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1. Introduction 
 

Structures made of functionally graded materials (FGM) 

are a kind of composite structures in which their mechanical 

properties gradually vary from a surface to another one. 

Due to exclusive properties of FGM structures in 

comparison with homogeneous ones, they are widely used 

in various fields of technology. Progression of technology 

in the FGM field makes it possible to fabricate FGM 

structures in micro/nano-scale. Chemical vapor deposition 

(Zhang et al. 2009), spark plasma sintering (Zheng et al. 

2005), centrifugal mixed-powder (Watanabe et al. 2009), 

and microwave-assisted (Ashok and Rao 2014) are most 

common methods of fabrication of homogeneous and non-

homogeneous nano-scale structures. Therefore, analysis of 

this kind of structures due to their highly sensitivity to 

external stimulations is crucial for accurate design and 

manufacturing of micro/nano-electro-mechanical systems 

(MEMS/NEMS). 

One of the most useful structures used in MEMS/NEMS 

is the one-dimensional structures like carbon nanotubes 

(CNTs). The CNTs can be modelled as nano-beams 

(Jandaghian and Rahmani 2017, Mirjavadi et al. 2017, 

Rahmani et al. 2018, Tagrara et al. 2015), nano-bars 
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(Li et al. 2017), and nano-rods (Gul et al. 2017, Hosseini-

Hashemi et al. 2017, Nazemnezhad and Kamali 2018b, 

Oveissi et al. 2016). The CNTs are usually modelled as 

nano-rods when their axial or longitudinal behavior is 

desired. Literature survey shows that various works have 

been studied in this regard using different size-dependent 

theories.  

Using the nonlocal elasticity theory, Aydogdu (2012) 

studied free vibration of thin nanorods embedded in elastic 

medium and showed the importance of considering the size 

effect on free axial vibration of nanorods. Nazemnezhad 

and kamali (Nazemnezhad and Kamali 2018a) analytically 

investigated inertia of lateral motions and shear stiffness 

effects on free longitudinal vibration of thick nanorods. 

Free vibration and wave propagation of nanorods with 

various geometries and materials, non-uniform and non-

homogeneous (Chang 2013), tapered (Danesh et al. 2012, 

Kiani 2010, Şimşek 2012), nanocones (Guo and Yang 

2012), axially functionally graded (Nazemnezhad and 

Kamali 2018b), multiwalled carbon nanotubes (Aydogdu 

2014, 2015), viscoelastic (Karličić et al. 2015), double-

nanorod (Karličić et al. 2015, Murmu and Adhikari 2010), 

are also investigated. 

Another size-dependent theory used for analyses of 

nanostructure behaviors is strain gradient theory. Using this 

theory, the longitudinal free vibration problem of a micro-

scaled bar is formulated (Akgöz and Civalek 2014). Li et al. 

(2016) considered the longitudinal vibration analysis of 

small-scaled rods in the framework of the nonlocal strain 

gradient theory. They showed that the nonlocal strain 

gradient rod model exerts a stiffness-softening effect when 
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the nonlocal parameter is larger than the material length 

scale parameter, and exerts a stiffness-hardening effect 

when the nonlocal parameter is smaller than the material 

length scale parameter. In another study, longitudinal free 

vibration analysis of axially functionally graded microbars 

is investigated (Akgöz and Civalek 2013). To solve the 

problem, Rayleigh–Ritz solution technique is utilized and 

natural frequencies are reported for various cases. 

The surface elasticity theory, another well-known size-

dependent theory, is also implemented to model axial 

behavior of nanorods. Nazemnezhad and Shokrollahi 

(Nazemnezhad and Shokrollahi 2019) investigated free 

axial vibration of functionally graded materials nanorods 

with variable cross-section in the framework of this theory. 

Arefi and Zenkour (2017) focused on analyses of 

longitudinal wave propagation of FG piezoelectric 

nanorods. The nanorods were modelled based on Love 

theory of rods. They reported the effect of different 

distributions of electric potential on the phase velocity of 

the nanorod. In a different work, free axial vibration of 

nanobeams made of aluminum was studied using the 

surface elasticity theory and the molecular dynamics (MD) 

simulations (Hosseini-Hashemi et al. 2017). In the work, 

the classic equation of nanobeam in axial vibration was 

modified by considering the surface elastic moduli and 

density. This modification caused that the theoretical results 

agreed very well with those of MD simulations. 

It is worth to mention here to some applications of nano-

composite structures or nano-scale rod-shaped structures 

made of functionally graded materials. As the first 

application it can be mentioned to the application of nano-

composite rods in sensors. For example, the ZnO/TiO2 

nano-composite rods are synthesized for humidity sensors 

(Ashok and Rao 2014). The AFG nanobeams are also 

utilized in atomic force microscopes (Patil et al. 2010, 

Shahba and Rajasekaran 2012). Using the nano-sized 

spherical- and rod-shaped SiC particles in the nano-

composite coatings  is the other application of nano-

composite rod-shape structures in nanotechnology field 

(Aal et al. 2009).   

The above literature survey exhibits that the surface 

elasticity and strain gradient theories are less utilized in 

comparison with the nonlocal elasticity theory for axial 

analyses of nanostructures. In addition, the effect of crack, a 

common defect in structures, is not comprehensively 

investigated on axial behavior of nanorods. For these 

reasons, it is motivated that the free axial vibration of 

functionally graded materials nanorods in presence of the 

crack is studied based on the surface elasticity theory. To 

this end, governing equation of motion and corresponding 

boundary conditions of cracked FGM (CFGM) nanorods 

incorporating the surface energy effects are obtained using 

the Hamilton’s principle. Due to considering the surface 

energy effect the obtained governing equation of motion 

becomes non-homogeneous. To extract the natural 

frequencies of the CFGM nanorod, firstly the non-

homogeneous governing equation is converted to a 

homogeneous one using an appropriate change of variable, 

and then for clamped-clamped and clamped-free boundary 

conditions the governing equation is solved using an 

analytical method. In order to have a comprehensive 

research, effects of various parameters like the variation of 

material properties, the length and radius of nanorod, the 

crack severity and position, the type of boundary condition, 

the values of surface and bulk material properties on axial 

frequencies of CFGM nanorod are investigated. 

 

 

2. Problem formulation 
 

Consider a cracked FG nanorod having length L 

(0≤x≤L) and variable cross section of S(x), in a Cartesian 

coordinate system xyz, as shown in Fig. 1. As indicated in 

Fig. 1, a crack is assumed to be located at x = LC. 

According to the rod theory, the components of 

displacement (u, v and w) are as follows (Rao 2007) 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) (1) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 0 (2) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 0 (3) 

in which t is the time in sec. Having these displacements, 

the strains and stresses can be defined as 

𝜀𝑥𝑥 =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 (4) 

𝜀𝑥𝑦 = 𝜀𝑦𝑦 = 𝜀𝑥𝑧 = 𝜀𝑧𝑧 = 𝜀𝑦𝑧 = 0 (5) 

𝜎𝑥𝑥 = 𝐸(𝑥)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 (6) 

𝜎𝑥𝑦 = 𝜎𝑦𝑦 = 𝜎𝑥𝑧 = 𝜎𝑧𝑧 = 𝜎𝑦𝑧 = 0 (7) 

 

 

 

Fig. 1 Schematic of a cracked nanorod and modeled 

configuration 
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Eqs. (4)-(7) represent the strains and stresses related to 

the bulk material of the nanorod. If the surface energy effect 

is included in the analysis, the surface stress and strain 

components must be obtained. To this aim, the surface 

elasticity theory is proposed. In surface elasticity theory 

proposed by Gurtin and Murdoch (Gurtin and Murdoch 

1975), the relation between surface stress and strain can be 

expressed as 

𝜏𝛼𝛽
± = 𝜏0

±𝛿𝛼𝛽 + (𝜇0
± − 𝜏0

±)(𝑢𝛼,𝛽
± + 𝑢𝛽,𝛼

± )

+ (𝜆0
± + 𝜏0

±)𝑢𝑚,𝑚𝛿𝛼𝛽 + 𝜏0
±𝑢𝛼,𝛽  (8) 

𝜏𝛼𝑧
± = 𝜏0

±𝑢𝑧,𝛼 (9) 

in which 𝜏0
± is residual surface stress related to no strain 

condition, 𝛿𝛼𝛽  is Kronecker delta, 𝜆0
±

 and 𝜇0
±  are 

Lame constants, 𝑢𝛼,𝛽  are surface displacement 

components, and 𝛼, 𝛽 = 𝑥, 𝑦. Note that the positive and the 

negative signs are represented for upper and lower surfaces 

of the nanorod (for rectangular or quadrangular cross 

sections). Since the nanorod in this study has circular cross 

section, the positive and negative signs are disregarded. 

Using Eqs. (1)-(3), surface stresses effective to 

longitudinal vibration of nanorod are obtained as 

𝜏𝑥𝑥 = 𝜏0(𝑥) + (𝜆0(𝑥) + 2𝜇0(𝑥))
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 (10) 

𝜏𝑥𝑦 = 𝜏𝑦𝑦 = 𝜏𝑥𝑧 = 𝜏𝑧𝑧 = 𝜏𝑦𝑧 = 0 (11) 

The FG nanorod properties, 𝜇0(𝑥) , 𝜆0(𝑥) , 𝜏0(𝑥) , 

𝜌0(𝑥), 𝐸(𝑥) and 𝜌(𝑥), as well as its cross section radius 

𝑟(𝑥), are assumed to change by power law as follows 

𝑓(𝑥) = 𝑓𝐿 + (𝑓𝑅 − 𝑓𝐿) (
𝑥

𝐿
)

𝑝

;    

𝑓(𝑥) = 𝜆0(𝑥) or 𝜇0(𝑥) or 𝜏0(𝑥) or 𝜌0(𝑥) or 𝐸(𝑥) or 𝜌(𝑥) 

𝑟(𝑥) = 𝑟𝐿 + (𝑟𝑅 − 𝑟𝐿) (
𝑥

𝐿
)

𝑞

 

(12) 

where p is the FG power for the mechanical properties and 

q is the FG power for the cross-section radius. 

In order to arrive to the governing equation and the 

boundary conditions, the bulk and surface stresses and 

strains must be used in the Hamilton’s principle defined by 

Eq. (13) 

∫ (𝛿𝐾𝐸 − 𝛿𝑃𝐸)𝑑𝑡
𝑡2

𝑡1

= 0 (13) 

The variation of kinetic energy of nanorod takes into 

account the effect of kinetic energy of surface density, can 

be written a 

𝛿𝐾𝐸 = 𝛿𝐾𝐸 + 𝛿𝐾𝐸0

= ∫ 𝜌(𝑥) (
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
) 𝛿 (

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
) 𝑆(𝑥)𝑑𝑥

𝐿

0

+ ∫ 𝜌0(𝑥) (
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
) 𝛿 (

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
) 𝑃(𝑥)𝑑𝑥

𝐿

0

 

(14) 

in which 𝜌  and 𝜌0  are bulk and surface density, 

respectively, and S and P are surface and periphery of 

nanorod, respectively. Substituting Eqs. (4) and (6) in 

forming the potential energy relation, the variation of 

potential energy can be expressed as 

𝛿𝑃𝐸 = 𝛿𝑃𝐸 + 𝛿𝑃𝐸0 = ∫ 𝜎𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝑉
𝑉

+ ∫ 𝜏𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝑆
𝑆

= ∫ 𝐸(𝑥)
𝜕𝑢

𝜕𝑥
𝛿 (

𝜕𝑢

𝜕𝑥
) 𝑆(𝑥)𝑑𝑥

𝐿

0

+ ∫ (𝜏0(𝑥)
𝐿

0

+ (𝜆0(𝑥) + 2𝜇0(𝑥))
𝜕𝑢

𝜕𝑥
) 𝛿 (

𝜕𝑢

𝜕𝑥
) 𝑃(𝑥)𝑑𝑥 

(15) 

Substituting Eqs. (14) and (15) into Eq. (13), and 

integrating the resulted equation by part, the governing 

equation and the corresponding boundary conditions of 

cracked nanorods incorporating the surface energy effects 

are obtained as follows 

−(𝜌(𝑥)𝑆(𝑥) + 𝜌0(𝑥)𝑃(𝑥))
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2

+
𝜕

𝜕𝑥
(𝜏0(𝑥)𝑃(𝑥)

+ (𝐸(𝑥)𝑆(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥))
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
) = 0 

(16) 

𝜏𝛼𝑧
± = 𝜏0

±𝑢𝑧,𝛼 (𝑃(𝑥)𝜏0(𝑥)

+ (𝐸(𝑥)𝑆(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥))
𝜕𝑢

𝜕𝑥
) 𝛿𝑢|

0

𝐿

= 0 

(17) 

Assume that in the crack location ( 𝑥 = 𝐿𝐶 ) an 

equivalent linear spring K connecting the two segments of 

the nanorod, then for each segment of the nanorod, i.e. 0 ≤
𝑥 < 𝐿𝐶 and 𝐿𝐶 < 𝑥 ≤ 𝐿, the Eqs. (16) and (17) must be 

applied. Implementing Eq. (16) leads to following equations 

−(𝜌(𝑥)𝑆(𝑥) + 𝜌0(𝑥)𝑃(𝑥))
𝜕2𝑢1(𝑥, 𝑡)

𝜕𝑡2

+
𝜕

𝜕𝑥
(𝜏0(𝑥)𝑃(𝑥)

+ (𝐸(𝑥)𝑆(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥))
𝜕𝑢1(𝑥, 𝑡)

𝜕𝑥
)

= 0;          0 ≤ 𝑥 < 𝐿𝐶 

(18) 

−(𝜌(𝑥)𝑆(𝑥) + 𝜌0(𝑥)𝑃(𝑥))
𝜕2𝑢2(𝑥, 𝑡)

𝜕𝑡2

+
𝜕

𝜕𝑥
(𝜏0(𝑥)𝑃(𝑥)

+ (𝐸(𝑥)𝑆(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥))
𝜕𝑢2(𝑥, 𝑡)

𝜕𝑥
)

= 0;        𝐿𝐶 < 𝑥 ≤ 𝐿 

(19) 

in which, 𝑢1  and 𝑢2  are the axial displacement of the 

segment located before and after the crack location, 

respectively. 
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In crack location, 𝑥 = 𝐿𝐶 , following continuity 

conditions must be satisfied 

𝐾(𝑢1(𝐿𝐶 , 𝑡) − 𝑢2(𝐿𝐶 , 𝑡))

= − (𝜏0(𝐿𝐶)𝑃(𝐿𝐶)

+ (𝐸(𝐿𝐶)𝑆(𝐿𝐶)

+ (𝜆0(𝐿𝐶)

+ 2𝜇0(𝐿𝐶))𝑃(𝐿𝐶))
𝜕𝑢1(𝐿𝐶 , 𝑡)

𝜕𝑥
) 

(20) 

𝜕𝑢1(𝐿𝐶 , 𝑡)

𝜕𝑥
=

𝜕𝑢2(𝐿𝐶 , 𝑡)

𝜕𝑥
 (21) 

Moreover, end conditions of nanorod for clamped-

clamped and clamped-free nanorods are as Eq. (22) and 

(23) respectively 
𝑢1(0, 𝑡) = 0 

𝑢2(𝐿, 𝑡) = 0 
(22) 

𝑢1(0, 𝑡) = 0 

𝜕𝑢2(𝐿, 𝑡)

𝜕𝑥
= −

𝜏𝑠(𝐿)𝑆(𝐿)

𝐸(𝐿)𝐴(𝐿) + (𝜆𝑠(𝐿) + 2𝜇𝑠(𝐿))𝑆(𝐿)
 

(23) 

Eqs. (20) and (23) imply that the relation of boundary 

condition at the free end of the nanorod as well as one of 

the relations of the continuity conditions are 

inhomogeneous. Therefore, in order to solve the governing 

equations of motion, these relations must be homogenized 

at first. 

It is worth mentioning here that it has not been reported 

in literature that homogeneous relations of boundary 

conditions and/or equations of motion are changed to 

inhomogeneous ones by considering the surface energy 

effects on various mechanical behaviors of nanosized 

structures. Therefore, the present study reports this issue for 

the first time. 

In order to study the vibration characteristics of the 

cracked nanorod, Eqs. (18)-(21) along with Eq. (22) and 

(23) must be solved for the clamped-clamped and the 

clamped-free conditions, respectively. 

As mentioned before, the first step in solving the governing 

equations of motion is homogenization of Eqs. (20) and 

(23). At first, the equations and boundary conditions must 

be homogenized. To this aim it is supposed that 

𝑢1(𝑥, 𝑡) = 𝑣1(𝑥, 𝑡) + 𝑢̃1(𝑥) (24) 

𝑢2(𝑥, 𝑡) = 𝑣2(𝑥, 𝑡) + 𝑢̃2(𝑥) (25) 

Substituting 𝑢1(𝑥, 𝑡) and 𝑢2(𝑥, 𝑡) into Eqs. (18)-(23), 

the related equations for 𝑢̃1(𝑥) and 𝑢̃2(𝑥) are obtained as 

follows 

𝑑

𝑑𝑥
(𝜏0(𝑥)𝑃(𝑥) + (𝐸(𝑥)𝑆(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥))
𝑑𝑢̃1(𝑥)

𝑑𝑥
)

= 0;      0 ≤ 𝑥 < 𝐿𝐶 

(26) 

 

𝑑

𝑑𝑥
(𝜏0(𝑥)𝑃(𝑥) + (𝐸(𝑥)𝑆(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥))
𝑑𝑢̃2(𝑥)

𝑑𝑥
)

= 0;    𝐿𝐶 < 𝑥 ≤ 𝐿 

(27) 

𝐾(𝑢̃1(𝐿𝐶) − 𝑢2𝑐𝑐(𝐿𝐶))

= − (𝜏0(𝐿𝐶)𝑃(𝐿𝐶)

+ (𝐸(𝐿𝐶)𝑆(𝐿𝐶)

+ (𝜆0(𝐿𝐶) + 2𝜇0(𝐿𝐶))𝑃(𝐿𝐶))
𝑑𝑢̃1(𝐿𝐶 , 𝑡)

𝑑𝑥
) 

(28) 

𝑑𝑢̃1(𝐿𝐶)

𝑑𝑥
=

𝑑𝑢̃2(𝐿𝐶)

𝑑𝑥
 (29) 

𝑢̃2(𝐿) = 0;  for clamped − clamped nanorod 

 
𝑑𝑢̃2(𝐿, 𝑡)

𝑑𝑥

= −
𝜏0(𝐿)𝑃(𝐿)

𝐸(𝐿)𝑆(𝐿) + (𝜆0(𝐿) + 2𝜇0(𝐿))𝑃(𝐿)
;  for clamped

− free nanorod 

(30) 

Solving Eqs. (26)-(30), leads to 

𝑢̃1(𝑥) = ∫
𝐶1 − 𝜏0(𝑥)𝑃(𝑥)

𝐸(𝑥)𝑆(𝑥) + (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥)
𝑑𝑥

𝑥

0

;   

𝑓𝑜𝑟  0 ≤ 𝑥 < 𝐿𝐶 

𝐶1 =

𝐾 ∫
𝜏0(𝑥)𝑃(𝑥)

𝐸(𝑥)𝑆(𝑥) + (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥)
𝑑𝑥

𝐿

0

1 + 𝐾 ∫
1

𝐸(𝑥)𝑆(𝑥) + (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥)
𝑑𝑥

𝐿

0

;  

for clamped − clamped nanorod 

𝐶1 = 0;  for clamped − free nanorod 

(31) 

𝑢̃2(𝑥) = ∫
𝐶1 − 𝜏0(𝑥)𝑃(𝑥)

𝐸(𝑥)𝑆(𝑥) + (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥)
𝑑𝑥

𝑥

𝐿𝐶

+ 𝐶2;    𝐿𝐶 < 𝑥 ≤ 𝐿 

𝐶2 = − ∫
𝐶1 − 𝜏0(𝑥)𝑃(𝑥)

𝐸(𝑥)𝑆(𝑥) + (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥)
𝑑𝑥

𝐿

𝐿𝐶

; 

 for clamped − clamped nanorod 

𝐶2 = − ∫
𝜏0(𝑥)𝑃(𝑥)

𝐸(𝑥)𝑆(𝑥) + (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥)
𝑑𝑥

𝐿𝐶

0

; 

 for clamped − free nanorod 

(32) 

Now, substituting Eqs. (31) and (32) into Eqs. (24) and 

(25) and using 𝑢1(𝑥, 𝑡)  and 𝑢2(𝑥, 𝑡)  in Eqs. (18)-(23) 

leads to following equations 

−(𝜌(𝑥)𝑆(𝑥) + 𝜌0(𝑥)𝑃(𝑥))
𝜕2𝑣1(𝑥, 𝑡)

𝜕𝑡2

+
𝜕

𝜕𝑥
((𝐸(𝑥)𝑆(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥))
𝜕𝑣1(𝑥, 𝑡)

𝜕𝑥
) = 0;    0

≤ 𝑥 < 𝐿𝐶  

(33) 
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−(𝜌(𝑥)𝑆(𝑥) + 𝜌0(𝑥)𝑃(𝑥))
𝜕2𝑣2(𝑥, 𝑡)

𝜕𝑡2

+
𝜕

𝜕𝑥
((𝐸(𝑥)𝑆(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑃(𝑥))
𝜕𝑣2(𝑥, 𝑡)

𝜕𝑥
)

= 0;   𝐿𝐶 < 𝑥 ≤ 𝐿 

(34) 

𝐾(𝑣1(𝐿𝐶 , 𝑡) − 𝑣2(𝐿𝐶 , 𝑡))

= − (𝐸(𝐿𝐶)𝑆(𝐿𝐶)

+ (𝜆0(𝐿𝐶) + 2𝜇0(𝐿𝐶))𝑃(𝐿𝐶))
𝜕𝑣1(𝐿𝐶 , 𝑡)

𝜕𝑥
 

(35) 

𝜕𝑣1(𝐿𝐶 , 𝑡)

𝜕𝑥
=

𝜕𝑣2(𝐿𝐶 , 𝑡)

𝜕𝑥
 (36) 

𝑣1(0, 𝑡) = 0 

𝑣2(𝐿, 𝑡) = 0;  for clamped − clamped nanorod 

 
𝜕𝑣2(𝐿, 𝑡)

𝜕𝑥
= 0;  for clamped − free nanorod 

(37) 

Assuming harmonic displacements as 

𝑣1(𝑥, 𝑡) = 𝑉1(𝑥)𝑇(𝑡) = 𝑉1(𝑥)𝑒𝑖𝜔𝑡 (38) 

𝑣2(𝑥, 𝑡) = 𝑉2(𝑥)𝑇(𝑡) = 𝑉2(𝑥)𝑒𝑖𝜔𝑡 (39) 

Eqs. (33)-(37) can be rewritten as 

𝜔2(𝜌(𝑥)𝐴(𝑥) + 𝜌0(𝑥)𝑆(𝑥))𝑉1(𝑥)

+
𝑑

𝑑𝑥
((𝐸(𝑥)𝐴(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑆(𝑥))
𝑑𝑉1(𝑥)

𝑑𝑥
)

= 0;     0 ≤ 𝑥 < 𝐿𝐶 

(40) 

𝜔2(𝜌(𝑥)𝐴(𝑥) + 𝜌0(𝑥)𝑆(𝑥))𝑉2(𝑥)

+
𝑑

𝑑𝑥
((𝐸(𝑥)𝐴(𝑥)

+ (𝜆0(𝑥) + 2𝜇0(𝑥))𝑆(𝑥))
𝑑𝑉2(𝑥)

𝑑𝑥
)

= 0;    𝐿𝐶 < 𝑥 ≤ 𝐿 

(41) 

𝐾(𝑉1(𝐿𝐶) − 𝑉2(𝐿𝐶))

= − (𝐸(𝐿𝐶)𝐴(𝐿𝐶)

+ (𝜆0(𝐿𝐶) + 2𝜇0(𝐿𝐶))𝑆(𝐿𝐶))
𝑑𝑉1(𝐿𝐶)

𝑑𝑥
 

(42) 

𝑑𝑉1(𝐿𝐶)

𝑑𝑥
=

𝑑𝑉2(𝐿𝐶)

𝑑𝑥
 (43) 

𝑉1(0) = 0 

𝑉2(𝐿) = 0;  for clamped − clamped nanorod 

𝑑𝑉2(𝐿)

𝑑𝑥
= 0;  for clamped − free nanorod 

(44) 

 

As can be seen from Eqs. (40)-(44), the surface energy 

parameters appear in the governing equations of motion, 

Eqs. (40) and (41), as well as in the continuity condition, 

Eq. (42). However, the boundary conditions, Eqs. (43) and 

(44), are the same for both the surface elasticity and 

classical theory. Furthermore, the equation of motion of the 

conventional rod can be obtained from Eqs. (40) and (41) 

by setting ρ0 = λ0 = μ0 = 0. It should be noted that the 

obtained governing equations, Eqs. (40) and (41), clearly 

show that including surface effect in formulations leads to 

an increase in the stiffness of the nanorod, for positive 

values of λ0 + 2μ0. Moreover, according to Eqs. (31) and 

(32) the residual surface stress, τ0, is the cause of the time-

independent components for displacements, i.e., ũ1(x) and 

ũ2(x). A precise looking at these components suggests that 

ũ1(x)  and ũ2(x)  are non-positive values indicating the 

residual surface stress is a cause of stiffer behavior of the 

nanorod. 

Solving Eqs. (40)-(44) numerically, using differential 

quadrature method (DQM), the natural frequencies of the 

clamped-clamped cracked nanorod are obtained. The 

application of DQ method was well presented in Refs. 

(Nazemnezhad and Hosseini-Hashemi 2014, Nazemnezhad 

et al. 2014); it is presented briefly here. 

For solving the obtained equations, the HDQM is used. In 

this method, the derivative of a function, with respect to a 

spatial variable at a given discrete point, approximated by a 

linear summation of weighted function values at all discrete 

points chosen in the solution domain of the spatial variable. 

Suppose the domain of considered nanorod are represented 

by (0<x< L) and being discretized by Nx grid points along x 

coordinate. Then the derivatives of F(x) with respect to x at 

the point (xi) can be expressed discretely as 

𝑑𝑛𝐹(𝑥𝑖)

𝑑𝑥𝑛
= ∑ 𝐴𝑖𝑘

(𝑛)
𝐹(𝑥𝑘)

𝑁𝑥

𝑘=1

;  𝑛 = 1,2, … , 𝑁𝑥 − 1; (45) 

where Aik
(n)

 are the weighting coefficients in conjunction to 

the order of derivative of F(x) with respect to x, i.e. n at the 

discrete points xi. The description of HDQ method and how 

to choose the positions of the grid points using Chebyshev 

polynomials can be found in detail in Ref. (Civalek 2004). 

Now, the HDQM can be used to discretize the coupled Eqs. 

(40)-(44). After separating domain and boundary degrees of 

freedom (DOF), the following assembled matrix equations 

are obtained 

[
[𝐾𝑏𝑏] [𝐾𝑏𝑑]

[𝐾𝑑𝑏] [𝐾𝑑𝑑]
] {

{𝑑𝑏}

{𝑑𝑑}
} = 𝜔2 {

0
{𝑑𝑑}} (46) 

where {𝑑𝑏} and {𝑑𝑑} represent the boundary and domain 

DOF, respectively. After doing some mathematical 

simplifications on Eq. (46), the frequencies of the CFGM 

nanorod can be calculated by solving the following relation 

[[𝐾𝑑𝑑] − [𝐾𝑑𝑏][𝐾𝑏𝑏]−1[𝐾𝑏𝑑]]{𝑑𝑑} = 𝜔2{𝑑𝑑} (47) 

Based on the above outlined formulations, and by aids 

of the MATLAB program solver a self-developed computer 

program is written by which the natural frequencies of the 

CFGM nanorod can be obtained. 
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3. Results and discussion 
 
3.1 Comparison study 
 

Before presentation of numerical and graphical results, a 

comparison study is conducted to verify the applicability 

and accuracy of the present formulation. Due to the lack of 

the similar problem and solution concerning the crack effect 

on the axial vibration of axially FGM nanorods, the 

accuracy of the present solution is verified by comparing 

the results with those of Şimşek (2012) for an intact axially 

FGM tapered nanorod incorporating nonlocal effect (see 

Table 1) and Nazemnezhad and Shokrollahi (Nazemnezhad 

and Shokrollahi 2019) for an intact axially FGM nanorod 

incorporating surface effect (see Table 2). In Table 1 the 

non-dimensional fundamental frequency ( 𝜆 =

𝜔𝐿√(𝐴𝐿𝜌𝐿) (𝐴𝐿𝐸𝐿)⁄ ) of fixed-fixed and fixed-free intact 

axially FGM nanorod are compared. The values of some 

parameters are 𝜇(𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) = 0;  𝑝 = 1; 
𝜌𝑟𝑎𝑡𝑖𝑜 = 𝜌𝑅 𝜌𝐿⁄ = 1;  𝑞 = 0.  And in Table 2 natural 

frequencies of FGM nanorod with fixed-fixed and fixed-

free boundary conditions are listed for various mode 

numbers and nanorod lengths. The mechanical properties 

are considered to be identical to the values reported in Ref.  

 

 

 

 

(Nazemnezhad and Shokrollahi 2019), for an intact axially 

FGM nanorod with R = 1.5 nm and p = 2. As shown in  

 

Tables 1 and 2, the reliability of the present formulation 

and results is confirmed. It is worth to note that the small 

difference between the results of the present formulation 

and those of Refs. (Şimşek 2012) and (Nazemnezhad and 

Shokrollahi 2019) is due to the solution method used. The 

present work is used the numerical method, HDQ method, 

while Refs. (Şimşek 2012) and (Nazemnezhad and 

Shokrollahi 2019) are used the analytical method, 

Galerkin’s method. 

 

3.2 Benchmark results 
 

After verifying the applicability and accuracy of the 

present formulation, the effects of some parameters on 

natural frequency of CFGM nanorod are investigated. In all 

following case studies, the mechanical surface and bulk 

properties are considered as presented in Table 3. It is worth 

to note that the following abbreviations are used in the 

figures and tables 

 

 

Table 1 Non-dimensional fundamental frequencies of intact axially FGM nanorod. 

Boundary condition Fixed-Fixed Fixed-Free 

𝐸𝑟𝑎𝑡𝑖𝑜 Şimşek (2012) Present study Şimşek (2012) Present study 

0.25 2.3424 2.34227 1.3455 1.34551 

0.50 2.6774 2.67747 1.4359 1.43600 

1.00 3.1416 3.14159 1.5708 1.57080 

2.00 3.7865 3.78651 1.7657 1.76570 

4.00 4.6848 4.68455 2.0413 2.04117 

Table 2 Natural frequencies of intact axially FGM nanorod with surface effects (GHz) 

L (nm) Mode 
Fixed-Fixed Fixed-Free 

Present study Nazemnezhad and Shokrollahi (2019) Present study Nazemnezhad and Shokrollahi (2019) 

10 

1 310.836 310.944 214.072 214.072 

2 640.145 640.422 505.595 505.614 

3 964.420 965.026 819.570 819.681 

15 

1 207.224 207.296 142.714 142.715 

2 426.764 426.948 337.064 337.076 

3 642.947 643.351 546.380 546.454 

20 

1 155.418 155.472 107.036 107.036 

2 320.073 320.211 252.798 252.807 

3 482.210 482.513 409.785 409.840 

Table 3 The surface and bulk mechanical properties of functionally graded cracked nanorod 

𝐸𝐿 

 (𝐺𝑃𝑎) 

𝐸𝑅 

 (𝐺𝑃𝑎) 

𝜌𝐿 

(𝑘𝑔 𝑚3⁄ ) 

𝜌𝑅 

(𝑘𝑔 𝑚3⁄ ) 

𝜌0𝐿
 (𝜇

𝑘𝑔 𝑚2⁄ ) 

𝜌0𝑅
 (𝜇

𝑘𝑔 𝑚2⁄ ) 

𝜆0𝐿
 

(𝑁 𝑚⁄ ) 

𝜆0𝑅
 

(𝑁 𝑚⁄ ) 

𝜇0𝐿
 

(𝑁 𝑚⁄ ) 

𝜇0𝑅
 

(𝑁 𝑚⁄ ) 

210 70 2370 2700 0.317 0.546 -5.0985 6.8420 -2.7779 -0.8269 
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Fig. 2 Variations of frequency versus the FG power for various crack locations; (a) 1st mode, fixed-fixed, (b) 2nd mode, 

fixed-fixed, (c) 3rd mode, fixed-fixed, (d) 1st mode, fixed-free, (e) 2nd mode, fixed-free and (f) 3rd mode, fixed-free (C = 2; 

q = 2; RL = 0.5 nm; RR = 1 nm; L = 30 nm) 
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Fig. 3 Variations of frequency versus the FG power for various values of crack severity parameter, (a) 1st mode, fixed-

fixed, (b) 2nd mode, fixed-fixed, (c) 3rd mode, fixed-fixed, (d) 1st mode, fixed-free, (e) 2nd mode, fixed-free and (f) 3rd 

mode, fixed-free (Lc =L/2; q = 2; RL = 0.5 nm; RR = 1 nm; L = 30 nm) 
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Fr = Classical frequency 

Fr (SE) = Frequency with surface effects, no crack 

Fr (C) = Frequency without surface effect, with crack 

Fr (C,SE) = Frequency with surface and crack effects 

(48) 

Firstly, variations of the first three natural frequencies 

versus the FG power are demonstrated in Figs. 2(a)-2(f) for 

various crack locations (Lc) and two types of boundary 

conditions, fixed-fixed and fixed-free. Figs. 2(a)-2(f) show 

that since Fr(C) and Fr(SE) curves are located below the Fr 

curve for all values of the FG power, it can be concluded 

that both the crack and the surface energy have decreasing 

effects on axial frequencies of CFGM nanorods. This is due 

to this fact that both of them decrease the stiffness of the 

CFGM nanorod. It is also seen from Figs. 2(a)-2(f) that the 

axial frequencies increase by increasing the FG power. This 

is because of increasing the values of the mechanical 

properties of the CFGM nanorod by increasing the FG 

power. Comparison of Figs. 2(a)-2(f) shows that the crack 

effect is strongly dependent on the frequency number (since 

the mode shape of a given frequency number is different 

from the others), crack location and boundary condition. 

Another point of Figs. 2(a)-2(f) is that the distance between 

Fr and Fr(SE) curves increases by increasing the FG power. 

This implies that the decreasing effect of the surface energy 

increases by increasing the FG power. 

Secondly, variations of axial frequencies versus the FG 

power are plotted in Figs. 3(a)-3(f) for various crack 

severities and fixed-fixed and fixed-free boundary 

conditions. Since some conclusions of Figs. 3(a)-3(f) are 

similar to those observed from Figs. 2(a)-2(f), new 

observations are only explained here. Figs. 3(a)-3(f) show 

that if the crack does not have any decreasing effect on the 

axial frequencies, a change in the value of the crack severity 

cannot alters this situation. On the other hand, the 

decreasing effect of crack increases by increasing the crack 

severity. The other result of Figs. 3(a)-3(f) is that the Fr(C) 

or Fr(C,SE) curves have a constant distance for various 

values of the FG power. This means that the decreasing 

effect of crack with a given crack severity is independent 

from the FG power. The last point of Figs. 3(a)-3(f) is that 

the decreasing effect of crack due to a change in its severity 

is not the same for CFGM nanorods with different boundary 

conditions. 

Next, we turn our attention to considering the effects of 

crack and surface energy on the axial frequencies for 

various radii of CFGM nanorod. To this end, Figs. 4(a)-4(f)  

are provided. It is worth to mention that the FG power for 

the cross-section radius is q=2. It can be seen from Figs. 

4(a)-4(f) that axial frequencies of CFGM nanorods are 

dependent on the radius while this is not the case for 

homogeneous nanorods (Rao 2007). This conclusion is also 

true for CFGM nanorods with crack and surface energy. 

Another point of Figs. 4a-4f is that the axial frequencies are 

more for thicker CFGM nanorods with and without crack 

and surface energy effects. This difference becomes more at 

higher values of FG power p. Figs. 4(a)-4(f) also display 

that the dependency of the axial frequencies of the CFGM 

nanorods on the radius is different for various mode 

numbers. Therefore, it is difficult to express a distinct trend. 

The results presented are valid for both types of boundary 

conditions, fixed-fixed and fixed-free. 

In this section, we consider variations of axial 

frequencies versus the FG power for various values of the 

CFGM nanorod length (see Figs. 5(a)-5(f)). The first point 

of Figs. 5(a)-5(f) is that the axial frequencies of CFGM 

nanorods are dependent on the length as it is observed for 

homogeneous nanorods (Rao 2007). Figs. 5a-5f show that 

the axial frequencies of CFGM nanorod decrease by 

increasing its length. This is due to this fact that as the 

CFGM nanorod increases, its stiffness decreases and its 

mass increases. In addition, it can be observed from Figs. 

5(a)-5(f) that the reduction of axial frequencies of longer 

CFGM nanorods is more at higher values of FG power p. 

Comparison of the difference between Fr and Fr(SE) curves 

implies that the surface energy has more decreasing effect 

on the axial frequencies of CFGM nanorods with shorter 

lengths. This is also true for the decreasing effect of the 

crack. Another comparison can be made between Fr(SE) 

and Fr(C) curves. Figs. 5(a)-5(f) exhibit that in some cases 

Fr(SE) curves are located below the Fr(C) curves while in 

some others it is vice versa. This implies that it cannot be 

definitely stated that which factor, the crack or the surface 

energy, has a dominant effect on the axial frequencies of the 

CFGM nanorods. The results presented are valid for both 

types of boundary conditions, fixed-fixed and fixed-free. 

At the final part of this section, we introduce new 

parameters to investigate effects of the crack and the surface 

energy parameters on the axial frequencies of CFGM 

nanorods in another way. The new parameters are 

• The ratio of frequency with only 

crack to the classical frequency 
𝐹𝑅(𝐶)
= 𝐹𝑟(𝐶) 𝐹𝑟⁄  

(49) 

• The ratio of frequency with crack and 

surface density (ρ0) to the classical 

frequency 

𝐹𝑅(𝐶, 𝜌0)
= 𝐹𝑟(𝐶, 𝜌0) 𝐹𝑟⁄  

• The ratio of frequency with crack and 

surface Lame constant (λ0) to the 

classical frequency 

𝐹𝑅(𝐶, 𝜆0)
= 𝐹𝑟(𝐶, 𝜆0) 𝐹𝑟⁄  

• The ratio of frequency with crack and 

surface energy parameters (ρ0 and λ0) 

to the classical frequency 

𝐹𝑅(𝐶, 𝑆𝐸)
= 𝐹𝑟(𝐶, 𝑆𝐸) 𝐹𝑟⁄  

Based on the parameters defined in Eq. (49) Figs. 6a and 

6b and Table 4 are provided. It is observed from Figs. 6a 

and 6b that all FR curves are located below the line FR=1. 

This reconfirms that the surface energy and the crack have 

decreasing effects on the axial frequencies of the CFGM 

nanorods. Figs. 6(a) and 6(b) also give some new 

interesting points. The first interesting point is that the 

FR(C,ρ0) curve is located below the FR(C,λ0) one. This 

means that however value of the surface density is much 

less than the value of the surface Lame constant (λ0), its 

decreasing effect on the axial frequencies of the CFGM 

nanorods is more. This is valid for both boundary 

conditions considered here and for all mode numbers. 

Another interesting point from Figs. 6a and 6b is that if we 

assume that the crack is located where it has its maximum 

decreasing effect, then we can conclude that at low values 

of the crack severity, the surface energy has dominant 

decreasing effects on the axial frequencies of the CFGM  
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Fig. 4 Variations of frequency versus the FG power for various values of nanorod radius (RR); (a) 1st mode, fixed-fixed, (b) 

2nd mode, fixed-fixed, (c) 3rd mode, fixed-fixed, (d) 1st mode, fixed-free, (e) 2nd mode, fixed-free and (f) 3rd mode, fixed-free 

(C=2; Lc =L/2; q = 2; RL = 0.5 nm; L = 20 nm). 
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Fig. 5 Variations of frequency versus the FG power for various values of nanorod length (L); (a) 1st mode, fixed-fixed, (b) 2nd 

mode, fixed-fixed, (c) 3rd mode, fixed-fixed, (d) 1st mode, fixed-free, (e) 2nd mode, fixed-free and (f) 3rd mode, fixed-free 

(C=2; Lc =L/2; q = 2; RL = 0.5 nm; RR = 1 nm) 

100

150

200

250

300

350

400

450

0 1 2 3 4 5

F
re

q
u
e
n
cy

 (
G

H
z)

FG Power, p

Fr; L=10 nm Fr; L=20 nm
Fr(C); L=10 nm Fr(C); L=20 nm
Fr(SE); L=10 nm Fr(SE); L=20 nm
Fr(C,SE); L=10 nm Fr(C,SE); L=20 nm

(a)

30

50

70

90

110

130

150

170

0 1 2 3 4 5

F
re

q
u
e
n
cy

 (
G

H
z)

FG Power, p

Fr; L=10 nm Fr; L=20 nm

Fr(C); L=10 nm Fr(C); L=20 nm

Fr(SE); L=10 nm Fr(SE); L=20 nm

Fr(C,SE); L=10 nm Fr(C,SE); L=20 nm

(d)

100

300

500

700

900

0 1 2 3 4 5

F
re

q
u
e
n
cy

 (
G

H
z)

FG Power, p

Fr; L=10 nm Fr; L=20 nm
Fr(C); L=10 nm Fr(C); L=20 nm
Fr(SE); L=10 nm Fr(SE); L=20 nm
Fr(C,SE); L=10 nm Fr(C,SE); L=20 nm

(b)

100

200

300

400

500

600

700

0 1 2 3 4 5

F
re

q
u
e
n
cy

 (
G

H
z)

FG Power, p

Fr; L=10 nm Fr; L=20 nm
Fr(C); L=10 nm Fr(C); L=20 nm
Fr(SE); L=10 nm Fr(SE); L=20 nm
Fr(C,SE); L=10 nm Fr(C,SE); L=20 nm

300

500

700

900

1100

1300

0 1 2 3 4 5

F
re

q
u
e
n
cy

 (
G

H
z)

FG Power, p

Fr; L=10 nm Fr; L=20 nm
Fr(C); L=10 nm Fr(C); L=20 nm
Fr(SE); L=10 nm Fr(SE); L=20 nm
Fr(C,SE); L=10 nm Fr(C,SE); L=20 nm

200

400

600

800

1000

0 1 2 3 4 5

F
re

q
u
e
n
cy

 (
G

H
z)

FG Power, p

Fr; L=10 nm Fr; L=20 nm

Fr(C); L=10 nm Fr(C); L=20 nm

Fr(SE); L=10 nm Fr(SE); L=20 nm

Fr(C,SE); L=10 nm Fr(C,SE); L=20 nm

(f)

459



 

Reza Nazemnezhad and Hassan Shokrollahi 

 

  

 

 
Fig. 6 Variations of frequency ratios versus the crack severity for various cases; (a) fixed-fixed and (b) fixed-free (Lc =L/2; 

q = 2; RL = 0.5 nm; RR = 1 nm; L = 30 nm; p=2). 

Table 4 Values of frequency ratios for various cases 

BC n C 
P=0 P=1 P=10 

FR(C,ρ0) FR(C,λ0) FR(C,SE) FR(C,ρ0) FR(C,λ0) FR(C,SE) FR(C,ρ0) FR(C,λ0) FR(C,SE) 

F
ix

ed
-F

ix
ed

 

1 0.0 0.78003 1.10323 0.86155 0.81106 0.98919 0.80114 0.83999 0.94292 0.79074 

0.5 0.76974 1.09395 0.85118 0.80957 0.98912 0.80087 0.83277 0.93111 0.77736 

1.0 0.75981 1.08467 0.84114 0.80817 0.98905 0.80060 0.82554 0.91942 0.76469 

1.5 0.75054 1.07570 0.83178 0.80685 0.98898 0.80033 0.81880 0.90878 0.75376 

2.0 0.74209 1.06725 0.82331 0.80562 0.98890 0.80005 0.81281 0.89960 0.74478 

2 0.0 0.78181 1.10810 0.86700 0.81247 0.98009 0.79558 0.83703 0.93295 0.78056 

0.5 0.67074 0.91783 0.72087 0.63380 0.76492 0.61817 0.60528 0.69480 0.58411 

1.0 0.60959 0.82477 0.64991 0.56452 0.67913 0.54847 0.54258 0.62279 0.52564 

1.5 0.57407 0.77377 0.61144 0.53005 0.63544 0.51315 0.51573 0.59127 0.50044 

2.0 0.55163 0.74252 0.58811 0.50964 0.60908 0.49191 0.50146 0.57443 0.48709 

F
ix

ed
-F

re
e 

1 0.0 0.81136 1.12601 0.91394 0.82556 0.93862 0.77440 0.85145 0.90367 0.76930 

0.5 0.74725 1.01321 0.82440 0.68590 0.79485 0.65656 0.68144 0.74779 0.63797 

1.0 0.69456 0.92603 0.75446 0.59669 0.69893 0.57755 0.58077 0.64857 0.55374 

1.5 0.65073 0.85683 0.69860 0.53437 0.63010 0.52074 0.51371 0.57961 0.49503 

2.0 0.61376 0.80052 0.65297 0.48792 0.57790 0.47762 0.46524 0.52844 0.45140 

2 0.0 0.78084 1.11002 0.86763 0.81242 0.97625 0.79220 0.83272 0.91984 0.76538 

0.5 0.70030 0.99333 0.76732 0.74238 0.87735 0.70581 0.67176 0.75427 0.62311 

1.0 0.64755 0.91949 0.70687 0.69888 0.81862 0.65656 0.61469 0.68748 0.56720 

1.5 0.61283 0.87289 0.66956 0.67332 0.78449 0.62844 0.58782 0.65435 0.53965 

2.0 0.58881 0.84163 0.64481 0.65707 0.76284 0.61076 0.57239 0.63484 0.52346 
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nanorods while it is the other way round at high values  

of the crack severity for the decreasing effect of the crack. 

There is also an interesting point from Table 4. This table 

shows that for p=0 and C=0, the value of FR(C,λ0) is more 

than one. This exhibits that the surface Lame constant (λ0) 

can increase the axial frequencies of CFGM nanorods if 

p=0. This is due to this fact that for p=0, the nanorod is only 

made of the material considered for the right end of the 

nanorod. Table 4 shows that the value of the surface lame 

constant (λ0) for the right end of the nanorod is positive 

while it is the other way round for the value of the surface 

lame constant (λ0) at the left end of the nanorod. In general, 

since the decreasing or increasing effect of the surface 

Lame constant (λ0) is much less than the decreasing effect 

of the surface density, we can conclude that the surface 

energy has always a decreasing effect on the axial 

frequencies of homogeneous and CFGM nanorods. 

 

 

5. Conclusions 
 

Effects of the crack and the surface energy on the free 

longitudinal vibration of functionally graded nanorods are 

investigated. The surface and bulk material properties are 

considered to vary in the length direction according to the 

power law distribution. Considering the surface stress 

causes that the derived governing equation of motion 

becomes non-homogeneous while this was not the case in 

works that only the surface density and the surface Lamé 

constants were considered. After converting the non-

homogeneous governing equation to the homogeneous one, 

natural frequencies are obtained using the numerical 

method, the harmonic differential quadrature method. The 

results reveal that both the crack and the surface energy 

decrease the axial frequencies of the CFGM nanorods. The 

decreasing effect of the crack with a given crack severity is 

independent from the FG power while the decreasing effect 

of the surface energy increases by increasing the FG power. 

In addition, it is concluded that at low values of the crack 

severity, the surface energy has dominant decreasing effects 

on the axial frequencies of the CFGM nanorods while it is 

the other way around at high values of the crack severity for 

the decreasing effect of the crack. It is also observed that 

however value of the surface density is much less than the 

value of the surface Lamé constant (λ0), its decreasing 

effect on the axial frequencies of the CFGM nanorods is 

more for both boundary conditions and for all mode 

numbers. The surface Lamé constant (λ0) may decrease or 

increase the axial frequencies of CFGM nanorods which it 

is dependent on the sign of λ0. The results also show that 

the axial frequencies of CFGM nanorods are dependent on 

the length as it is observed for homogeneous nanorods. 

Furthermore, the axial frequencies of CFGM nanorods are 

dependent on the radius while this is not the case for 

homogeneous nanorods. The dependency of the axial 

frequencies of the CFGM nanorods on the radius is 

different for various mode numbers. Therefore, it is difficult 

to express a distinct trend. Finally, it cannot be definitely 

stated that which factor, the crack or the surface energy, has 

a dominant effect on the axial frequencies of the CFGM 

nanorods. 
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