremendous 

changes in different engineering fields. Among them, 

magneto-electro-elastic (MEE) materials are unique as a 

matter of fact that it exhibits triple energy conversion 

between elastic, electrical and magnetic fields (Pan and Han 

2005, Li and Hu 2016). Therefore, it has become a potential 

candidate for sophisticated applications such as vibration 

control, energy harvesting, sensors and actuators etc. More 

recently, attempts were made to synthesize MEE structures 

through composite materials and improvise the structural 

functionalities. For example, the mechanical characteristics 

of multi-phase MEE materials may be controlled via the 

variation of material composition and portion of each phase 

(Mirjavadi et al. 2019, Ahmed et al. 2019). Having realized 

that the smart structures made of magneto-electro-elastic 

materials with different material composition play a 

significant role in industrial fields many pioneers have 

devoted their research to assess the mechanical response in 

various working environments (Kumaravel et al. 2007, 

Annigeri et al. 2007). 

At nano range, significant influence of size effects is 

noticed on both physical as well as the mechanical 

properties. This phenomenon has motivated few researchers 

to divert their focus towards assessing the mechanical  
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response of the nanostructures. The major limitation of the 

classical continuum mechanics is its inefficiency to model 

small size structures which paved way for the establishment 

of higher order continuum theories which incorporates the 

size dependency of structure with ease (Boutaleb et al. 

2019, Tlidji et al. 2019, Semmah et al. 2019, She et al. 

2018, Saffari et al. 2017, Soltani et al. 2019). The Eringen’s 

nonlocal elasticity theory (Eringen 1972) proved to be 

handy in employing the size-effects. Due to the reason that 

performing experiment on a nano-size structure is still hard, 

many articles have been published to make the best 

utilization of this theory in evaluating the size-dependent 

structural response (Li et al. 2018, Al-Maliki et al. 2019, 

Uzun and Civalek 2019, Wu et al. 2018). The major 

outcome of these researches indicate that with the higher 

value of nonlocal parameter, that nonlocal elastic models 

are efficient enough only to yield stiffness-softening effect. 

Incorporating the Eringen’s nonlocal elasticity theory few 

researchers attempted to analyze the MEE or piezo-

magnetic nanostructures. With usage of nonlocal theory, a 

study on linear vibrational properties of intelligent nano-

size beams has been represented by Ke and Wang (2014). 

Moreover, Jandaghian and Rahmani (2016) represented 

linear vibrational investigation of intelligent nano-size 

beams based on elastic foundations. In another research, 

vibrational properties of a functionally graded intelligent 

nano-scale beam with usage of nonlocal theory have been 

examined by Ebrahimi and Barati (2017).  

In view of the above, the aim of the present article is to 

develop a multi-phase MEE nanobeam resting on nonlinear 

elastic substrate for dynamical analysis within the 

framework of nonlocal elasticity theory. It is supposed that 

the MEE composite has two phases with piezoelectric and 

magnetic constituents. Eringen’s elasticity theory is served  
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to study the nano-scale effect. Additionally, the equilibrium 

equations of nanobeam with MEE properties are derived 

utilizing Hamilton’s principle and von-Kármán geometric 

nonlinearity. Then, an approximate solution based on 

Galerkin’s technique has been provided. A parametrical 

study is carried out to examine the influence of nonlocality, 

various piezoelectric volume, electro-magnetic field and 

elastic substrate coefficients on the structural performance 

of such nano-scale systems. The results of this paper can be 

a good reference for designing and optimizing the smart 

structures under dynamic loads. 

 

 

2. Two-phase composite of magneto-electro-elastic 
type 
 

Fig. 1 indicates a nano-scale beam made of magneto-

electro-elastic composite with two phases. Material 

properties of multi-phase MEE composite rely on the 

percentage and volume of piezoelectric phase (Vf). This 

article studies a nanobeam constructed by a composite of  

 

 

 

BaTiO3-CoFe2O4 for which Table 1 is devoted to represent 

the material properties. For such materials, BaTiO3 denotes 

the piezo-electrical ingredient and also CoFe2O4 denotes the 

piezo-magnetic ingredient. Based on Table 1, elastic (Cij), 

piezo-electrical (eij) and magneto-electric (qij) parameters 

have been presented. Furthermore, kij, dij and xij indicate the 

dielectric, magneto-electrical and magnetic permeability 

coefficients, respectively.  

 

 

3. Formulation according to refined beam theory 
 

So far, different beam and plate theories are available in 

the literature (Fenjan et al. 2019, Zarga et al. 2019, 

Chaabane et al. 2019, Mahmoudi et al. 2019, Medani et al. 

2019, Besseghier et al. 2015, Abdelaziz et al. 2017, Atmane 

et al. 2015, Bounouara et al. 2016, Bellifa et al. 2017, 

Boukhlif et al. 2019). In this section, the procedure of 

obtaining governing equations for a piezo-magnetic 

nanobeam will be presented in the context of nonlocal and 

classic beam theories. For achieving this goal, the 

Table 1 Material constants for BaTiO3-CoFe2O4 composite 

Property Vf=0 Vf=0.2 Vf=0.4 Vf=0.6 Vf=0.8 

C11 (GPa) 286 250 225 200 175 

C13 170 145 125 110 100 

C33 269.5 240 220 190 170 

e31 (C/m2) 0 -2 -3 -3.5 -4 

e33 0 4 7 11 14 

q31 (N/Am) 580 410 300 200 100 

q33 700 550 380 260 120 

k11 (10-9 C/Vm) 0.08 0.33 0.8 0.9 1 

k33 0.093 2.5 5 7.5 10 

d11 (10-12 Ns/VC) 0 2.8 4.8 6 6.8 

d33 0 2000 2750 2500 1500 

x11 (10-4 Ns2/C2) -5.9 -3.9 -2.5 -1.5 -0.8 

x33 1.57 1.33 1 0.75 0.5 

ρ (kg/m3) 5300 5400 5500 5600 5700 

 

Fig. 1 A piezo-magnetic composite nanobeam rested on elastic substrate 
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displacement field of nano-scale beam based on axial (u) 

and transverse (w) displacements at the mid-axis may be 

written as (Fourn et al. 2018) 

   1 , , , ( )b su
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x z u x t
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z z
 




 


 (1) 
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where ( ) sin( ) /z z z   . For considering 

geometric nonlinearity, the axial strain of the beam should 

be written as 
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In this research, it is supposed that electric voltage (VE) 

and magnetic field intensity (Ω) due to magnetic ( , , )x z t  

and electrical ( , , )x z t  field potentials are applied to the 

nano-size beam. The potentials can be expressed in the form 

2
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       (5) 

where / h  . Above potentials lead to induction of 

electrical field ( ,x zE E ) and magnetic field ( , )x zH H in x 

and z directions which can be derived via Eqs. (4) and (5) as 
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There are five coupled governing equations for a refined 

multi-phase piezo-magnetic nano-size beam embedded on 

elastic substrate which can be derived via Hamilton’s 

principle as 
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where f(t) is applied harmonic excitation.  Also, Di and Bi 

display the displacement components of electrical and 

magnetic fields; kL, kP, kNL display linear, shear and non-

linear coefficients of elastic layer.  

Furthermore, Nx and Mx are corresponding to in-plane 

forces and bending moments which can be defined by 

(Barati 2017) 
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and also 
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Knowing the fact that considered material is isotropic, one 

can reach to I1=0. Next, derived boundary conditions may 

be denoted by 

0xN   or u=0 (14) 
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Introducing nonlocal parameter ea2, the constitutive 

relations for a nano-size piezo-magnetic beam should be 

written in the following forms (Ke and Wang 2014) 

2 2

11 31 31(1 ( ) ) xx xx z zea c e E q H       (19) 

2 2

66 15 15(1 ( ) ) xz xz x xea c e E q H       (20) 

2 2

15 11 11(1 ( ) ) x xz x xea D e k E d H      (21) 

2 2

31 33 33(1 ( ) ) z xx z zea D e k E d H      (22) 

2 2

15 11 11(1 ( ) ) x xz x xea B q d E H       (23) 

2 2

31 33 33(1 ( ) ) z xx z zea B q d E H       (24) 

where , , , ,ij ij ij ij ijc e q d k and ij  illustrate modified 

properties for plane stress state 
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Integrating the constitutive equations represented in Eqs. 

(19)-(24) according to the thickness, the below expressions 

can be derived for a nano-size piezo-magnetic beam 
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Applied electro-magnetic force and moments provided 

in Eq. (26) can be defined as follows 
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Five governing equations presented as Eqs. (8)-(12) can 

be represented in terms of displacements by placing Eqs. 

(26)-(33) in them as 
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It is also possible to reduce the number of above 

governing equations to three equation by deriving /u x 
from Eq. (44) and then substituting it in Eqs. (45)-(48). 

Thus, knowing this fact that axial inertia has negligible 

impact on transversal vibrations, Eq. (44) becomes 
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Next, integrating Eq. (50) yields 
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Then, by satisfying edge conditions u(0)=0, u(L)=0, one 

can derive 
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As the next step, finded constant must be situated in Eq. 

(50). 

 

 

4. Solution method 
 

In this part, by employing Galerkin’s approach, the 

governing equations of motion for free/forced vibrations of 

simply-supported MEE nano-size beam have been solved. 

The displacement functions are provided as product of non-

unknowns coefficients and known trigonometric functions 

to assure the boundary conditions at x=0 and x=L as (Barati 

2017) 
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). Placing Eqs. (53)-(56) in 

governing equations yields below equations 
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in which KS are the components of stiffness matrix and Gi 

are nonlinear stiffness. The above equations are 

simultaneously solved in order to obtain nonlinear vibration 

frequencies. It should be supposed that the approximate 

solution has below definition 

( ) cos( )pW t W t
 (58) 

Also, dimensionless quantities are selected as 
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5. Numerical results and discussions 
 

Throughout the present section, several graphical 

examples have been presented and also obtained results 

have been discussed to survey the correctness of the 

presented theory in evaluating the free vibrational 

properties of multi-phase MEE nano-size beams. Obtained 

results have been provided from the geometrically perfect 

assumption for the nanobeam. The magnitude of length for 

nano-scale beam has been chosen to be L=10 nm. For 

corroborating the reliability of the presented approach, the 

obtained findings have been compared with the work of Li 

et al. (2018) for the non-linear vibration frequencies of 

imperfect nanobeam based on a variety of maximum 

vibration amplitude (�̃�) presented in Table 2. One can 

observe that the results are in accordance with those 

provided by Li et al. (2018) which demonstrate the efficient 

of the present model. 

Influences of piezoelectric volume on forced vibrational 

curves of the nanobeam is shown in Fig. 2 considering 

�̃�=0.01. The volume of piezoelectric ingredient has been 

selected to be Vf=0 %, 40% and 80%. From the figure, it 

may be understand that enhancing the volume of 

piezoelectric ingredient yields lower shift frequencies. This 

is associated with the decrement in the elastic stiffness of 

nano-scale beams by increasing in piezoelectric portion. 

Afterwards, the elastic modulus of composites decreases by 

increasing in piezoelectric ingredient as presented in Table 

1. Also, as the magnitude of electric voltage is lower, the 

curves are closer to each other. Accordingly, a MEE nano-

scale beam with higher percentages of piezoelectric 

ingredient is more susceptible to the induced electrical 

fields. 

Fig. 3 provides a comparison among non-linear 

frequencies based upon classical and improved (refined) 

shear deformation beam types of MEE nano-sized beam. 

The presented graph has been illustrated according to the 

hypothesis that the aspect ratio is L/h=10. This figure 

highlights that non-linear vibrational curves tend to higher 

frequencies when the magnitudes of non-dimension 

deflection growths. Such observation is associated with 

stiffening influences of non-linear geometrical factors. 

Moreover, one may understand that improved beam theory 

grants smaller non-linear vibrational frequencies than  
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classical theory because of the insertion of shear 

deformation impact. Hence, the improved theory is more 

reliable for a thick intelligent piezoelectric-magnetic beam. 

Fig. 4 indicates the efficacy of the small scales on the 

non-linear vibrational frequency of two-phase MEE nano-

size beam versus normalized vibrational amplitudes (�̃�/ℎ). 

It may be seen that as the dimensionless nonlocal parameter 

(µ) enhances, the normalized frequency declines. 

Afterwards, it may be deduced that the classical elastic (i.e., 

the local) theory, which does not incorporate the small size 

impacts, will provide the higher approximations for the 

normalized vibrational frequency. However, the nonlocal  

 

 

 

continuum mechanics will give more precise and 

dependable results. 

Changes of non-linear vibration frequency versus 

normalized amplitude in various electric voltage (VE) and 

magnetic field intensity (Ω) are respectively presented in 

Figs. 5 and 6. One can observe that the non-linear shift 

frequency reduces via changing of applied field from 

negative to positive voltages. As seen, if magnetic field 

intensity is increased from negative to positive, non-linear 

vibration frequency is increased. The reason of this 

behavior is that MEE material has the ability to absorb 

magnetism and keep it and by rising magnetic field  

 

Fig. 2 Impact of piezoelectric percentage and electric voltage on vibration frequency curves of the nanobeam (VE=0.02V, 

µ=0.2, Ω=0, KL=100, KP=20, KNL=0) 

 

Fig. 3 Comparison among the frequencies based upon classical and refined beam types (Vf=20 %, µ=0.2, VE=0, L/h=10) 
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Table 2 validating the non-linear vibrational frequency for a 

nanobeam 

�̃�=0.2 Li et al. (2018) 9.9065 

 present 9.9066 

   

�̃�=0.4 Li et al. (2018) 10.0166 

 present 10.0167 

 

 

 

 

 

 

intensity, this ability shows own more. Such materials are 

capable to convert force of magnetic potential to 

mechanical force. Thus, via the growth of field intensity, 

non-linear vibration frequency enlarges because magnetic 

field creates tensile forces in nanobeam. 

Non-dimension deflection of MEE nano-scale beam 

against non-dimension excitation frequency has been 

displayed in Figs. 7 and 8 based on diverse substrate 

coefficients (KL, KP, KNL). The amplitude of exerted force is 

chosen as �̃� = 0.01 and the piezoelectric ingredient 

volume is chosen as Vf=20 %. One may observe that growth  

 

Fig. 4 Impacts of nonlocal factors on the variations of non-linear vibrational frequencies (Vf=20 %, VE=0, Ω=0) 

 

Fig. 5 Effect of applied voltage on vibration frequency curves of the nanobeam (Vf=20 %, µ=0.2, KL=100, KP=20, Ω=0) 
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of linear (KL) and shear (KP) substrate coefficients makes 

the MEE nano-size beam more rigid leading to greater 

natural frequencies. As regards, nonlinear substrate 

coefficient has no influence on the measure of natural 

frequencies. However, enlarging the values of KNL yields 

more tendency of frequency-deflection curves to the right. 

This means that the hardening influences of geometrical 

nonlinearity become more announced with increase of KNL. 
 
 

 

 
 

6. Conclusions 
 

The presented research examined nonlocal non-linear 

free/forced vibrations of two-phase MEE nanobeams by 

presenting an analytical trend. The nanobeam was assumed 

to be rested on elastic foundation with a three parameters 

including linear, shear and nonlinear. It was seen that as the 

dimensionless nonlocal parameter increases, the normalized 

frequency decreases. Thus, it can be deduced that the 

classical elastic (i.e., the local) model, which does not  

 

Fig. 6 Effect of magnetic field intensity on vibration frequency curves of the nanobeam (Vf=20 %, µ=0.2, VE=0, KL=100, 

KP=20, KNL=0) 

 

Fig. 7 Effect of elastic foundation parameters on vibration frequency curves of the nanobeam (Vf=20 %, µ=0.2, VE=0, 

Ω=0, KL=100, KP=0) 
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consider the small-scale impacts, will give higher 

approximations for the non-dimension vibrational frequency. 

However, impact of non-linear foundation parameter on 

vibration frequency curves has an increasing trend with 

increasing in vibration amplitude. Also, magnetic field 

effect on vibration characteristics of MEE nanobeams relies 

on the value of piezoelectric volume.  But, the rate of 

frequency increment versus magnetic field intensity 

becomes lower by increase of piezoelectric volume. 
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