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1. Introduction 
 

In recent decades, concrete filled steel tube (CFST) 

columns have been increasingly used in construction, such 

as with civil structures, buildings, and bridges (Shanmugam 

and Lakshmi 2001, Tao et al. 2007, Uy 2001, Varma et al. 

2002). A CFST column is the composite structure of a steel 

tube that is filled in with concrete. Many researchers have 

found that a CFST column has advantages over the 

conventional steel or reinforced concrete column due to its 

high-strength, stiffness, ductility, fire resistance and better 

seismic resistance (Aslani et al. 2015, Aslani et al. 2016a, 

Aslani et al. 2016b, Tang 2017, Wang et al. 2018, 

Ekmekyapar and Hasan 2019). Therefore, the use of a 

CFST column in different areas of construction is becoming 

a prevalent solution.  
To estimate the ultimate strength of CFST columns, 

different design codes have been developed such as (ACI 

318 1962), (EC4 2004), and (AIJ 1997). These criteria all 

provide practical design equations, which however do not 

agree well with experimental data due to their high safety  
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factors and their limited applicable range of configuration 

parameters. For several years, a host of theoretical and 

experimental studies on CFST columns under an axial load 

is developed  (Abed et al. 2013, Schneider 1998, Xiao 

1989). Schneider (1998) executed an experimental and 

analytical study on the behaviour of a short column that had 

different shapes and depth-tube wall thickness ratios 

subjected to a compression load. Xiao (1989) conducted a 

series of CFST column tests and then proposed a tri-axial 

constitutive relationship. (Abed et al. 2013) tested CFST 

columns under pure axial loading with different diameter-

to-thickness ratios and concrete’s compressive strength. 

These studies determine the axial compressive strength of 

CFST columns based on a narrow range of material 

properties and geometry configurations while the 

relationship between the CFST compressive strength and 

configuration parameters is nonlinear and complex. 

Moreover, none of them provided an explicit equation for 

practical design. Therefore, a new method is still needed, 

which can overcome all the above limitations. 

In recent years, literary publications in the field of civil 

engineering have shown that various engineering problems 

can be addressed using artificial intelligence technique (AI) 

(Cheng and Cao 2014, Yaseen et al. 2018, Luat et al. 

2020a), particularly artificial neural network (ANN) 

(Dantas et al. 2013, Duan et al. 2013, Das and Choudhury 

2019, Hasan et al. 2019, Luat et al. 2020b). ANN is one of 

the most popular soft computing techniques, and thanks to 

its adaptive nature, is able to learn, generalize, categorize 
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and predict targets. Duan et al. (2013) successfully used an 

artificial neural network (ANN) to predict the compressive 

strength of recycled aggregate concrete. Dantas et al. (2013) 

applied an ANN to determine the compressive strength of 

concrete containing construction and demolition waste with 

an acceptable error range. Lee and Lee (2014) presented a 

theoretical model based on an ANN for the estimated shear 

strength of slender fiber reinforced polymer (FRP) 

reinforced concrete flexural members without stirrups. The 

ANN model has therefore been demonstrated as an effective 

method that provides a feasible solution in axial 

compressive capacity prediction of circular CFST column. 

In this study, an ANN model is developed to predict the 

axial compressive capacity of CFST columns.  Five input 

parameters are used to describe attributes defined by 

diameter of the column (D), length of the column (L), 

thickness of the steel tube (t), the concrete compressive 

strength (fc′), and steel yield strength (fy) and one output 

variable is the axial compressive strength (Nu). A total of 

219 available data are collected for training and testing 

process. The predictive performance of ANN is then 

compared by three well-known design codes and the other 

AI models. Performance assessment results are quantified 

by evaluation criteria. The obtained results show the 

feasibility and superiority of the developed ANN model. It 

is also noteworthy that proposed ANN model successfully 

solved the limitations of the design codes and existing 

experimental researches. An explicit formulation is derived 

from ANN’s parameters for design purposes. Finally, the 

parametric study investigates the effects of input 

configuration parameters on CFST strength.  

The rest of the paper is organized as follows. In Section 

2, the available design codes to determine CFST column 

strength is briefly described. A general introduction of the 

dataset and its statistics are presented in Section 3. The 

architecture and parameters of the ANN model are analyzed 

and highlighted in Section 4. Section 5 assesses the 

performance of the proposed ANN model, and Section 6 

proposes a potential empirical equation, discusses 

performance comparisons and analyzes the effects of certain 

parameters on experimental-to-predicted strength ratio. The 

parametric study is described in Section 7, and the most 

important parameter is clarified in Section 8. Finally, the 

conclusions are provided in Section 9. 

 

 

2. Empirical equation for CFST columns in design 
codes 
  

An overview of the available scientific literature of the 

related standards about the CFST columns is given below.  

These discussed formulations are used for the comparison 

with the proposed model. For the sake of consistency, the 

same notations are used for the similar terms in each design 

code and are summarized in the Nomenclature. The values 

calculated from each code are denoted by the superscript, 

such as NEC4, NACI, and NAIJ. 

 

 

 

2.1 Eurocode 4 (EC4) 
 
The EC4 design standard (EC4 2004) provides an 

equation to determine the ultimate compressive capacity of 

a CFST column, which is based on limit state concepts. 

Eurocode 4 determines the resistance capacity by 

considering the contribution of the steel tube section, the 

section of concrete and the confinement of concrete by the 

steel tube. The concrete strength is increased by a factor of 

ηc due to the occurrence of a tri-axial state of the stress 

condition while the steel tube strength is reduced by the 

coefficient ηa since the hoop stresses cause a reduction in 

the effective yield stress of the steel. Thus, the axial 

capacity in the compression of the column is determined by 

the following equation 

y '

EC4 c c c a y s'

c

ft
N = 1+η f A +η f A

D f

 
 
 

 (1) 
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2

c cη = 4.9 -18.5λ+17λ ,η 0   (2) 

a a
η = 0.25(3+2λ),η 1   (3) 
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where ηc is the coefficient of the concrete confinement, ηa is 

the coefficient of the steel tube confinement, t is the 

thickness of the steel tube, D is the diameter of the column, 

fc
’ is the concrete compressive strength, fy is the steel yield 

strength, Ac is the cross-section area of the concrete, As is 

the cross-section area of the steel, λ is the relative 

slenderness, and l and (EI)eff are the buckling length of the 

column and the effective flexural stiffness, respectively. Ke 

is the correction factor, Ke = 0.6. 

Modulus of elasticity of concrete 

 '
0.3

c2 cE = 22000 f +8 / 10 
 

MPa (6) 

For relative slenderness equal to zero λ=0, the axial load of 

the section is simplified to 

'

4 '

y

EC c c y s

c

ft
N = 1+4.9 f A +0.75f A

D f

 
 
 

 (7) 

 
2.2 American Concrete Institute (ACI) 
  

The ACI (ACI 1962) is the formula to calculate the axial 

compressive capacity of a CFST column. The formulation 

does not cover the effect of the thickness of the steel tube, 

concrete confinement and the interaction between the 

concrete core and steel tube. 

The ultimate axial load is determined by 
'

ACI c c s yN =0.85A f + A f  (8) 
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where fc
’
 is the strength of the concrete, fy is the yield 

strength of the steel, Ac is the cross-section area of the 

concrete, and As is the cross-section area of the steel. 

 

2.3 Architectural Institute of Japan (AIJ) 
 
According to the Architectural Institute of Japan AIJ  

(AIJ 1997), the ultimate compressive strength of a steel tube 

filled with concrete under an axial load is determined by the 

following equation:  

'

AIJ c c y sN =0.85f A +(1+η)f A  (9) 

where fc’ is the concrete compressive, fy is the steel yield 

strength, Ac is the cross-section area of the concrete, and As 

is the cross-section area of the steel. In this equation, the 

confinement factor (η = 0.27) is acknowledged to illustrate 

the interaction between the steel tube and the concrete 

filling, which provides the enhancement of the load-

carrying capacity.   

 

2.4 Limitation of design codes 
 
The design codes have provided some limitations on the 

material properties and the slenderness conditions, which 

are summarized in Table 1. The use of high strength 

materials is still limited in EC4, which is only applicable to 

a steel yield stress up to 460 MPa and a concrete cylinder 

compressive strength up to 50 MPa. High strength materials 

are now recommended in the AIJ with the upper limits for 

the strengths of concrete being extended to 60 MPa. A 

larger range for the material strengths is specified in the 

ACI with a minimum concrete compressive strength of 17.2 

MPa. Another contributing factor to the limitations of the 

design codes is the diameter to thickness (D/t) ratio. 

Namely, the maximum D/t of ACI and AIJ are limited by 

8 s yE / f and
235

150
yf

, respectively. EC4 considers the 

local buckling effect for circular thin-walled tubes by 

limiting the diameter (D) to thickness (t) ratio to 
235

90
yf

, 

where fy is the steel yield strength. However, no details 

were given in the EC4 on how to account for the local 

buckling effect if these limits were exceeded. 

 

 

Table 1 The prediction methods and related limitations 

 

 

 
 
3. Description of the selected dataset 
 

In this study, a total of 219 experimental data is 

collected from the available technical literature: (Salani and 

Sims 1964, Furlong 1967, Knowles 1970, Tomii 1977, Lin 

1988, Xiao 1989, Hayashi 1990, Luksha 1991, Schneider 

1998, Yamamoto et al. 2000, O’Shea and Bridge 2000, 

Sakino et al. 2004, Giakoumelis and Lam 2004, Zeghiche 

and Chaoui 2005, Gupta et al. 2007, Yu et al. 2008, WLA 

Oliveira 2008, Beck et al. 2009, Li et al. 2016) and is 

presented in Appendix A. The developed ANN model have 

five input parameters that consist of the diameter of column 

(D), the column length (L), the thickness of the steel tube 

(t), the yield strength of steel (fy), and the compressive 

strength of concrete (fc’). The axial compressive capacity 

(Nu) serves as an output variable. A summary of input and 

output values is presented in Table 2. 

The distribution of each considered parameters is 

demonstrated in Fig. 1. It can be seen that a large number of 

tests are used belongs to CFST columns with normal 

strength steel  (fy ≤ 460MPa with 79.5%) and normal 

strength concrete (fc′ ≤ 50MPa with 97.3%). Only a small 

number of tests have been carried out on high strength steel 

(fy > 460MPa with 20.5%) and high strength concrete 

(50MPa ≤ fc′≤ 90MPa with 2.7%). Namely, the concrete 

compressive strength ranges from 18.04MPa to 52.20 MPa 

and the steel yield strength varies from 168.21 MPa to 853 

MPa. It is also observed that both the short columns and the 

slender columns are considered in this database. The short 

columns are defined as those with L/D ≤ 4, where L is the 

length of the specimens and D denotes the outside diameter 

of a circular section, respectively. The remaining cases with 

L/D > 4 are considered as slender members. This 

classification is based on the recommendation given by 

(Goode 2008). The longest CFST column is reported by 

(Zeghiche and Chaoui 2005) with a length of 4000 mm, and 

the largest diameter of 450.10 mm is reported by (Yoshioka 

et al. 1995). The application thickness varied from 0.7 to 

12.8 mm. It is observed that the input and output parameters 

can cover a wide range of reality construction. 

 

 

 

Design 

code 
D/t  fy (MPa) fc' (MPa) 

EC4 
235

90
y

D / t
f

  235 ≤ fy ≤ 460 20 ≤ fc' ≤ 50  

ACI 8 s yD / t E / f   fy ≤ 345 fc' ≥ 17.2  

AIJ 
235

150
y

D / t
f

   235 ≤ fy ≤ 355 fc' ≤ 60  

Table 2 Range of parameters in the experimental dataset 

Input  

Range 

Minimum Maximum Mean  
Standard  

deviation  

D (mm) 25.40 450.10 162.36 94.21 

L (mm) 216.00 4000.00 922.01 690.08 

t (mm) 0.70 12.80 4.41 2.63 

fy (MPa) 168.21 853.00 388.60 139.23 

fc' (MPa) 18.04 52.20 31.61 9.20 

Output  

Nu (kN) 14.40 9835.00 2102.88 2305.25 
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(a) Diameter of a steel tube 

   
(b) Length of the column  

 
(c) Thickness of a steel tube  

  
(d) Steel yield strength 

 
(e) Concrete compressive strength 

Fig. 1 Distribution of the experiment data 

 

 

4. Development of the ANN model 
 
4.1 Overview of the artificial neural network 
 
An artificial neural network is a computational model 

that mimics the behavior of biological neurons that exist in 

the human brain. It has the capability to handle complex 

nonlinear relationships between input and output datasets. 

An ANN has several advantages, but one of the most 

recognized advantages is the fact that it can actually learn 

from observing data sets. An ANN takes data samples rather 

than entire data sets and sets them to training, which saves 

both time and money. ANNs are considered fairly simple 

mathematical models to enhance existing data analysis 

technologies. 

One of the most popular neural networks is the layered 

feedforward neural network with a backpropagation 

algorithm. A typical structure of the ANN model consists of 

an input layer, one or more hidden layers, and an output 

layer, and each layer consists of numerous neurons, which 

is illustrated in Fig. 2. 

Fig. 3. shows how information is processed through a 

single artificial neuron. Suppose there are n inputs (xi with i 

= 1, 2, 3,…, n). 

 

 

 

Fig. 2 Construction of the ANN model 

 

 

 

Fig. 3 Diagram of an artificial neuron 
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The weights connecting n numbers of inputs to jth neuron 

are represented by w (wi with i = 1, 2, 3,…, n). Each of the 

neurons determines a weighted sum of its input, passes the 

sum through its activation function, and presents the 

activation value to the output layer. Mathematically, the 

sum can be described as
n

i i

i=1

x w . The output of summing 

may sometimes become equal to zero and to prevent this 

type of situation from occurring, a bias b is added to it. 

Following the computation of the sum with value as 
n

i i

i=1

u = x w +b is passed through its activation function f 

and can produce an output value
iy =f(u) . Thus, regarding 

the above information the output and the value of output 

𝑦𝑖̂ can be described as follows 

𝑦𝑖̂ = 𝑓(𝑢) = 𝑓 (∑ 𝑥𝑖

𝑛

𝑖=1

𝑤𝑖 + 𝑏) (10) 

The activation function is a non-linear function between 

the inputs and the response variable (Ketkar 2017). There 

are three activation functions commonly used to develop an 

ANN model, which include Sigmoid, Hyperbolic Tangent 

(Tanh), and Rectified Linear Unit (ReLU) transfer functions. 

They are expressed by Eqs. (11)-(13), respectively, and 

illustrated in Fig. 4. 

 Sigmoid transfer function (see Fig. 4(a))  

,0 ( ) 1
-x

1
f(x)= f x

1+e
   (11) 

 Hyperbolic tangent transfer function (see Fig. 4(b))  

, 1 1
x -x

x -x

e - e
f(x)= f(x)

e +e
     (12) 

 Rectified linear unit function (see Fig. 4(c))  

 
0 0

0, ,0
0

for x
f(x) max x f(x)

x for x


    


 (13) 

The usage of activation functions in this study will be 

discussed in Section 4.2. 

To evaluate the performance of the ANN model, the 

following criteria were used, which include the mean 

squared error (MSE), the root mean squared error (RMSE), 

the mean absolute percentage error (MAPE), the mean 

absolute error (MAE), the linear correlation coefficient (R) 

and the variance accounted for (VAF) are expressed by Eqs. 

(14)-(19), respectively. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1   (14) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1   (15) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑛

𝑖=1   (16) 

𝑀𝐴𝐸 =
∑ (|𝑦𝑖 − 𝑦𝑖̂|)

𝑛
𝑖=1

𝑛
 (17) 

 

       

(a)  

 
(b)  

 
(c)  

Fig. 4 Activation functions 

 
 

𝑅 =
𝑛 ∑ (𝑦𝑖𝑦𝑖̂)−∑ 𝑦𝑖 ∑ 𝑦𝑖̂

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

√[𝑛(∑ 𝑦𝑖
2𝑛

𝑖=1 )−(∑ 𝑦𝑖
𝑛
𝑖=1 )2]−[𝑛(∑ 𝑦𝑖̂

2𝑛
𝑖=1 )−(∑ 𝑦𝑖̂

𝑛
𝑖=1 )

2
]

  (18) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑦𝑖 − 𝑦𝑖̂)

𝑣𝑎𝑟(𝑦𝑖)
) 100 (19) 

where yi is the actual value, 𝑦𝑖̂ is the predicted value and n 

is the total number of samples, which is the dataset. The 

linear correlation coefficient (R) defines the fit of the 

predicted output to the experimental output. The linear 

correlation coefficient value of 1.0 means that the predicted 

values are exactly the same as the experimental values; 

whereas, for MSE, RMSE, MAPE, and MAE, the absolute 

accuracy between the predicted and the experimental values 

will yield the perfect value of 0.0. Another criterion, which 

is the VAF, should be close to 100%. 
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4.2 The proposed ANN model 
 
4.2.1 Normalization of the data 
In data processing, normalization is really necessary, 

because the neural networks require that their input and 

output data must be normalized to have the same order of 

magnitude. This step is generally performed during the data 

preprocessing step. In the normalizing process of the dataset, 

the values of the normalized variable are in the range 

between 0.0 and +1.0, and the average values are set to zero 

(Ioffe 2017). This technique is called the standardization, 

and it gives the normalization variable xi,norm by 

,

-
i norm

x x
x 


 (20) 

where ,i normx is the normalized variable, x is the original 

variable, x  is the average value of the variable, and σ  is 

the standard deviation of the variable. The normalization 

coefficients for variables are presented in Table 3. 
 

4.2.2 Construction of the ANN model 
The network architecture and the parameter settings 

affect the performance of the ANN model, which may lead 

to the difficult task of optimizing the network architecture. 

Based on the trial and error method, the optimal parameters, 

which include the number of hidden layers, the neurons of a 

hidden layer, activation function, and learning rate are 

determined. With each epoch, the parameters are changed to 

obtain a respective error value. This process is repeated 

until the optimal parameters are reached with a minimum 

error. 

Fig. 5 presents the procedure to optimize the developed 

ANN model using the Python programing language. As 

illustrated in Fig. 5, four different parameters are involved 

in the optimization of the training process. For each 

parameter, various values are considered, which include the 

number of hidden layers using 1, 2, 3 or 4, the number of 

hidden neurons ranging from 1 to 5, the values of the 

learning rate ranging from 0.01 to 0.15, and the activation 

function using Sigmoid, Tanh or ReLU. For the purpose of 

selecting the best parameter set, the mean squared error 

(MSE) is employed to estimate the performance of the ANN 

model. The results of optimizing the network process are 

presented in Fig. 6. It is noted that, when the value of a 

parameter for the neural network was changed, the values of 

other parameters didn’t change.  

The relationship between the MSE with respect to the 

number of hidden layers is analyzed in Fig. 6(a). In fact, the 

number of hidden layers is affected by the complexity of the 

problem. The more complex problem, the more numbers of 

hidden layers are required. However, it has been observed 

from the literature that one hidden layer is sufficient for 

most of the problems in civil engineering according to 

Altun et al. (2008), Hwang et al. (Hwang et al. 2019) and 

Kang et al. (2006). In the present study, the forward 

network with a hidden layer also proved suitable to solve 

the problem posed. This is clarified in Fig. 6(a), which is 

shown with both the training and the testing processes. 

When the number of hidden layers increases from 1 to 4, 

the value of the MSE significantly increases. The MSE 

increases 46.6% for the training and 68.2% for the testing. 

The lowest MSE is observed when the number of hidden 

layers is 1. It is concluded that one hidden layer is the best 

choice for the current ANN architecture. 

Fig. 6(b) shows the result of the MSE corresponding to 

the number of neurons for the training set and the testing set. 

Even though there is no specific rule to determine the 

number of neurons (nodes) in a hidden layer, this number 

must be sufficient for the accurate modeling of the problem, 

and it should be sufficiently low to ensure generalization.  

The number of neurons can be found using the trial and 

error method. It is observed that the MSE decreased rapidly, 

which is at a rate of 56.9% for the training and 58.8% for 

the testing as the model utilized a range of hidden neurons 

from 1 to 3. When the model uses a range of hidden 

neurons varying from 3 to 5, the MSE alters insignificantly, 

4.1% and 4,3 %, respectively. Thus, the neurons of the 

hidden layer could be equal to 3, 4, or 5. Besides, it needs to 

be repeated that one of our main goals is to derive a simple 

explicit formula of axial compressive strength for 

convenience in design calculations. For that reason, the 

three-neuron hidden layer is chosen as the most optimal 

model.  

The activation function has a strong effect on predicting 

the performance of the model. In this study, three different 

activation functions are used for the training and the testing 

processes. Fig. 6(c) shows the performance of the model in 

terms of MSE as different activation functions. The ReLU 

function is a nonlinear function, which means we can easily 

back-propagate the errors and have multiple layers of 

neurons being activated by the ReLU function, so the ReLU 

function can be fast convergence. Fig. 6(c) also is shown 

that the usage of ReLU induces the lowest MSE. Therefore, 

the ReLU function is chosen for the proposed model. 

In the back-propagation algorithm, the weights of the 

model are updated when the estimation of the error gradient 

for the current state of the model was finished. 

The amount that the weights are updated during the training 

is referred to as the step size or the “learning rate”. 

Specifically, the learning rate is a configurable hyper-

parameter used in the training of neural networks that has a 

small positive value. Fig. 6(d) shows the effect of the 

learning rate on the performance of the current ANN model. 

It is found that while all the other learning rate values 

induce a similar value of the MSE, the value of 0.05 of the 

Adam optimization algorithm provides the lowest MSE.  

Table 3 Coefficients for normalization variables 

Coefficients 

Variables 

D L t fy fc' 

Average x  162.922 895.533 4.539 393.137 31.464 

Standard 

deviation σ 
96.365 666.517 2.715 141.947 9.248 
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Thus, the learning rate of 0.05 is used for further processes. 

Fig. 6(e) indicates that the value of the epochs of 2000 is 

an optimized choice for all the cases because the epochs 

must be satisfactory to optimize the model, and they should 

be small enough to save time. 

As discussed above, it can be seen that not only one 

hidden layer model, but also two, three, and four-hidden 

layer models with optimal parameters are carefully modeled. 

Finally, the ANN architecture of 5-3-1, which means that 

the optimal model has the one-hidden layer with five nodes 

in the input layer, three nodes in the hidden layer, and one 

node at the output of the network, is chosen for an optimal 

ANN model. Moreover, the selected network architecture 

and the parameters for the optimal ANN model are 

summarized in Table 4. 

 

 

5. Performance of the proposed ANN model 
 

This section presents the performance of the proposed 

ANN model, which includes the training and the testing 

performances. The linear correlation criteria presented in 

Section 4.1 is used to evaluate the accuracy of the ANN 

model. 

Figs. 7(a)-7(c) show the performance of the proposed ANN 

model in regards to training, testing set, and all the data, 

respectively. It is observed that the data points closely 

matched a diagonal line, which represents the best 

correlation between the predicted and the measured values. 

For the training set, the correlation coefficient (R) of 0.992  

 

 

is reached, which indicates that the correlations between the 

predictions and the actual data are very good. Even though 

the testing process is independent of the training process, 

the predicted results also show a robust correlation 

compared to the test data with a correlation coefficient of 

0.992. This further proved that the ANN model could obtain 

accurate predictions for the values of data that were being 

investigated. Figs. 8(a) and 8(b) shows the comparison 

between the predicted and the measured for the training and 

the test set. It is found that the estimated Nu values are 

obtained from the ANN in the training set and the testing set 

closely matched the measured values. The excellent 

prediction performance shows the proposed models that can 

capture the complex nonlinear mapping between the five 

input variables and the ultimate axial capacity Nu. 

 

 

Table 4 Selected parameters of the proposed model 

Content Value 

Number of units in the input layer 5 

Number of hidden layers 1 

Number of units in hidden layer 3 

Number of units in output layer 1 

Epochs 2000 

Activation function ReLU 

Optimization algorithm Adam 

Learning rate 0.05 

 

Fig. 5 Flowchart of the optimal model 
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The performance evaluation results of the ANN training set 

and the testing set are seen in Figs. 9(a) and 9(b). Obviously, 

R and VAF are close to 1, and MSE, RMSE, MAPE, and 

MAE are close to 0 in both datasets, which indicates that 

the prediction accuracy of the ANN is relatively high. These 

remarkable results can be considered as evidence for the 

reliability of the proposed model. 

 

 

 

 

 

 

 

6. Empirical equation development 
 

6.1 Developing the empirical equation 
 
The main goal of this sub-section is to derive an explicit 

formulation to predict the axial compressive capacity of the 

CFST column. First, it is noted that, before the training 

process, all the input parameters were normalized using Eq. 

(20), which means that they are re-scaled. The normalized 

values are shown in Table 3. 

  
(a) Effect of number of hidden layers (b) Effect of number of hidden neurons 

 
 

 

(c) Effect of activation function (d) Effect of learning rate 

 

 

(e) Effect of epochs  

Fig. 6 Mean squared error* (MSE) as a function of the parameter (*Unit: x10
2

kN
2) 
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(a)  (b) 

 
 

(c) 

Fig. 7 Comparison between the actual and the predicted value for (a) training set, (b) the testing set and (c) all data 

 
(a) 

Continued- 
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Second, after the process of optimized ANN model finishes, 

the connection weights and the biases of the optimal ANN 

are obtained from PyCharm, which are presented in Table 5. 

Third, the axial compressive capacity is computed as a 

function of the input variables, including the diameter of the 

column (D), the length of column (L), the thickness of the 

steel tube (t), the compressive strength of the concrete (fc’), 

and the yield strength of the steel (fy). 

Based on Eq. (10) in sub-section 4.1, and the values of 

the weights and the biases are shown in Table 5, the explicit 

formulation of axial compressive capacity of the CFST 

column is expressed as 

10.731*max(0, ) 5.122*max(0, )

8.232*max(0, ) 7.091

u 1 2

3

N Z Z

Z

 

 
  (21) 

The values of 10.731, 5.122, and 8.232 are the weights, 

and 7.091 is the bias that was determined by the developed 

ANN model. Z1, Z2, and Z3 are the dependent variables, 

which can be determined as a function of the five input 

parameters as follows 

 

 

 

 

1

2

3

'

-5

'

'

0.133* - 0.0002* 4.262* 0.035*

0.557* -95.502

0.142* - 2.8*10 * 1.741* 0.051*

0.399* -57.647

0.106* - 0.002* 1.219* 0.011*

0.112* -12.372

y

y

y

c

c

c

Z D L t f

f

Z D L t f

f

Z D L t f

f

  



  



  



  (22) 

 

6.2 Comparison with the given equations 
 
The accuracy of the proposed equation (Eq. (21)) is 

compared against some empirical equations presented in the 

well-known design codes. Moreover, the ANN estimation 

accuracy is benchmarked against two intelligent models, 

including the Multiple Linear Regression (MLR), and the 

Decision Tree (DT). Again, the criterions presented in 

Section 4.1 are used for this comparison. 

 

 
(b) 

Fig. 8 Experimental and predicted Nu values obtained from the ANN in (a) the training set and (b) the testing set 

  

(a)  (b) 

Fig. 9 Radar chart of the performance evaluation of the ANN in (a) the training set and (b) the testing set 
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Table 6 compares the performance between the 

proposed equation in this study and three other empirical 

equations from the current design codes. It is shown that in 

every criterion, the proposed equation shows an outstanding 

accuracy compared to the others, and the EC4’s equation 

shows the lowest accuracy. The correlation coefficient, R, 

obtained from ANN models equal to 0.992, which indicates 

a high performance and a good correlation between the 

measured and the predicted compressive strength. In 

contrast, the R-values are obtained from the available 

design codes and the other models, which have ranging 

from 0.956 to 0.989. The absolute percentage error, MAPE, 

obtained from the ANN model equal to 19% whereas these 

values of design codes equal to 26%, 44.1%, and 24.3%, 

respectively, and 42.1% and 19% for the MLR and the DT. 

The results from other criteria also show similar 

demonstrations. 

Graphically, Fig. 10 shows a comparison of performance 

between the different equations in terms of the linear 

correlation coefficient. If data points cluster closely around 

a diagonal line (fit line), it represents the best correlation 

between the predicted and the experimental values. Fig. 

10(a) shows that the given equation by the EC4 gives 

overestimated results, and the lowest underestimation 

performance is observed from the ACI equation in Fig. 

10(b). On the other hand, the AIJ equation tends to both 

over-estimate and under-estimate the axial compressive 

capacity with the R values of 0.989, which is shown in Fig. 

10(c). Fig. 10(d) indicates that the MLR model gives over-

estimated results with an R-value of 0.956. Moreover, some 

below zero results are predicted by the MLR model. This 

trend is also true for the DT model in Fig. 10(e), but the 

proposed ANN equation produces a higher coefficient R of  

 

 

 

 

 

0.993 (Fig. 10(f)). The analysis shows that the predicted 

capacity of the proposed ANN equation is better than the 

other empirical equations and the other intelligent models. 

Generally, the proposed equation obtains superior results 

among the empirical equations with all four criteria. 

 

6.3 The influence of the variables on experimental-to-
predicted strength ratio 

 
In this section, the ANN method and the design codes 

are considered to further investigate the effect of some of 

the variables on the predicted compressive strengths. Many 

important variables affected the compressive behavior of 

the CFST columns, which include the concrete strength, the 

steel strength, the length of the column, the diameter of the 

column, the length-to-diameter ratio, and the diameter-to-

thickness ratio. In the Figs. (11)-(14), the normalized values 

(Nu, predicted/Nu, experimental) versus the prediction parameters 

are illustrated to indicate the effectiveness of the prediction 

parameters. The most accurate prediction performance is 

marked as a normalized value of 1.0 

 

6.3.1 Effect of the concrete strength 
The variation of the experimental-to-predicted 

compressive strength ratio versus the concrete compressive 

strength for each method is shown in Figs. 11(a)-11(f). 

From these figures, it is clear that the EC4 method yielded 

scattered results for the investigated range. For the ACI and 

the AIJ method, this ratio illustrates less scatter. This 

analysis is also evaluated on the COV index. The COV is 

the coefficient of the variance. The COV of the ACI and the 

AIJ are 0.368, 0.397, and the EC4 is 0.397. As a result, the 

reliability indexes of the AIJ and the ACI are higher than  

Table 5 Weight values and biases of the optimal ANN model 

Neuron 

Weights Bias 

Input Output 
Hidden 

layer 

Output 

layer 

D   L   t  fy    fc’ Nu  
  

1 12.825 -0.153 11.572 4.943 5.151 10.731 -24.464 7.091 

2 13.656 0.019 4.727 7.229 3.691 5.122 -5.947 
 

3 10.179 -1.397 3.309 1.522 1.033 8.232 16.225   

Table 6 Comparison of ANN model with empirical equations 

Criterion  Unit ACI EC4 AIJ MLR DT ANN  

MSE x105 KN2 3.870 10.873  1.299 3.287 0.864 0.328 

RMSE x103 kN 0.062 0.104 0.036 0.573 0.029 0.018 

MAPE  0.260 0.441 0.243 1.022 0.192 0.190 

MAE x103 kN 0.403 0.617 0.244 0.421 0.196 0.189 

R   0.988 0.987 0.989 0.956 0.989 0.992 

VAF  % 95.415 86.297 97.800 91.89 98.11 98.23 
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EC 4 index. Also, the MLR model gives a less accurate 

performance when predicted with some underestimated 

values, which is shown in Fig. 11(d). The results of the 

ultimate compressive strength ratios using the DT and the 

ANN model indicate consistent accuracy for the range of 

the concrete strength being investigated, which is shown in 

Figs. 11(e)-11(f). 

 

6.3.2 Effect of the concrete strength 
Figs. 12(a)-12(f) displays the effect of the yield strength 

of steel on the ultimate compressive strength ratio for the 

ANN models, as well as the ACI, the EC4, the AIJ, and 

other models as MLR and DT. The ultimate compressive 

strength ratios using the AIJ and the ACI show less scatter 

when the value of the ratio ranging between 0.5 and 3.  

 
 

(a) EC4 performance (b) ACI performance 

(Mean= 1.425, COV=0.397) (Mean=0.930, COV = 0.368) 

  

(c) AIJ performance (d) MLR performance 

(Mean = 1.065, COV=0.397) (Mean = 20.937 , COV= 5.789) 

 
 

(e) Decision Tree performance (f) Proposed equation performance 

(Mean = 0.989 , COV = 0.161) (Mean = 1.049, COV = 0.161) 

Fig. 10 Comparison of predicted versus experimental strengths between various equations 
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Whereas the EC4 gives a result and shows more scatter 

comparing with the ACI and the AIJ. Also, it tends to be 

very conservative with the experimental observations that 

range from 0.5 to 5.5. For intelligent models, this ratio is 

greater than -30 in the MLR model, whereas these ratios for  

 

 

DT and ANN models are just around 1.0. Furthermore, the 

results also showed that all design codes show a lot of 

dispersion in the case with high strength steel. In contrast, 

the ANN results are not affected more by the variations in 

steel strength. 

 
 

(a) EC4  (b) ACI 

 
 

(c) AIJ  (d) MLR 

 
 

(e) DT (f) ANN 

(Mean = 0.989 , COV = 0.161) (Mean = 1.049, COV = 0.161) 

Fig. 11 Variation of experimental to predicted compressive strength ratio with concrete strength using different methods 
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6.3.3 Effect of the diameter to thickness ratio (D/t) 
The effect of the diameter-to-thickness ratio on the 

predicted results is presented in Figs. 13(a)-13(f). As 

expected, the ANN predicted results are in reasonably good 

agreement with all the ratios of D/t considered in this 

investigation. The ANN gives the closest predictions with  

 

 

an average value (μ) of 1.05, while the ACI, AIJ, EC4, and 

MLR show lots of scattering and conservatism with a mean 

value (μ) of 0.93, 1.07, 1.43, and 20.94, respectively. For all 

the design codes, the bearing capacity may not be predicted 

correctly if using the diameter to thickness ratios is smaller 

than 30. Moreover, in design codes, the limitations of the  

  
(a) EC4 (b) ACI 

 
 

(c) AIJ (d) MLR 

  
(e) DT (f) ANN 

Fig. 12 Variation of experimental to predicted compressive strength ratio with steel strength using different methods 
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diameter to thickness ratio also exist, which is not 

convenient for the design. Namely, the width to thickness  

 

 

 

ratio cannot exceed y8Es / f , 
235

90
yf

 in ACI and EC4  

  
(a) EC4 (b) ACI 

 

 
(c) AIJ (d) MLR 

  
(e) DT (f) ANN 

Fig. 13 Variation of experimental to predicted compressive strength ratio with diameter-to-thickness ratio using different 

methods 
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respectively, which Es is the elasticity modulus of steel, and 

fy is the steel strength. In contrast, the ANN model provided 

a wide application range to design the CFST columns. 

 
 
6.3.4 Effect of the length to diameter ratio (L/D) 
The variations of the ultimate compressive strength 

ratios with the L/D values are shown in Figs.14 (a)-14(f). 
For the slender columns (L/D > 4) in three design codes, it  

  
(a) EC4 (b) ACI 

 
 

(c) AIJ (d) MLR 

 
 

(e) DT (f) ANN 

Fig. 14 Variation of experimental to predicted compressive strength ratio with length-to-diameter ratio using different 

methods 
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is provided poor results with strong scattering predictions 

that predicted-to-experimental strength ratios ranging from 

1.0 to 5.5. Moreover, some points are too under-estimated 

in the MLR model with the ratio range overcome -50.0. 

This means that the local buckling effect in slender columns 

should be carefully considered for design codes. In contrast, 

the results obtained from the DT and the ANN model show 

accuracy and consistency for all values of L/D being 

investigated. 

 

 

7. Parametric study for proposed ANN model 
 

To further examine the generalization ability or the 

robustness of the ANN model, the parametric study is 

carried out that demonstrates the response of the predicted 

model’s ultimate compressive strength to a set of 

hypothetical input parameters. The effect of one input 

variable is examined by allowing it to adjust while all other  

 

 

 

 

input variables are set to fixed values. The inputs are 

then accommodated in the ANN model, and the predicted 

ultimate compressive strength is calculated. This process is 

repeated for the next input variable and so on until the 

model response has examined all the parameters. A 

summary of the material strengths and the geometric 

dimensions of the representative tests for evaluating is 

presented in Table 7. The results of the sensitivity analysis 

are shown in the sub-section. 

 

7.1 The concrete strength 
 
The effect of the first parametric study on the ultimate 

compressive strength of the circular CFST columns is 

presented shown in Fig. 15. This parametric study is carried 

out by changing the values of the concrete strength while 

keeping the other input parameters constant. Ten different 

specimens are used in the parametric study, including 5 

slender columns and 5 short columns. Fig. 15 exhibits the  

 

Fig. 15 Effect of concrete strength on axial compressive capacity 

 

Fig. 16 Effect of steel strength on axial compressive capacity 
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curves with different concrete strengths. It is showed that 

increasing concrete strength leads to increasing the 

compressive strength of the CFST columns. Specifically, 

the compressive strength of column slowly increases when 

concrete strength is raised by 10 to 25 MPa for the short 

columns; if the columns use concrete strengths ranging 

from 25 to 90 MPa, the compressive strength of CFST 

column can be rapidly increased by 185%. Besides, it is 

observed that the concrete strength increases insignificantly 

when the concrete strength is increased from 10 to 50 MPa 

for the slender columns. The growth becomes to increases 

rapidly after that at a rate of 103% during 50-90MPa of the 

concrete strength. This indicated that the increase in 

concrete strength leads to the constraint effect increasing. 

 

7.2 The steel strength 

 

The second parametric study is carried out to show the 

variation of the ultimate compressive strength on circular 

CFST columns as steel strength. The results of this second  

 

 

 

 

 

parametric study are presented in Fig. 16. According to all 

of the curves, it indicated that the axial compressive 

strength is proportional to the steel strength.  

 

7.3 The diameter-to-thickness ratio (D/t) 
 
The diameter-to-thickness ratio also special affects the 

bearing capacity. To ensure the steel tubes and the concrete 

work as integral, the evaluation of the diameter to thickness 

ratio was considered. The results of the variation in the 

bearing capacity versus the diameter to thickness ratio are 

illustrated in Fig. 17. Based on obtained results, it indicated 

that the compressive strength raises the stability with the 

ratio ranging from 10 to 70. After that, the bearing strength 

increases significantly as the diameter-to-thickness ratio 

increase from 70 to 200 as a result of the strong constraint 

effect. The main reason comes from the hoop or 

circumferential stress. A higher hoop or circumferential 

stress results in a significantly increased load-carrying 

capacity of the CFST columns. 

Table 7 Summary of representative experimental specimens 

Member type 
Numbering  D   L   

L/D 
t  

D/t 
fy    f'c    

of specimens   (mm)   (mm)   (mm) (MPa) (MPa) 

Short column 

(L/D ≤ 4) 

H58 174 360 2.07 3 58 265.9 45.68 

SZ5S4E3 219 650 2.97 4.73 4.63 350 41. 

CC4-D-4-1 449.8 1348.7 3 2.97 151.45 283.4 41 

CC6-D-4-2 360.2 1079.5 3 4.55 79.165 578.5 41 

CC6-C-4-2 238 476 2 4.54 52.423 507 40.5 

Slender column 

(L/D > 4) 

101 121 2310 19.1 5.69 21.265 349 21.4 

86 121 1050 8.68 3.99 30.326 332 24.6 

41 95 860 9.05 3.66 25.956 332 25.3 

83 121 1050 8.68 3.66 33.06 300 24.4 

75 95 1980 20.8 3.58 26.536 360 24.4 

 

Fig. 17 Effect of diameter-to-thickness ratio on axial compressive capacity 

432



 
Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network 

 

 

 

 

 

 

7.4 The length to diameter ratio (L/D) 
 
As shown in Fig. 18, the compressive strength of the 

column decreases when the length-to-diameter ratio 

increases. The ultimate strength decreases when the length-

to-diameter ratio is lower than 50. In contrast, the strength 

does not change when the ratio  for slender columns reaches 

50. The short columns tend to the same result when the 

length-to-diameter ratio was larger than 50 (CC4-D-4-1 and 

H58) and 55 (SZ5S4E3, CC6-D-4-2, CC6-C-4-2). It can be 

seen the effect of the confinement effect is reduced with the 

increasing length to thickness ratio, because of the lateral 

deflection before the failure increases the bending moment 

and reduces the mean compressive strain in the concrete. 

 

 

8. Spearman’s correlation coefficient 
 

The relationship of pair parameters was evaluated using 

the Spearman’s correlation coefficient. The Spearman 

correlation coefficient is a monotonic nonparametric  

 

 

 

 

 

technique that is used to summarize the strength and the 

direction, which can be positive or negative, of the 

correlation between two parameters. The level of interaction 

is called significant (or very strong) if the coefficient scale 

is between 0.8 and 1. High (or strong) between 0.5 and 0.8 

and moderate (or fair) between 0.2 and 0.5, and very small 

(or poor) below 0.2. If the coefficient is equal to 0, the two 

variables are independent of one another. When it is equal 

to 1 they are perfectly correlated in a positive way, whereas 

when it is equal to -1 the variables are perfectly correlated 

negatively (anti-correlation). The Spearman correlation 

matrix is given in Fig. 19. According to the results of 

Spearman correlation matrix, It is clear that the axial 

compressive strength is highly influenced by D, followed 

by fc’, t, fy, and L. This conclusion can help researchers and 

designers make appropriate decisions on reality designing. 

  

 

9. Conclusions 
 

A novel prediction model used to obtain an explicit 

 

Fig. 18 Effect of length-to-diameter ratio on axial compressive capacity 

 

Fig. 19 Spearman correlation matrix between each input and output parameters 
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predicted formulation of ultimate compressive capacity (Nu) 

of the concrete filled steel tube (CFST) column using ANN 

is presented in this study. The available experimental data 

were collected from the technical literature for developing 

the model. The following conclusions have been drawn 

from this study. 

(1) The Artificial Neural Network was efficiently employed 

to predict the axial compressive capacity of a CFST column, 

and it obtained superior results with a high level of 

confidence. The predicted results demonstrated the 

robustness and the effectiveness of the proposed ANN 

model, which can be applied for similar problems in 

structural and civil engineering. 

(2) For the convenience of the practical design, an empirical 

equation was proposed from the model. It showed that the 

compressive strength obtained from the proposed equation 

is more accurate than the compressive strength obtained 

from the well-known design codes. This can be explained 

that the proposed ANN model took into account all five-

input variables’ effect on the compressive strength of CFST 

column. It is noteworthy that the range of applicability of 

the derived equation is restricted by the used data. 

Consequently, if the input values are outside these ranges, 

the proposed ANN model should be used with caution. 

(3) To investigate the effects of the input variables, a 

parametric study was performed. The parametric study 

showed that learning of the ANN was significantly 

dependent on the given set of training data, and the results 

confirmed that the reliability can be improved based on the 

ANN. Besides, the study also indicated that the diameter of 

column (D) is the most important parameter regarding the 

axial compressive strength. 
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Nomenclature 
 

Notations  

CFST concrete filled steel tube 

ANN artificial neural network 

MLR multiple linear regression 

DT decision tree 

EC4 Eurocode 4 

ACI American Concrete Institute 

AIJ Architectural Institute of Japan 

MAPE absolute percentage error 

MAE mean absolute error 

MSE mean squared error 

RMSE root mean squared error 

VAF variance accounted for 

Ac cross section area of concrete (mm2) 

As cross section area of steel (mm2) 

fc’ compressive strength of the concrete (MPa) 

fy yield strength of steel (MPa) 

D diameter of the column (mm) 

L length of the column (mm) 

t thickness of steel tube (mm)  

Nu axial compressive capacity (kN) 

c  coefficient of concrete confinement 

a  coefficient of steel tube confinement 

λ relative slenderness 

Npl.R 
characteristic value of the plastic resistance 

to compressive 

Ncr 
elastic critical normal force for relevant 

buckling mode 

l buckling length of the column  

(EI)eff the effective flexural stiffness 

Ke correction factor Ke=0.6 

Ec2 modulus of elasticity of concrete 
  confinement factor 

lk effective length of the tube filled with 

concrete 
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Table A Data of experimental axial compressive capacity 

No of  

specimens 

D   L   t  fy    fc’    Nu  
References 

  (mm)   (mm)   (mm) (MPa) (MPa)  (kN) 

8 25.40 216.00 0.89 168.21 18.04 14.40 Zeghiche (2005) 

 
115.02 300.50 5.02 365.00 46.10 1413.00 

 3 140.00 635.00 3.00 285.00 18.18 881.00 Schneider (1998) 

 
141.40 635.00 6.68 537.00 23.81 2715.00 

 3 152.40 914.40 1.55 331.00 21.00 682.40 Hayashi (1990) 

 
152.40 914.40 1.55 331.00 25.90 733.10 

 3 150.00 480.00 0.70 248.20 22.50 513.50 Tomii et al. (1977) 

 
150.00 800.00 0.70 248.20 33.70 743.80 

 12 238.00 713.70 2.97 283.40 25.40 3034.10 Salani and Sims (1964) 

 
450.10 1348.70 6.48 834.30 41.00 9832.30 

 5 165.00 580.50 0.86 185.70 41.00 1350.00 Beck et al. (2009) 

 
190.00 664.50 2.82 363.30 48.30 1695.00 

 3 114.00 250.00 3.60 300.00 44.00 1042.00 Xiao (1989) 

 
167.00 250.00 5.60 300.00 44.00 1710.00 

 18 50.00 340.00 2.00 360.00 25.15 210.00 Knowles (1970) 

 
100.00 340.00 2.50 360.00 40.00 822.00 

 27 108.00 216.00 2.96 279.00 25.40 941.00 Li et al. (2016) 

 
450.00 2000.00 6.47 853.00 41.10 9835.00 

 5 159.90 2000.00 4.96 270.00 40.00 1091.00 Oliveira (2008) 

 
160.30 4000.00 5.00 281.00 45.00 1261.00 

 11 165.00 341.00 1.00 248.50 22.06 1197.19 Yu et al. (2007) 

 
204.00 400.00 9.00 363.40 45.68 3000.00 

 9 150.00 300.00 2.00 168.21 18.04 747.14 Giakoumelis and Lam (2004) 

 
150.00 300.00 4.29 311.17 28.73 1306.12 

 4 300.00 900.00 4.50 348.10 32.36 4551.32 O’Shea (2000) 

 
300.00 900.00 11.88 400.10 35.60 7953.08 

 46 95.00 860.00 3.40 277.00 20.60 413.00 Furlong (1967) 

 
216.00 2310.00 12.80 411.00 30.20 2932.00 

 17 25.40 1524.00 0.89 532.00 18.20 14.40 Lin (1988) 

 
76.20 1524.00 2.77 532.00 28.30 320.30 

 2 102.00 702.00 2.94 320.00 48.74 824.00 Luksha (1991) 

 
102.00 702.00 2.94 320.00 48.74 886.00 

 26 101.30 305.00 3.03 335.00 23.20 632.00 Gupta et al. (2007) 

 
318.50 955.00 10.37 452.00 52.20 9297.00 

 8 114.30 571.50 3.35 287.33 22.50 599.30 Yamamoto and Kawaguchi (2000) 

 
114.30 1143.00 6.00 342.95 32.68 1057.10 

 9 165.00 510.00 2.75 350.00 34.10 1560.00 Sakino et al. (2004) 

  219.00 650.00 4.78 350.00 41.90 3600.00   

437




