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1. Introduction 
 

A lot of research and interest has been given to 

deformation and heat flow in a continuum using 

thermoelasticity theories in past few decades. Ventsel and 

Krauthammer (2001), Zhao (2008) categorized the plates 

into three classes: membranes, thick plates, and thin plates 

subject to the ratio of 𝑎/ℎ (i.e., aspect ratio), where 𝑎  is 

diameter and ℎ is the thickness of plate. Tikhe and 

Deshmukh (2005, 2006) considered a thin finite circular 

plate with integral transform technique and heating 

temperatures in the form of Bessel functions and with 

integral techniques. Kanoria et al. (2011) studied the 

axisymmetric thermoelastic loading response of fiber 

reinforced thin circular disc with three phase lag(TPL). 

Gaikwad and Deshmukh (2005) discussed the inverse 

thermoelastic problem for thermal deflection in a thin 

isotropic circular plate. Gaikwad et al. (2012) studied the 

inverse thermoelastic problem of circular plate, whereas, 

Gaikwad (2016) considered the circular plate for known 

interior temperature under Steady-state field due to uniform 

internal energy generation. Gaikwad (2019) discussed the 

thin circular plate under an instable temperature field due to 

internal heat generation using Fourier and Hankel transform 

techniques. Elsheikh et al. (2019) investigated thermal 

effects on the deflection and stresses in a thin-circular plates 

with an axisymmetric input where the perimetric edge of  
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thin circular plate is fixed and insulated, whereas upper and  

lower sides of the plate are exposed to heat 

source.  Varghese et al. (2018) studied, induced transverse 

vibration of a thin elliptic annulus plate using integral 

operational methods. Despite of this several researchers 

worked on different theory of thermoelasticity as Marin 

(2010), Abbas and Youssef (2009, 2012), Mohamed et al. 

(2009), Abbas et al. (2009), Abd-Alla and Mahmoud 

(2011), Bouderba et al. (2013), Marin and Florea (2014) , 

Mahmoud et al. (2011, 2015), Atmane et al. (2015), 

Meradjah et al. (2015), Bousahla et al. (2016), Yang et al. 

(2016), Menasria et al. (2017), Marin et al. (2013, 2016), 

Bijarnia and Singh (2016), Marin et al. (2017a), Shahani 

and Torki (2018), Eftekhari (2018), Altunsaray (2018), 

Banh et al. (2018), Zenkour (2018), Bhatti et al. (2019), 

Bhatti and Lu (2019b), Kaur and Lata (2019a,b,c), Lata and 

Kaur (2019a,b,c). 
The present research deals with the deformation in 

transversely isotropic thermoelastic (TIT) thin circular plate 
with the rotation effect. The Laplace and Hankel transform 
techniques have been used to find the solution to the 
problem. The displacement components, conductive 
temperature distribution and stress components with the 
radial distance are computed in the transformed domain and 
further calculated in the physical domain using numerical 
inversion techniques. The effects of rotation and two 
temperature are represented graphically. 
 

 

2. Basic equations 
 

Following Kumar et al. (2016), equation of motion for a 

uniformly rotating medium with an angular velocity 𝛀 =
Ω𝐧, where n is vector of unit magnitude directed towards 

the axis where rotation takes place, in the absence of body 

forces and heat sources, is given by 
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𝒕𝑖𝑗,𝑗 =  𝜌{𝒖̈𝑖 + (𝛀 × (𝛀 × 𝐮)) + (2𝛀 × 𝒖̇)}𝑖 , (1) 

The constitutive relations for an anisotropic 

thermoelastic medium  

𝑡𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇, (2) 

Following Zenkour (2018) heat conduction equation 

with multi dual phase lag heat transfer is 

𝐾𝑖𝑗ℒθ𝜑,𝑖𝑗 = ℒq

∂

∂t
(𝛽𝑖𝑗𝑇0𝑢𝑖,𝑗 + 𝜌𝐶𝐸𝑇) (3) 

Where 𝐶𝐸  denotes specific heat at uniform strain and 

𝐾𝑖𝑗denote themal conductivity coefficients. Here we will 

propose two differential parameters ℒθand ℒq in the form 

ℒθ = 1 + ∑
τθ
i ∂i

i! ∂ti
R1
i=1 ,   and ℒq = (ϱ + τ0

∂

∂t
+

∑
τq
i ∂i

i! ∂ti
R2
i=2 )  

(4) 

The thermal relaxation parameters 𝜏𝜃 , 𝜏𝑞and 𝜏0 are the 

thermal memories in which 𝜏𝑞is the phase lag of heat flux, 

(0 ≤ 𝜏𝜃 < 𝜏𝑞), while 𝜏𝜃is the phase lag of the temperature 

gradient. For example, L-S theory will be appearing when 

𝜏𝜃 = 𝜏𝑞 = 0 and ϱ = 1.  Generally the value of R1 =

R2 = R may reach 5 or more according to refined multi-

dual-phase-lag theory required while ϱ is a non-

dimensional parameter (=0 or 1 according to the 

thermoelasticity theory). Also we have 

𝑇 =  𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗 , 

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛼𝑖𝑗, 

𝑒𝑖𝑗 = 
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖).  𝑖 = 1,2,3 

(5) 

 

 

3. Formulation of the problem 
 

We consider a transversely isotropic thin circular plate 

of thickness 2b occupying the space D defined by 0 ≤ 𝑟 ≤
∞,−𝑏 ≤ 𝑧 ≤ 𝑏 in the context of the multi-dual-phase-lag 

model. We assume that the medium, is transversely 

isotropic in such a way that the planes of isotropy are 

perpendicular to the z axis. Thin plates are usually 

characterized by the ratio a / b (the ratio between the length 

of a side, a, and the thickness of the material, b, falling 

between the values of 8 and 80 as mentioned by Ventsel et. 

al. (2001). Let the plate be subjected to axisymmetric heat 

supply into its boundary having an initially undisturbed 

state at a uniform temperature T0. We use plane cylindrical 

coordinates (r, θ, z) with the center of the plate as the origin. 

Applying the transformation:  

𝑥′ = 𝑥 cos𝜙 + 𝑦 sin𝜙, 𝑦′ = −𝑥 sin𝜙 + 𝑦 cos𝜙 , 𝑧′ = 𝑧. 

where 𝜙 is angle of rotation in x-y plane, on the set of Eqs. 

(1)-(3) to derive the equations for TIT solid with two 

temperatures, to obtain Equation of motion for the 

transversely isotropic medium in cylindrical polar 

coordinates are 

 

Fig. 1 Geometry of the problem 

 

 

𝑐11 (
𝜕2𝑢

𝜕𝑟2 + 
1

𝑟

𝜕𝑢

𝜕𝑟
− 

1

𝑟2 𝑢) + 𝑐12 (
1

𝑟

𝜕2𝑣

𝜕𝑟𝜕𝜃
) + 𝑐13 (

𝜕2𝑤

𝜕𝑟𝜕𝑧
) +

𝑐44
𝜕2𝑢

𝜕𝑧2 + 𝑐44 (
𝜕2𝑤

𝜕𝑟𝜕𝑧
) + 𝑐66 (

1

𝑟2

𝜕2𝑢

𝜕𝜃2 + 
1

𝑟

𝜕2𝑣

𝜕𝑟𝜕𝜃
−

 
1

𝑟2

𝜕𝑣

𝜕𝜃
) − 𝛽1

𝜕

𝜕𝑟
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
+

1

𝑟2

𝜕2𝜑

𝜕𝜃2) −

𝑎3
𝜕2𝜑

𝜕𝑧2} =  ρ (
𝜕2𝑢

𝜕𝑡2 − 𝛺2𝑢 + 2𝛺
𝜕𝑤

𝜕𝑡
) , 

(6) 

𝑐66 (
𝜕2𝑣

𝜕𝑟2
+

1

𝑟2

𝜕𝑢

𝜕𝜃
+

1

𝑟

𝜕2𝑢

𝜕𝑟𝜕𝜃
− 

𝑣

𝑟2
) + 𝑐12 + 𝑐11 + 𝑐13 (

1

𝑟

𝜕2𝑤

𝜕𝑧𝜕𝜃
) +

𝑐44
𝜕2𝑣

𝜕𝑧2 + 𝑐44 (
1

𝑟

𝜕2𝑤

𝜕𝑧𝜕𝜃
) − 𝛽1

𝜕

𝜕𝑟
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
+

1

𝑟2

𝜕2𝜑

𝜕𝜃2
) − 𝑎3

𝜕2𝜑

𝜕𝑧2
} =  𝜌

𝜕2𝑣

𝜕𝑡2
, 

(7) 

(𝑐13 + 𝑐44) (
𝜕2𝑢

𝜕𝑟𝜕𝑧
+

1

𝑟

𝜕𝑢

𝜕𝑧
+

1

𝑟

𝜕2𝑣

𝜕𝑧𝜕𝜃
)

+ 𝑐44 (
𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
+

1

𝑟2

𝜕2𝑤

𝜕𝜃2
) + 𝑐33

𝜕2𝑤

𝜕𝑧2

− 𝛽3

𝜕

𝜕𝑧
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2
+ 

1

𝑟

𝜕𝜑

𝜕𝑟
+

1

𝑟2

𝜕2𝜑

𝜕𝜃2
)

− 𝑎3

𝜕2𝜑

𝜕𝑧2
} = ρ(

𝜕2𝑤

𝜕𝑡2
− 𝛺2𝑤 − 2𝛺

𝜕𝑢

𝜕𝑡
) 

(8) 

and Heat conduction Eq. (2) becomes 

𝐾1 (1 + ∑
τθ
i ∂i

i! ∂ti
R1
i=1 ) (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
+

1

𝑟2

𝜕2𝜑

𝜕𝜃2) +

𝐾3 (1 + ∑
τθ
i ∂i

i! ∂ti
R1
i=1 )

𝜕2𝜑

𝜕𝑧2 =  (ϱ + τ0
∂

∂t
+

∑
τq
i ∂i

i! ∂ti
R2
i=2 ) {𝑇0  

𝜕

𝜕𝑡
(𝛽1

𝜕𝑢

𝜕𝑟
+ 𝛽2

𝜕𝑣

𝜕𝜃
+𝛽3

𝜕𝑤

𝜕𝑧
) +

𝜌𝐶𝐸
𝜕

𝜕𝑡
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
+

1

𝑟2

𝜕2𝜑

𝜕𝜃2) − 𝑎3
𝜕2𝜑

𝜕𝑧2}}  

(9) 

In above equations, following contracting subscript 

notations are used (11→ 1, 22→ 2, 33→ 3, 23→ 5, 13→ 4, 

12→ 6) to relate 𝑐𝑖𝑗𝑘𝑙  to 𝑐𝑚𝑛 . As the problem considered 

is plane axisymmetric, 𝑢, 𝑣, 𝑤, and 𝜑 are independent of 

 𝜃. We restrict our analysis to two-dimension problem with 

𝑢⃗ = (𝑢, 0, 𝑤). Thus Eqs. (6)-(9) becomes 

𝑐11 (
𝜕2𝑢

𝜕𝑟2 + 
1

𝑟

𝜕𝑢

𝜕𝑟
−

1

𝑟2 𝑢) + c13 (
𝜕2𝑤

𝜕𝑟𝜕𝑧
) + c44

𝜕2𝑢

𝜕𝑧2 +

 𝑐44 (
𝜕2𝑤

𝜕𝑟𝜕𝑧
) − 𝛽1

𝜕

𝜕𝑟
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2} =

ρ (
𝜕2𝑢

𝜕𝑡2 − 𝛺2𝑢 + 2𝛺
𝜕𝑤

𝜕𝑡
) , 

(10) 

(𝑐11 + 𝑐44) (
𝜕2𝑢

𝜕𝑟𝜕𝑧
+

1

𝑟

𝜕𝑢

𝜕𝑧
) + 𝑐44 (

𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
) + (11) 
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 𝐶33
𝜕2𝑤

𝜕𝑧2 − 𝛽3
𝜕

𝜕𝑧
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2} =

ρ (
𝜕2𝑤

𝜕𝑡2 − 𝛺2𝑤 − 2𝛺
𝜕𝑢

𝜕𝑡
),  

𝐾1 (1 + ∑
τθ
i ∂i

i! ∂ti
R1
i=1 ) (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) + 𝐾3 (1 + ∑

τθ
i ∂i

i! ∂ti
R1
i=1 )

𝜕2𝜑

𝜕𝑧2 =

(ϱ + τ0
∂

∂t
+ ∑

τq
i ∂i

i! ∂ti
R2
i=2 ) [𝑇0 (𝛽1

𝜕u̇

𝜕𝑟
+ 𝛽3

𝜕ẇ

𝜕𝑧
) + 𝜌𝐶𝐸 {φ̇ −

𝑎1 (
𝜕2φ̇

𝜕𝑟2 + 
1

𝑟

𝜕φ̇

𝜕𝑟
) − 𝑎3

𝜕2φ̇

𝜕𝑧2}].  

(12) 

where 𝑎1and 𝑎3  are two temperature parameters. 

To facilitate the solution, the dimensionless quantities 

defined by 

 𝑟′ = 
𝑟

𝐿
,   𝑧′ = 

𝑧

𝐿
,    𝑡′ =  

𝑐1

𝐿
𝑡,    𝑢′ =

 
𝜌𝑐1

2

𝐿𝛽1𝑇0
𝑢,    𝑤′ = 

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑤, 𝑇′ =  

𝑇

𝑇0
, 𝑡𝑧𝑟

′ =
𝑡𝑧𝑟

𝛽1𝑇0
,

𝑡𝑧𝑧
′ = 

𝑡𝑧𝑧

𝛽1𝑇0
, 𝑡𝑟𝑟

′ = 
𝑡𝑟𝑟

𝛽1𝑇0
,   𝜑′ = 

𝜑

𝑇0
, 𝑎1

′ = 
𝑎1

𝐿2 ,

𝑎3
′ = 

𝑎3

𝐿2 , 𝜌𝑐1
2 = 𝑐11 , (𝜏0

′ , 𝜏𝜃
′ , 𝜏𝑞

′ , 𝑡′) =
𝐶1

𝐿
(𝜏0, 𝜏𝜃 , 𝜏𝑞 , 𝑡), 𝛺

′ =
𝐿

𝐶1
𝛺 . 

(13) 

are introduced. Using these dimensionless quantities in Eqs. 

(10)-(12) and suppressing the primes gives 

(
𝜕2𝑢

𝜕𝑟2 + 
1

𝑟

𝜕𝑢

𝜕𝑟
− 

1

𝑟2 𝑢) +
𝑐13

𝑐11
(

𝜕2𝑤

𝜕𝑟𝜕𝑧
) +

𝑐44

𝑐11

𝜕2𝑢

𝜕𝑧2 +

 
𝑐44

𝑐11
(

𝜕2𝑤

𝜕𝑟𝜕𝑧
) −

𝜕

𝜕𝑟
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2} =

 (
𝜕2𝑢

𝜕𝑡2 − Ω2𝑢 + 2Ω
𝜕𝑤

𝜕𝑡
)  

(14) 

(𝑐13+𝑐44)

𝑐11
(

𝜕2𝑢

𝜕𝑟𝜕𝑧
+

1

𝑟

𝜕𝑢

𝜕𝑧
) + 

𝑐44

𝑐11
(
𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
) + 

𝑐33

𝑐11

𝜕2𝑤

𝜕𝑧2 −

𝛽3

𝛽1

𝜕

𝜕𝑧
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2} =
𝜕2𝑤

𝜕𝑡2 − 𝛺2𝑤 −

2𝛺
𝜕𝑢

𝜕𝑡
 , 

(15) 

𝐾1 (1 + ∑
τθ
i ∂i

i! ∂ti
R1
i=1 ) (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) + 𝐾3 (1 +

∑
τθ
i ∂i

i! ∂ti
R1
i=1 )

𝜕2𝜑

𝜕𝑧2 = (ϱ + τ0
∂

∂t
+

∑
τq
i ∂i

i! ∂ti
R2
i=2 ) [

𝛽1𝑇0𝐿

𝜌𝐶1

𝜕

𝜕𝑡
(𝛽1

𝜕𝑢

𝜕𝑟
+ 𝛽3

𝜕𝑤

𝜕𝑧
) + 𝜌𝐶𝐸𝐶1𝐿

𝜕

𝜕𝑡
{𝜑 −

𝑎1 (
𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2}] . 

(16) 

The Laplace transform of a function 𝑓 with respect to 

time variable t , with s as a Laplace Transform variable is 

defined as 

𝑓∗(𝑟, 𝑧, 𝑠) =  ∫ 𝑓(𝑟, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
, (17) 

Hankel transforms defined by 

𝑓(𝜉, 𝑧, 𝑠) =  ∫ 𝑓∗(𝑟, 𝑧, 𝑠)𝑟𝐽𝑛(𝑟𝜉)𝑑𝑟
∞

0
. (18) 

applying the Laplace and Hankel transforms defined by 

(17)-(18), on the Eqs. (14)-(16), we obtain 

(−𝜉2 − 𝑠2 + 𝛺2 + 𝛿2𝐷
2)𝑢̃ + [𝜉𝛿1𝐷 − 2𝛺𝑠]𝑤̃

+ (𝜉(1 − 𝑎3𝐷
2) + 𝑎1𝜉

3))𝜑̃ = 0, (19) 

(𝛿1𝜉𝐷 + 2𝛺𝑠)𝑢̃ + (𝛿3𝐷
2 − 𝛿2𝜉

2 − 𝑠2 + 𝛺2)𝑤̃

− (
𝛽3

𝛽1
𝐷[(1 − 𝑎3𝐷

2) + 𝜉2𝑎1]) 𝜑̃ = 0, (20) 

𝛿11𝛿6s𝜉𝑢̃ + 𝛿11𝛿5s𝐷𝑤̃ + (𝛿11𝛿7s(1 +

𝜉2𝑎1)+𝐾1𝛿10𝜉
2 − 𝐷2(𝐾3𝛿10 + 𝑎3𝛿7s𝛿11))𝜑̃ = 0,  

(21) 

Where 

𝛿1 = 
𝑐13+𝑐44

𝑐11
, 𝛿2 = 

𝑐44

𝑐11
, 𝛿3 = 

𝑐33

𝑐11
, 𝛿6 = 

𝛽1
2𝑇0

𝜌𝐶1
,   𝛿5 = 

𝛽1𝛽3𝑇0

𝜌𝐶1
,  

𝛿7 = 𝜌𝐶𝐸𝐶1𝐿,      𝛿8 =
𝐶13

𝐶11
,    𝛿9 =

𝐶12

𝐶11
,   

𝛿10 = 1 + ∑
τθ
i si

i!

R1
i=1 ,  𝛿11 = ϱ + τ0s + ∑

τq
i si

i!

R2
i=2      and     𝐷 ≡

𝑑

𝑑𝑧
 . 

The stress relations after application of non-dimensional 

quantities defined by (13) and after suppressing primes 

becomes 

𝑡𝑧𝑧̃ = 𝛿8𝜉𝑢̃ + 𝛿3𝐷𝑤̃ −
β3

β1

(1 + 𝑎1𝜉
2 − 𝑎3𝐷

2)𝜑̃, (22) 

𝑡𝑟𝑧̃ = 𝛿2𝐷𝑢̃ − 𝜉𝛿2𝑤̃, (23) 

𝑡𝑟𝑟̃ = −𝜉𝑢̃ + 𝛿9𝜉𝑢̃ + 𝛿8𝐷𝑤̃ − (1 + 𝑎1𝜉
2 − 𝑎3𝐷

2)𝜑̃. (24) 

The non-trivial solution of (19)-(21) exists if the 

determinant of the coefficient   𝑢̃ , 𝑤̃ , and 𝜑 ̃ vanishes, 

which yields to the following characteristic equation 

𝐴𝐷6 + 𝐵𝐷4 + 𝐶𝐷2 + 𝐸 = 0, (25) 

where 

A = δ2δ3ζ12 − δ2ζ10ζ8, 

B = ζ1ζ12δ3 − 𝜁1𝜁10ζ8 + δ2δ3ζ11 + δ2ζ12ζ6 −
δ2ζ10ζ7−𝜁2

2ζ12 − 𝜁2𝜁9ζ8 + 𝜁5𝜁10ζ2 − ζ5ζ9δ3, 

𝐶 = δ3ζ1ζ11 + δ2ζ6ζ11 + ζ1ζ6ζ12 − ζ1ζ10ζ7−𝜁2
2ζ11 +

ζ2ζ7ζ9 − ζ5ζ6ζ9 + ζ4ζ2ζ10 − δ3ζ4ζ9 + 𝜁3
2ζ12, 

𝐸 = ζ6ζ1ζ11 − ζ4ζ6ζ9. 

ζ1 = −𝜉2 − s2 + Ω2, 

ζ2 = 𝛿1𝜉 

ζ3 = 2Ω𝑠, 

ζ4 = ξ(1 + a1ξ
2), 

ζ5 = 𝑎3𝜉, 

ζ6 = −𝛿2𝜉
2 − 𝑠2 + Ω2, 

ζ7 = −
β3

β1
(1 + a1ξ

2), 

ζ8 = 
β3

β1

a3 

ζ9 = 𝛿11𝛿6s𝜉, 

ζ10 = 𝛿11𝛿5s, 

𝜁11 = 𝛿11𝛿7s(1 + 𝜉2𝑎1)+𝐾1𝛿10𝜉
2, 

𝜁12 = −(𝐾3𝛿10 + 𝑎3𝛿7s𝛿11). 

 

The solutions of the Eq. (25) can be written in the form 

𝑢̃ =  ∑𝐴𝑖(𝜉, 𝑠)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (26) 
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𝑤̃ = ∑𝑑𝑖𝐴𝑖(𝜉, 𝑠)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (27) 

𝜑̃ = ∑𝑙𝑖𝐴𝑖(𝜉, 𝑠)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (28) 

where 𝐴𝑖,𝑖 = 1, 2, 3  being arbitrary constants,  ±𝑞𝑖(𝑖 =
1,2,3) are the roots of the equation (25) and 𝑑𝑖 and 𝑙𝑖 are 

given by 

𝑑𝑖

=
(𝜁2𝜁12 − 𝜁8𝜁9)𝑞𝑖

3 + 𝜁3𝜁12𝑞𝑖
2 + (𝜁2𝜁11 − 𝜁7𝜁9)𝑞𝑖 + 𝜁3𝜁11

(−𝜁8𝜁10 + 𝛿3ζ12)𝑞𝑖
4 + (𝛿3𝜁11 + 𝜁6𝜁12 − 𝜁7𝜁10)𝑞𝑖

2+𝜁6𝜁11

  

𝑙𝑖

=
(−𝜁9𝛿3 + 𝜁1𝜁10)𝑞𝑖

2+𝜁3𝜁10𝑞𝑖 − 𝜁8𝜁9
(−𝜁8𝜁10 + 𝛿3ζ12)𝑞𝑖

4 + (𝛿3𝜁11 + 𝜁6𝜁12 − 𝜁7𝜁10)𝑞𝑖
2+𝜁6𝜁11

  

Also, using (26)-(28) in Eqs. (22)-(24) we have 

𝑡𝑧𝑧̃ = ∑𝐴𝑖(𝜉, 𝑠)𝜂𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) +
∑𝜇𝑖 𝐴𝑖(𝜉, 𝑠) sinh(𝑞𝑖𝑧),  

(29) 

𝑡𝑟𝑧̃ = ∑𝐴𝑖(𝜉, 𝑠)𝑀𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) +
∑𝑁𝑖 𝐴𝑖(𝜉, 𝑠) sinh(𝑞𝑖𝑧) ,  

(30) 

𝑡𝑟𝑟 = ∑𝐴𝑖(𝜉, 𝑠)𝑅𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝑆𝑖 𝐴𝑖(𝜉, 𝑠) sinh(𝑞𝑖𝑧).  (31) 

Where 

𝜂𝑖 = 𝛿8𝜉 −
β3

β1
𝑙𝑖(1 + 𝑎1𝜉

2−a3qi
2), 

𝑅𝑖 = −𝜉 + 𝛿9𝜉 − (1 + 𝑎1𝜉
2 − 𝑎3qi

2), 
𝑆𝑖 = 𝛿8𝑑𝑖𝑞𝑖, 

𝜇𝑖 = 𝛿3𝑑𝑖𝑞𝑖, 

𝑀𝑖 = 𝛿2𝑑𝑖𝜉, 
𝑁𝑖 = 𝛿2𝑞𝑖  , 𝑖 = 1, 2, 3. 

 

 

4. Boundary conditions  
 

We consider a cubical thermal source and vertical force 

of unit magnitude along with vanishing tangential stress 

components at the stress-free surface  z = ±b. 

Mathematically, these can be written as 

𝜕𝜑

𝜕𝑧
=  ±𝑔𝑜𝐹(𝑟, 𝑧), (32) 

𝑡𝑧𝑧(𝑟, 𝑧, 𝑡) = 𝑓(𝑟, 𝑡), (33) 

𝑡𝑟𝑧(𝑟, 𝑧, 𝑡) = 0. (34) 

Using dimensionless quantities defined by (13) on Eqs. 

(32)-(34) and after suppressing primes and then by taking 

Hankel and Laplace transform defined by (17)-(18),  of 

resulting equations and using (29)-(30) and (28) yields 

∑𝐴𝑖 𝑙𝑖𝑞𝑖 sinh(𝑞𝑖𝑏) = ±𝑔𝑜𝐹̃(𝜉, 𝑏), (35) 

∑𝐴𝑖(𝜉, 𝑠)𝜂𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑏) + ∑𝜇𝑖 𝐴𝑖(𝜉, 𝑠) sinh(𝑞𝑖𝑏) =

𝑓(𝜉, 𝑠),  
(36) 

∑𝐴𝑖(𝜉, 𝑠)𝑀𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑏) + ∑𝑁𝑖 𝐴𝑖(𝜉, 𝑠) sinh(𝑞𝑖𝑏) , = 0.  (37) 

Using Cramer’s rule for solving Eqs. (35)-(37) to get 

value of 𝐴𝑖(𝜉, 𝑠) and substituting these values in (26)-(28) 

and (29)-(31), we obtain 

𝑢̃ =  
𝑓̃(𝜉,𝑠)

Δ
{−𝜒1𝜗1 + 𝜒2𝜗2 − 𝜒3𝜗3} +

𝑔𝑜𝐹̃(𝜉,𝑧)

Δ
{𝜒4𝜗1 −

𝜒5 𝜗2 +𝜒6𝜗3}, 
(38) 

𝑤̃ =      
𝑓(𝜉, 𝑠)

Δ
{−𝜒1 𝑑1 𝜗1 + 𝜒2 𝑑2 𝜗2 − 𝜒3 𝑑3 𝜗3}

+
𝑔𝑜𝐹̃(𝜉, 𝑧)

Δ
{𝜒4 𝑑1 𝜗1

− 𝜒5 𝑑2𝜗2 +𝜒6 𝑑3 𝜗3}, 

(39) 

𝜑̃ =
𝑓(𝜉, 𝑠)

Δ
{−𝜒1 𝑙1 𝜗1 + 𝜒2 𝑙2 𝜗2 − 𝜒3 𝑙3 𝜗3}

+
𝑔𝑜𝐹̃(𝜉, 𝑧)

Δ
{𝜒4 𝑙1 𝜗1

− 𝜒5 𝑙2𝜗2 +𝜒6 𝑙3 𝜗3}, 

(40) 

𝑡̃𝑧𝑧 =
𝑓(𝜉, 𝑠)

Δ
{−𝜒1𝐺4 + 𝜒2𝐺5 − 𝜒3𝐺6}

+
𝑔𝑜𝐹̃(𝜉, 𝑧)

Δ
{𝜒4𝐺4 − 𝜒5 𝐺5 +𝜒6𝐺6}, 

(41) 

𝑡̃𝑧𝑟 =
𝑓(𝜉, 𝑠)

Δ
{−𝜒1𝐺7 + 𝜒2𝐺8 − 𝜒3𝐺9}

+
𝑔𝑜𝐹̃(𝜉, 𝑧)

Δ
{𝜒4𝐺7 − 𝜒5 𝐺8 +𝜒6𝐺9}, 

(42) 

𝑡̃𝑟𝑟 =
𝑓̃(𝜉,𝑠)

Δ
{−𝜒1𝐺10 + 𝜒2𝐺11 − 𝜒3𝐺12} +

𝑔𝑜𝐹̃(𝜉,𝑧)

Δ
{𝜒4𝐺10 − 𝜒5 𝐺11 +𝜒6𝐺12}, 

(43) 

where 

Gi = 𝑙𝑖𝑞𝑖𝜙𝑖, 

Gi+3 = 𝜂𝑖 𝜓𝑖 + 𝜇𝑖𝜙𝑖, 

Gi+6 = 𝑁𝑖 𝜙𝑖 + 𝑀𝑖 𝜓𝑖 , 
Gi+9 = 𝑆𝑖 𝜙𝑖 + 𝑅𝑖 𝜗𝑖 , 𝑖 = 1,2,3. 

Δ = G1𝜒4 − G2𝜒5 + G3𝜒6, 

Δ1 = −𝑓(𝜉, 𝑠)𝜒1 + 𝑔𝑜𝐹̃(𝜉, 𝑧)𝜒4, 

Δ2 = 𝑓(𝜉, 𝑠)𝜒2 − 𝑔𝑜𝐹̃(𝜉, 𝑧)𝜒5, 

Δ3 = −𝑓(𝜉, 𝑠)𝜒3 + 𝑔𝑜𝐹̃(𝜉, 𝑧)𝜒6, 
𝜒1 = [G2G9 − G8G3], 
𝜒2 = [G1G9 − G7G3], 
𝜒3 = [G1G8 − G2G7], 
𝜒4 = [G5G9 − G8G6], 
𝜒5 = [G4G9 − G6G7], 
𝜒6 = [G4G8 − G5G7], 

cosh(𝑞𝑖𝑏) = 𝜙𝑖,    sinh(𝑞𝑖𝑏) = 𝜓𝑖 ,𝑖 = 1,2,3. 

𝜗𝑖 = cosh(𝑞𝑖𝑧) , 𝜃𝑖 = sinh(𝑞𝑖𝑧) , 𝑖 = 1,2,3 

 

 

5. Applications 
 

As application of the problem, we take the source 

function a 

𝐹(r, z) =
1

√𝑟2+𝑧2
, (44) 
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Consider the instantaneous distributed load defined by  

𝑓(𝑟, 𝑡) = δ(t)𝐻(𝛼 − 𝑟), (45) 

Where 𝛿 ( ) is the dirac delta function, H( ) denotes 

Heaviside stepsize function. Applying Laplace and Hankel 

Transform, on Eqs. (44) and (45), gives 

𝐹̃(𝜉, 𝑧) =
𝑒−𝜉|𝑧|

𝜉
 (46) 

𝑓(̅𝜉, 𝑠) =
αJ1(αξ)

𝜉
, (47) 

 

 

6. Inversion of the transforms 
  

To find the solution of the problem in the physical 

domain, we must invert the transforms in Eqs. (38)-(43). 

These equations are functions of  𝜉 and z, hence are of 

the form 𝑓(𝜉, 𝑧, 𝑠) . To get the function  𝑓(𝑟, 𝑧, 𝑡)in the 

physical domain, first, we invert the Hankel transform using 

𝑓∗(𝑟, 𝑧, 𝑠) =  ∫ 𝜉𝑓(𝜉, 𝑧, 𝑠)𝐽𝑛(𝜉𝑟)𝑑𝜉

∞

0

 (48) 

Following Honig and Hirdes (1984), the Laplace transform 

function 𝑓(𝑥, 𝑧, 𝑠) can be inverted to f(x, z, t). The last 

step is to calculate the integral in Eq. (48). The method for 

evaluating this integral by using Romberg’s integration with 

adaptive step size is described in Press et al. (1986). 

 

 

7. Numerical results and discussion 
 

In order to illustrate our theoretical results in the 

proceeding section and to show the effect of rotation for the 

first problem and the effect of frequency of time harmonic 

sources for the second problem, we now present some 

numerical results. Cobalt material is chosen for the purpose of 

numerical calculation, which is transversely isotropic. The 

physical data for cobalt material, which is transversely 

isotropic, is taken from Dhaliwal et al. (1980)is given by 

𝑐11 = 3.07 × 1011𝑁𝑚−2, 

𝑐12 = 1.650 × 1011𝑁𝑚−2, 

𝑐13 = 1.027 × 1010𝑁𝑚−2, 

𝑐33 = 3.581 × 1011𝑁𝑚−2 

𝑐44 = 1.510 × 1011𝑁𝑚−2, 

𝐶𝐸 = 4.27 × 102𝐽𝐾𝑔−1𝑑𝑒𝑔−1, 

𝛽1 = 7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 𝜌 = 8.836 × 103𝐾𝑔𝑚−3 

𝛽3 = 6.90 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 

𝐾1 = 0.690 × 102𝑊𝑚−1𝐾𝑑𝑒𝑔−1, 𝐾3 = 0.690 ×
102𝑊𝑚−1𝐾−1, 

𝐾1
∗ = 0.02 × 102𝑁𝑆𝑒𝑐−2𝑑𝑒𝑔−1, 

𝐾3
∗ = 0.04 × 102𝑁𝑆𝑒𝑐−2𝑑𝑒𝑔−1. 

𝐿 = 1, 𝑏 = 0.01𝑚 

 

The values of radial displacement u, axial displacement w, 

shear stress 𝑡𝑧𝑟, radial stress 𝑡𝑟𝑟 and conductive temperature 

𝜑  for a TIT solid with two temperature is illustrated 

graphically to show the effect of rotation. 

 The solid line with centre symbol square corresponds to 

rotation Ω = 0.0. 

 The dash  line with centre symbol circle corresponds to 

rotation  Ω = 0.25, 

 The dotted line with centre symbol triangle corresponds to 

rotation  Ω = 0.5, 
The dash dotted line with centre symbol diamond 

corresponds rotation Ω = 0.75. 

Fig. 2 shows the variations of radial displacement u with 

radius r. In the initial range of radius r, there is a sharp decrease 

in the value of displacement component for all the cases. 

Moreover, away from source applied, it follows oscillatory 

behavior. We can see that the rotation have a significant effect 

on the displacement component in all the cases as there are 

more variations in u in case of rotation as compared to when 

rotation is zero. 

 

 

 

Fig. 2 variations of radial displacement u with radius r 

 

 

 

Fig. 3 variations of displacement component w with radius r 
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Fig. 4 variations of Conductive temperature 𝜑 with radius r 

 

 

 

Fig. 5 variations of shear stress  𝑡𝑧𝑟 with radius r 

 

 

 

Fig. 6 variations of radial stress with radius r 

 

 

Fig. 3 illustrates the variations of displacement component 

𝑤 with radius r. In the initial range of radius r, there is a 

decrease in the value of displacement component for Ω = 0.0 

and then follows oscillatory behaviour. We can see that the 

rotation have a major effect on the displacement component w 

as with increase in value of rotation Ω, the amplitude of 

displacement increases which reduces with increase in radius r. 

Fig. 4 illustrates the variations of conductive temperature 𝜑 

with radius r. In the initial range of radius r, there is a sharp 

increase in the value of 𝜑 for all the cases. Moreover, away 

from source applied, it follows opposite oscillatory behavior 

nearby the zero value. 

Fig. 5 illustrates the variations of shear stress 𝑡𝑧𝑟with radius 

r. In the initial range of radius r, there is a small oscillation in 

the value of stress component 𝑡𝑧𝑟 for all the cases. Moreover, 

away from source applied, it follows opposite oscillatory 

behavior nearby the zero value with increase in rotation.  Fig. 

6 illustrates the variations of radial stress with radius r. In the 

initial range of radius r, there is a large oscillation in the value 

of radial stress for all the cases.  

 

 

8. Conclusions 
 

In this paper, we have discussed the thermoelastic problem 

for a transversely isotropic thin circular plate with rotation, two 

temperature and with multi-dual-phase lag heat transfer. The 

finite Hankel transform technique is used to obtain numerical 

results.  

In the present research article, conductive temperature, 

displacement, and stresses along with rotation, two 

temperature, have been outlined. Since the thickness of plate is 

very small, the series solution given here will be definitely 

convergent. The temperature, displacement and thermal 

stresses that are obtained can be applied to the design of 

pressure sensors, microphones, gas flow meters, optical 

telescopes, radar antennae and many other devices structures or 

machines in engineering applications. 
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Transversely isotropic thin circular plate withmulti-dual-phase lag heat transfer 

 

Nomenclature 
 

𝛿𝑖𝑗 Kronecker delta, 

𝐶𝑖𝑗𝑘𝑙 Elastic parameters, 

𝛽𝑖𝑗 Thermal elastic coupling tensor, 

𝑇 Absolute temperature, 

𝑇0 Reference temperature, 

𝜑 conductive temperature, 

𝑡𝑖𝑗 Stress tensors, 

𝑒𝑖𝑗  Strain tensors, 

𝑢𝑖 Components of displacement, 

𝜌 Medium density, 

𝐶𝐸 Specific heat, 

𝑎𝑖𝑗 Two temperature parameters, 

𝛼𝑖𝑗 Linear thermal expansion coefficient, 

𝐾𝑖𝑗 Materialistic constant, 

𝐾𝑖𝑗
∗  Thermal conductivity, 

𝜔  Frequency  

𝜏0  Relaxation Time 

𝛀  Angular Velocity of the Solid 

𝑗   Current Density Vector 

𝑢⃗   Displacement Vector 

𝛿(𝑡) Dirac’s delta function 
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