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1. Introduction 
 

Steel-concrete composite structures have become 

increasingly applied in civil engineering applications. 

Composite structures offer excellent merits over conventional 

steel structures (Asgarian et al. 2012), especially in terms of 

high capacity, good ductility and satisfactory aesthetic 

appearance. Concrete-filled steel tubular (CFST) columns, as 

typical composite structures, are composed of infilled 

concrete and surrounding steel plate. The infilled concrete 

provides support to steel plate and prevents steel plate from 

buckling inward. However, it is vulnerable for steel plate to 

buckle outward due to the weak restraint along this direction 

under either compression or dynamic loading (Samani et al. 

2014, Mirtaheri et al. 2017), which may eventually lead to 

progressive collapse in steel structures (Zoghi and Mirtaheri 

2016, Mirtaheri et al. 2019). 

The buckling analysis of pure plate (without rigid contact 

with concrete) has been studied by many researchers. 

Panahandeh-Shahraki et al. (2015) addressed thermoelastic 

buckling for laminated composite plates by Rayleigh-Ritz 

method. Bellifa et al. (2017) proposed a simple refined 

theory to analyze the buckling of functionally graded plates 

by using a new displacement function which includes 

undetermined integral variables. Dong et al. (2017) used one-

dimensional mathematical method to address the local 

buckling analysis of an infinite thin rectangular laminated 

composite plate restrained by a tensionless Winkler 

foundation and subjected to uniform in-plane shear loading. 
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Belkacem et al. (2018) applied higher order shear 

deformation theory to study the hybrid laminated composite 

plates. Kolahdouzan et al. (2018) incorporated the refined 

Zigzag theory to model the buckling of sandwich micro plate. 

Xu et al. (2019) investigated the buckling behavior of 

sandwich plates by reporting their critical mechanical loads 

and the corresponding mode shapes. 

The research on buckling analysis of steel plates in 

composite structures has been conducted by several 

researchers. Cai and Long (2009) and Long et al. (2016) 

derived the formulas for critical buckling stress of steel plate 

in concrete-filled tube column subjected to either axial or 

eccentric compressive loading. Li et al. (2016) conducted FE 

simulation to study the local buckling of bolted steel plate 

with different stiffener configurations. Kim et al. (2018) 

numerically investigated the bend-buckling strength of the 

web in longitudinally stiffened plate girder. Qin et al. (2017, 

2018a, b) studied the buckling behavior of steel plate in 

composite structures under compression or combined 

compression and bending. Kanishchev and Kvocak (2019) 

presented theoretical, experimental and numerical study on 

buckling of concrete-filled tubular column under axial 

compression. 

Numerical methods offer explicit solutions, but they are 

time consuming, computationally complicated and tedious 

for general use in design by civil engineers. 

Similar to the steel plate in buckling-restrained braces 

(Gheidi et al. 2011, Mirtaheri et al. 2011, 2018), the buckling 

of steel plate in composite structures are restrained by rigid 

materials (Soltani et al. 2019, Shahsavari et al. 2019, Javani 

et al. 2019). The buckling of steel plates in CFST columns is 

quite different from that of pure plate. On the one hand, the 

steel plates in CFST columns are restrained to buckle 

between adjacent plates when subjected to compression. On 
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the other hand, due to the restraint from concrete, the steel 

plate can only buckle outward. 

To simulate this boundary condition, the steel plates are 

considered to be restrained along four edges by either 

adjacent plates or shear studs, as illustrated in Fig. 1. Some 

researchers (Millar and Mora 2015, Jana 2016) considered 

the steel plates to be simply-supported the four edges, while 

others (Stollenwerk and Wagner 2015) argued that it was 

more reasonable to consider that the loaded edges could offer 

a fixed boundary and the unloaded edges was simply-

supported. It should be mentioned that the edges of the steel 

plate are restrained from rotation by surrounded components. 

However, the stiffness of adjacent component field may not 

be enough to provide a fixed boundary. Therefore, it is of 

importance to consider the case that the steel plates are 

restrained elastically along the four edges (Cai and Long 

2009, Long et al. 2016, Qin et al. 2017, 2018a, b). 

It should be noted that classical solutions for pure steel 

plate can be found in the shell and plate books. However, the 

deformed shape of steel plate in composite structures would 

be different from that of pure plate, which leads to different 

buckling stress. Furthermore, the steel plate is assumed to be 

either simply-supported or clamped in classical solutions, 

which cannot reflect the actual case. The work in this paper 

aims to address these two problems. In this paper, an effort is 

made to obtain the hand calculation formulas of local 

buckling stress of steel plates in composite structures, which 

assembles the method used by Cai and Long (2009), Long et 

al. (2016), and Qin et al. (2017, 2018a, b). The four edges of 

steel plate are assumed to be elastically restrained while two 

opposite edges are under compression, as shown in Fig. 1. 

New form of buckling shape was proposed to reflect the 

possible deflection of steel plate in contact with concrete. 

Explicit solutions for critical local buckling stress and critical 

aspect ratio are derived. The analytical results are then 

verified against available experimental and numerical data in 

the literature. Meanwhile, the influence of key factors, such 

as aspect ratio, width to thickness ratio, and rotational 

restraint stiffness, on the local buckling performance of steel 

plates was evaluated. The research in this paper can be 

considered as an alternative to the work by Cai and Long 

(2009) and Qin et al. (2017) by using a different buckling 

shape function to study the buckling issue of steel plate under 

axial compression. 

 

 

 

Fig. 1 Loading system and boundary condition of steel plate 

 

 

 

2. Analytical derivation 
 

2.1 Formulation for Elastically-Restrained Steel 
Plates 

 
This section introduces the theoretical formulas for 

elastically-restrained steel plates. The related information 

can be found in many shell and plate books and the research 

by Cai and Long (2009), Long et al. (2016), and Qin et al. 

(2017, 2018a, b). A typical arrangement of steel plate 

elastically restrained is shown in Fig. 1. Normally, buckling 

occurs between adjacent supporting plates in concrete-filled 

tubular columns or between shear studs in composite walls. 

Therefore, the width of steel plate between two adjacent 

plates or two shear studs is denoted as b. The steel plate has 

the length of a and is subjected to in-plane compression. 

The resulted distributed stress along the x-direction is σx. 

According to the research by Timoshenko and Gere (1961), 

at the critical point when the plate starts to buckle under the 

load in the middle plane, the buckled shape should satisfy 

the requirement specified in Eq. (1). The flexural rigidity D 

can be calculated by Eq. (2). 
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The local buckling analysis of steel plate under uniaxial 

compression is conducted based on the Rayleigh-Ritz 

method. The total potential energy of the steel plate (𝛱) is 

required to be calculated on the basis of energy principle. It 

normally contains the strain energy and the work done by 

external force. For the analyzed steel plate with elastic 

restraint and under compression, the potential energy 

comprises the summation of the elastic potential energy due 

to the out-of-plane deflection (Ud), the potential energy of 

spring (Us), and the work done by external applied 

compression (V), as illustrated in Eq. (3). 

𝛱 = 𝑈𝑑 + 𝑈𝑠 + 𝑉 (3) 

Assuming the orthotropic behavior of steel plate, the 

elastic potential energy Ud during the plate deforming can be 

calculated by Eq. (4). 

𝑈𝑑 =
𝐷

2
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As stated in section 1, The boundary condition of the 

steel plate is assumed to be elastic restraint against rotation 

along four edges. The restraint stiffness 𝑘𝑥 and 𝑘𝑦 at the 

loaded and unloaded edges, respectively, largely depends 

on the surrounded components. The energy Us associated 

with the elastic springs is determined by Eq. (5). 
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(5) 

It can be observed that the value of zero for 𝑘𝑥 (or 𝑘𝑦) 

represents the case that the simply-supported boundary edges 

along the lines 𝑦 = 0 and b (or 𝑥 = 0 and a); while the 

value of infinity for 𝑘𝑥 (or 𝑘𝑦) corresponds to the clamped 

boundary at 𝑦 = 0 and b (or 𝑥 = 0 and a). By choosing 

appropriate any other values for the elastic springs 𝑘𝑥 and 

𝑘𝑦, the boundary edges can be considered as elastic restraint 

against rotation. 

The work V done by the compression Nx can be given by Eq. 

(6). Nx can be mathematically given by Eq. (7). 

𝑉 =
1

2
∫ ∫ 𝑁𝑥 (

𝜕𝑤

𝜕𝑥
)
2𝑏

0
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 (6) 

𝑁𝑥 = −𝜎𝑥𝑡 (7) 

By substituting the appropriate buckling shape function 

into Eqs. (4)-(6), the total potential energy can be determined 

according to Eq. (3). In this way the buckling solution can be 

solved by Rayleigh-Rize method. 

 

2.2 Buckling shape for the plate 
 

It is important to choose a proper displacement function 

for the buckling shape when deriving the buckling strength of 

steel plate. From the literature review it can be observed that 

many of the proposed displacement functions by previous 

research are with too many variables to be determined, which 

will increase the complexity to solve the explicit solution. 

Furthermore, previous displacement functions cannot satisfy 

both loading and boundary conditions for steel plate in 

contact with concrete and subjected to compression. 

In order to apply the Rayleigh-Ritz method to solve the 

buckling issue, the appropriate form of displacement function 

w should be proposed to well represent the out-of-plane 

buckled shape. For steel plate in touch with concrete, the only 

possibility of buckling shape is to buckle away from the 

concrete. Cai and Long (2009) and Long et al. (2016) 

proposed the shape function with a cosine function in the x 

direction and a biquadratic function in the y direction. Qin et 

al. (2017, 2018b) used the shape function with a combined 

sine and cosine function in the x direction and a biquadratic 

function in the y direction. Qin et al. (2018a) used the shape 

function with a combined sine and cosine function in both x 

and y directions. 

Due to the uniaxial compression applied to the steel plate, 

the buckling shape should exhibit symmetry properties. 

Furthermore, for the sake of simplicity, the buckling shape 

function should include proper numbers of unknown 

coefficients in order to derive a closed-form solution. In this 

research, a new form of shape function was proposed. 

Biquadratic functions are uniquely combined as the buckled 

shape along both directions, as given by Eq. (8) 
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where C is a constant, and 𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2 and 𝛽3 are 

the constants to be determined which should satisfy both the 

boundary conditions and the requirement of compatibility. 
As can be seen from Fig. 1, the steel plate with elastic 

restrained against rotation along four edges should satisfy the 

boundary condition as specified by Eq. (9). 

𝑤(0, 𝑦) = 𝑤(𝑎, 𝑦) = 0 (9a) 
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)
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 (9c) 

𝑤(𝑥, 0) = 𝑤(𝑥, 𝑏) = 0 (10a) 

𝑀𝑦(𝑥, 0) = −𝐷 (
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𝜕𝑦2
)
𝑦=0
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It should be noted that the equations specified in Eqs. (9) 

and (10) will be used to obtain the values of unknown 

constants in Eq. (8). By taking the first-order and second-

order partial derivative of w with respect to x and substituting 

them into Eq. (9), the unknown constants 𝛽1, 𝛽2, and 𝛽3 

can be determined as a function of the elastic spring ( xk ) 

along the loaded edges as shown in Eq. (11). 

𝛽1 =
𝑘𝑥𝑎

2𝐷
 (11a) 

𝛽2 = −
2𝐷 + 𝑘𝑥𝑎

𝐷
 (11b) 

𝛽3 =
2𝐷 + 𝑘𝑥𝑎

2𝐷
 (11c) 

Similarly, by taking the first-order and second-order 

partial derivative of w with respective to y and substituting 

them into either Eqs. (10), 𝛼1, 𝛼2, and 𝛼3 can be expressed 

as a function of the elastic spring (𝑘𝑦) along the unloaded 

edges as given in Eq. (12). 

𝛼1 =
𝑘𝑦𝑏

2𝐷
 (12a) 

𝛼2 = −
2𝐷 + 𝑘𝑦𝑏

𝐷
 (12b) 

𝛼3 =
2𝐷 + 𝑘𝑦𝑏

2𝐷
 (12c) 
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By substituting Eq. (8) into Eqs. (4)-(6) and rearranging, 

the potential energy U, Us, and V can be expressed in forms 

of the function with respect to the defined constants. 

𝑈 =
𝐷

2
[
𝑏𝐶2

𝑎3
𝐴1𝐵1 +

𝑎𝐶2
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 (13c) 

where A1, A2, A3, A4, B1, B2, B3 and B4 are defined as 
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(14a) 
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2
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5
𝛽1𝛽3 + 3𝛽2𝛽3 

(14g) 

𝐵4 = 2𝛽1 + 2𝛽2 + 2𝛽3 +
4
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Substituting Eqs. (13(a))-(13(c)) into Eq. (3), the total 

potential energy 𝛱 can be expressed by Eq. (15). 

𝛱

=
𝐷

2
[
𝑏𝐶2

𝑎3
𝐴1𝐵1 +

𝑎𝐶2

𝑏3
𝐴2𝐵2 +

2𝜈𝐶2

𝑎𝑏
𝐴3𝐵3

+
2(1 − 𝜈)

𝑎𝑏
𝐴4𝐵4] −

𝐶2𝜎𝑥𝑡𝑏𝐴1𝐵4
2𝑎

+
𝑘𝑦𝑎𝐶

2[1 + (1 + 2𝛼1 + 3𝛼2 + 4𝛼3)
2]

2𝑏2
𝐵2

+
𝑘𝑥𝑏𝐶

2[1 + (1 + 2𝛽1 + 3𝛽2 + 4𝛽3)
2]

2𝑎2
𝐴1 

(15) 

 

2.3 Explicit solution 
 

Since the steel plate shall deform to a position that 

minimizes the total potential energy, the value of 𝜎𝑥𝑡 can be 

found by taking a first-order partial derivative of Eq. (15) 

with respect to C, as shown in Eq. (16). 

∂𝛱

∂𝐶
= 0 (16) 

By substituting Eq. (15) into (16), the critical local 

buckling stress can be obtained by Eq. (17). 

𝜎𝑥𝑡

=
𝜋2𝐷

𝑏2
[

𝐵1
𝛾2𝜋2𝐵4

+
𝛾2𝐴2𝐵2
𝜋2𝐴1𝐵4

+
2𝜐𝐴3𝐵3
𝜋2𝐴1𝐵4

+
2(1 − 𝜐)𝐴4

𝜋2𝐴1

+
2𝜆𝑦𝛾

2[1 + (1 + 2𝛼1 + 3𝛼2 + 4𝛼3)
2]𝐵2

𝜋2𝐴1𝐵4

+
2𝜆𝑥[1 + (1 + 2𝛽1 + 3𝛽2 + 4𝛽3)

2]

𝜋2𝛾2𝐵4
] =

𝑘𝜋2𝐷

𝑏2
 

(17) 

where 𝛾 =aspect ratio (𝛾 = 𝑎 𝑏⁄ ); k =elastic local buckling 

coefficient and can be expressed by Eq. (18); 𝜆𝑥 and 𝜆𝑦 are 

the restraining factors along loaded and unloaded edges, 

respectively, as defined in Eqs. (19(a)) and (19(b)). 

𝑘

=
𝐵1

𝛾2𝜋2𝐵4
+
𝛾2𝐴2𝐵2
𝜋2𝐴1𝐵4

+
2𝜈𝐴3𝐵3
𝜋2𝐴1𝐵4

+
2(1 − 𝜐)𝐴4

𝜋2𝐴1

+
2𝜆𝑦𝛾

2[1 + (1 + 2𝛼1 + 3𝛼2 + 4𝛼4)
2]𝐵2

𝜋2𝐴1𝐵4

+
2𝜆𝑥[1 + (1 + 2𝛽1 + 3𝛽2 + 4𝛽3)

2]

𝜋2𝛾2𝐵4
 

(18) 

𝜆𝑥 =
𝑘𝑥𝑎

2𝐷
 (19a) 

𝜆𝑦 =
𝑘𝑦𝑏

2𝐷
 (19b) 

As can be observed in Eq. (18), the elastic local buckling 

coefficient 𝑘 is the function of aspect ratio 𝛾. In order to get 

the critical local buckling coefficient 𝑘𝑐𝑟 , which should be 

the lower bound of Eq. (18), Eq. (18) is taken partial 

derivative with respect to 𝛾 and setting the result equal to 

zero. In this way the critical aspect ratio 𝛾𝑐𝑟 is given by Eq. 

(20). 
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𝛾𝑐𝑟

= {
𝐴1𝐵1 + 2𝜆𝑥𝐴1[1 + (1 + 2𝛽1 + 3𝛽2 + 4𝛽3)

2]

𝐴2𝐵2 + 2𝜆𝑦𝐵2[1 + (1 + 2𝛼1 + 3𝛼2 + 4𝛼3)
2]
}

1
4

 
(20) 

Therefore, the critical local buckling coefficient 𝑘𝑐𝑟  can 

be obtained by substituting Eq. (20) into Eq. (17). The critical 

local buckling stress of the steel plate ( 𝜎𝑐𝑟 ) under 

compressive load and with elastic restraint along four edges 

can be determined by substituting the function expression of 

𝑘𝑐𝑟  and D into Eq. (17), which can be eventually expressed 

as Eq. (21). 

𝜎𝑐𝑟 =
𝑘𝑐𝑟𝜋

2𝐸

12(1 − 𝜈2)(𝑏 𝑡⁄ )2
 (21) 

 

 

3. Verification 
 
In this section, the explicit solution for local buckling of 

steel plate in contact with concrete and under uniaxial 

compression, as given by Eq. (18), is simplified into several 

special cases. The obtained results from this research are 

compared with available analytical solutions and experimental 

data, which can indirectly verify the accuracy of the proposed 

method. 

 
3.1 Case 1: CC Steel Plate 
 
CC steel plate means the steel plate is clamped along both 

loaded and unloaded edges, which leads to 𝑘𝑥 → ∞ and 

𝑘𝑦 → ∞. The value of critical aspect ratio 𝛾𝑐𝑟 = 1.0 can 

then be obtained by Eq. (20). By substituting the value of 𝛾𝑐𝑟 

into Eq. (18), the value of critical local buckling coefficient 

𝑘𝑐𝑟 = 10.94 can be obtained. This result is close to 𝑘𝑐𝑟 =
9.81  obtained by Liang et al. (2007) through the finite 

element buckling analysis, 𝑘𝑐𝑟 = 9.99 recommended by 

Bridge and O’Shea (1998) based on finite strip analysis, and 

𝑘𝑐𝑟 = 10.32 suggested by Long et al. (2016). It can also be 

found that the proposed method slightly overestimates the 

buckling stress. Substituting the value of 𝑘𝑐𝑟 = 10.94 into 

Eq. (21) gives the critical local buckling stress as shown in 

Eq. (22). 

𝜎𝑐𝑟 =
10.94𝜋2𝐸

12(1 − 𝜈2)(𝑏 𝑡⁄ )2
 (22) 

 

3.2 Case 2: CS Steel Plate 
 

CS steel plate means the steel plate is clamped along the 

loaded edges while simply-supported along the unloaded 

edges, which leads to 𝑘𝑥 → ∞ and 𝑘𝑦 = 0. The value of 

critical aspect ratio 𝛾𝑐𝑟 = 1.51 can then be obtained by Eq. 

(20). By substituting the value of 𝛾𝑐𝑟 = 1.51 into Eq. (18), 

the value of critical local buckling coefficient 𝑘𝑐𝑟 = 5.74 

can be calculated. This result is close to 𝑘𝑐𝑟 = 5.46 

proposed by Long et al. (2016). It should be noted that the 

method by Long et al. (2016) is closer to the exact solution, 

since both solutions by Long et al. (2016) and this research 

used the principle of minimum potential energy. Substituting 

the value of 𝑘𝑐𝑟 = 5.74 into Eq. (21) gives the critical local 

buckling stress as shown in Eq. (23). 

𝜎𝑐𝑟 =
5.74𝜋2𝐸

12(1 − 𝜈2)(𝑏 𝑡⁄ )2
 (23) 

 

3.3 Case 3: SS Steel Plate 
 

SS steel plate means the steel plate is simply-supported 

along both the loaded and the unloaded edges, which leads to 

𝑘𝑥 = 0 and 𝑘𝑦 = 0. The value of critical aspect ratio is 

𝛾𝑐𝑟 = 1.0 based on Eq. (20), and the corresponding value of 

critical local buckling coefficient is 𝑘𝑐𝑟 = 4.00 based on 

Eq. (18). This result is close to 𝑘𝑐𝑟 = 3.59 proposed by Qin 

et al. (2018a). Substituting the value of 𝑘𝑐𝑟 = 4.00 into Eq. 

(21) gives the critical local buckling stress as shown in Eq. 

(24). 

𝜎𝑐𝑟 =
𝜋2𝐸

3(1 − 𝜈2)(𝑏 𝑡⁄ )2
 (24) 

 

3.4 Case 4: CK Steel Plate 
 
CK steel plate indicates the steel plate is clamped along 

the loaded edges while elastically restrained along the 

unloaded edges. Plates with clamped loaded edges indicated 

the elastic spring 𝑘𝑥 → ∞. In order to determine the critical 

aspect ratio given in Eq. (20), the reasonable value of 𝜆𝑦 

should be proposed. It should be noted that 𝜆𝑦  can be 

transformed into 𝑘𝑦  based on Eq. (19(b)). Bleich (1952) 

used Eq. (25) to predict the value of 𝜆𝑦 for steel plate. 

𝜆𝑦 = (
𝑡𝑤
𝑡𝑓
)

3
𝑟

𝜌
 (25) 

𝑟 = 1 − 𝛽𝑟 (
𝑡𝑓𝑏𝑤

𝑡𝑤𝑏𝑓
)

2

 (26) 

𝜌 =
1

𝜋
tanh (

𝜋𝑏𝑤
4𝑏𝑓

) [1 +
𝜋𝑏𝑤 2𝑏𝑓⁄

sinh(𝜋𝑏𝑤 2𝑏𝑓⁄ )
] (27) 

Where bf = width of the calculated steel plate; tf 

=thickness of the calculated steel plate; bw = width of the 

supporting steel plate; tw =thickness of the supporting steel 

plate; r =reduction factor for steel plate in contact with 

concrete; 𝛽𝑟 = 0.5  is the reduction factor used for 

considering the beneficial restraining effects offered by 

concrete. 

Uy (1998, 2001) and Mo et al. (2004) conducted 

extensive tests to investigate the local buckling behavior of 

steel plates restrained by concrete. The readers could refer to 

the references listed above for the detailed test information. 

The key parameters and the comparison between tests and 

proposed theoretical methods are given in Table 1. 

As can be noticed in Table 1, the assumption that the steel 

plate is clamped along both loaded and unloaded edges 

provides much higher local buckling strength than the 

experimental results, which is on the unconservative side. 

Furthermore, the assumption that the steel plate is clamped 

along the loaded edges while simply-supported along the  

409



 

Ying Qin, Ke-Rong Luo and Xin Yan 

 

 

Fig. 2 Local buckling strength versus aspect ratio 

 

 

unloaded edges offers relative low predictions and 

underestimates the actual buckling strength as expected. 

Meanwhile, the assumption that the steel plate is simply-

supported along four edges provides the lowest values of 

local buckling stress. 

It can also be found that it is more appropriate to assume 

that the steel plate is elastically restrained against rotation 

along the unloaded edges. The averaged ratio of predicted 

results based on equation in case 4 to experimental ones is 

1.04 with the standard deviation of 0.10. 

 

 

4. Discussion 
 

4.1 Aspect ratio 
 
The response between the aspect ratio and the local 

buckling strength is shown in Fig. 2. It can be seen that the 

CC steel plates are the most sensitive to the change in aspect 

ratio. For a steel plate with certain thickness, the local 

buckling strength 𝜎𝑐𝑟  decreases shapely when the aspect 

ratio gradually grows. After reaching the critical value of 𝛾, 

𝜎𝑐𝑟  smoothly goes up if the aspect ratio continues to grow. 

For CC, CS, SS, and CK steel plates, the minimum value of 

local buckling strength can be obtained when the aspect 

ratios 𝛾  equal 1.0, 1.5, 1.0, and 1.2, respectively. The 

corresponding buckling stresses are 203 MPa, 106 MPa, 74 

MPa, and 148 MPa, respectively. This indicates that for steel 

plates with clamped boundary conditions along four edges or 

with simply-supported boundary conditions along four edges, 

square steel plate is more vulnerable to local buckling. 

 

4.2 Width to thickness ratio 
 
The relationship between width to thickness ratio and 

local buckling strength for steel plate with fixed aspect ratio 

is illustrated in Fig. 3. It can be found that the local buckling 

strength of steel plate is sensitive to the width to thickness 

ratio. The local buckling strength of steel plate steadily goes 

down with the increase in width to thickness ratio. 

 

 

 

 

 

For practical design in China, the yield strength of steel 

used in civil engineering is normally less than 400 MPa. If 

the steel plate is expected to yield before local buckling 

occurs, which means strength failure rather than stability 

failure dominates, the width to thickness ratio of the steel 

plate should be limited to 𝑏 𝑡⁄ ≤ 45 according to the plot in 

Fig. 3. 

 

4.3 Rotational restraint stiffness 
 

It can be observed from Fig. 4 that, the behavior of local 

buckling for steel plate is largely affected by the rotational 

restraint stiffness. Steel plate with extremely small rotational 

restraint stiffness represents the simply-supported boundary 

condition, while that with infinitely large rotational restraint 

stiffness denotes the clamped boundary condition. It 

demonstrates that the local buckling performance of steel 

plate under compression is more sensitive to the rotational 

restraint stiffness when the stiffness of adjacent component  
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Fig. 4 Local buckling strength versus rotational restraint 

stiffness 
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field is weak. Furthermore, if rotational restraint has been 

strong enough, the local buckling strength cannot be greatly 

raised by increasing rotational restraint stiffness. This 

observation is in consistant with that obtained by Qin et al. 

(2018b). 

 

 

5. Conclusions 
 

This research revisited a topic of plate buckling 

behavior, a classical yet critical issue, and presented 

analytical solutions based on an energy approach. 

Analytical procedures for estimating the local buckling 

strength of steel plate under compression has been 

developed in this research. The proposed method is based 

on Rayleigh-Rize method, which assembles the method used 

by Cai and Long (2009), Long et al. (2016), and Qin et al. 

(2017, 2018a, 2018b). Both the loaded and unloaded edges 

are assumed to be elastically restrained against rotation. The 

new buckling function combining biquadratic functions 

along both directions has been developed. Explicit solutions 

are obtained according to the energy principle. The obtained 

solution is simplified into several cases such as CC steel 

plate, CS steel plate, SS steel plate and CK steel plate. The 

results are compared to the available experimental data and 

previous solutions by either analytical or finite element 

method. Furthermore, the influences of several key 

parameters on the local buckling strength of steel plate has 

been comprehensively evaluated. The following 

conclusions may be drawn based on the research in this 

paper. 

(1) The shape function with combined biquadratic 

functions is capable of representing the buckling 

characteristics of steel plate in composite structures. 

Both the requirement for boundary conditions and 

compatibility can be satisfied. 

 

 

 

 

(2) The proposed hand calculation procedure is able to 

predict the local buckling performance of steel plate in 

composite structures. Good agreement has been found 

between the available experimental data, previous solutions 

and the predictions by the proposed method. 

(3) The CC and SS steel plates with square shapes 

(aspect ratio equals zero) are more vulnerable to local 

buckling. The requirement for width to thickness ratio of the 

steel plate can be limited to 𝑏 𝑡⁄ ≤ 45 to avoid possible 

local buckling before yielding. Meanwhile, rotational 

restraint stiffness has significant influence on local buckling 

of steel plate when the stiffness of adjacent component field 

is weak. 

It should be mentioned that the analytical solutions for 

the buckling of steel plates in composite structures are 

complicated. For steel plate with stiffeners, the research in 

this paper can be applied. In this case, the steel plate can be 

divided into several small steel plates. Each small steel plate 

can be considered as elastically restrained by the 

surrounded stiffeners. However, for steel plate with 

openings, the current research cannot be used to solve the 

problem. Finite element simulations are recommended to be 

used to obtained the buckling solutions. 
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Table 1 Comparison between test results and proposed equations 

Specimen 

No. 
b tf tw

 𝜎𝑐𝑟,𝑒 Case 1 by Eq.(22) Case 2 by Eq.(23) Case 3 by Eq. (24) Case 4 Reference 

 mm
 

mm
 

mm
 

MPa
 
𝜎𝑐𝑟1(MPa) 𝜎𝑐𝑟1 𝜎𝑐𝑟,𝑒⁄  𝜎𝑐𝑟2(MPa) 𝜎𝑐𝑟2 𝜎𝑐𝑟,𝑒⁄  𝜎𝑐𝑟3(MPa) 𝜎𝑐𝑟3 𝜎𝑐𝑟,𝑒⁄  𝜎𝑐𝑟,𝑡(MPa) 𝜎𝑐𝑟,𝑡 𝜎𝑐𝑟,𝑒⁄   

LB7 240 3 3 200 317 1.59 166 0.83 116 0.58 195 0.99 
Uy (1998) 

LB9 300 3 3 120 203 1.69 106 0.88 74 0.62 125 1.06 

FB1 360 3 3 93.4 141 1.51 74 0.79 51 0.55 87 0.94 

Uy (2001) 
FB2 420 3 3 79.9 103 1.29 54 0.68 38 0.48 64 0.81 

FB3 480 3 3 43.7 79 1.81 42 0.96 29 0.66 49 1.12 

FB4 540 3 3 38.8 63 1.62 33 0.85 23 0.59 39 1.01 

SCC2 200 3 3 246 456 1.85 239 0.97 167 0.68 281 1.16 Mo et al. 

(2004) SCC6 200 2 2 118 203 1.64 106 0.90 74 0.63 125 1.07 

Average      1.67  0.86  0.60  1.01  

Standard 

deviation 

    
 0.17  0.09  0.06 

 
0.10  

Note: 𝜎𝑐𝑟,𝑒 = local buckling strength according to the experimental recordings; 𝜎𝑐𝑟1, 𝜎𝑐𝑟2, 𝜎𝑐𝑟3 =local buckling strength calculated by 

Eqs. (22)-(24), respectively; 𝜎𝑐𝑟,𝑡 = local buckling strength based on case that the steel plate is clamped along the loaded edges while 

elastically-restrained along the unloaded edges 
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