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1. Introduction 
 

Plates or sheets are among the common structural 

components used in aerospace, ships, offshore and other 

complex industries. Thin plates can contain different types 

of defects such as cracks created due to imperfection, 

fatigue, impact, corrosion, and so on. Study of the cracked 

plates under different loads is required to assess an 

acceptable level of structural safety. Buckling is a 

phenomenon which can more likely occur in thin plates 

especially when some imperfections as cracks exist. In 

addition to compressive loads which can result in plate 

buckling, cracked plates may also buckle under tensile 

loads due to formation of compression fields in areas 

around the crack. Buckling may affect the loading capacity 

of plates; such that according to Seif and Kabir (2017), the 

buckling of tension cracked plates can reduce the fracture 

capacity and the fatigue life by 35% and 59%, respectively. 

In the past decade, some researchers have studied 

buckling of perforated and cracked plates (Serror et al. 

2016, Lei et al. 2018, Zakeri et al. 2018, Saberi et al. 2019). 

The obtained results indicate that the type of boundary 

conditions has considerable effect on compressive buckling 

stress, even more than presence of the crack; while, the 

tensile buckling stress is almost independent of the 

boundary conditions and is significantly affected by the 

crack length (Brighenti 2005). In the case of plates with all 

simply supported or clamped edges, the effect of crack is  
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the increase of compressive buckling stress up to 10% 

compared to un-cracked plate (Brighenti 2005, Brighenti 

2009); while, the opposite happens for plates with two free 

opposite edges parallel to the loading direction (Pan et al. 

2013). Furthermore, the tensile buckling stress is higher 

than corresponding compressive one, and tends to increase 

rapidly by reducing the crack length (Brighenti 2005, Amiri 

Rad et al. 2014). In these results, the crack edges are 

perpendicular to loading direction. Study of compressive 

buckling of plates with cracks whose edges are parallel to 

crack clarifies that the above mentioned results cannot be 

extended to these cases (Pan et al. 2013). The effect of 

tensile load on buckling of cracked plates was investigated 

in another study (Seifi and Kabiri 2013). It was found that 

the tensile load increases the buckling load, while the 

compression decreases it. The perforated and cracked plates 

under shear loadings have also been studied by some 

researchers (Brighenti et al. 2011, Cheng et al. 2012, 

Nasirmanesh et al. 2015, Liu et al. 2015). 

Most research ever done regarding buckling of cracked 

plates is limited to the study of plates with either central or 

edged cracks. While cracks may occur at any location in the 

plate, the study of the effect of crack position on critical 

buckling load and probable mode of fracture is of utmost 

importance for engineers from design perspective. From the 

few research works reported in this respect, some studies, 

i.e., (Khedmati et al. 2009, Yin et al. 2016, Yu et al. 2016, 

Saberi et al. 2019), are considered herein. Khedmati et al. 

(2009) and Saberi et al. (2019) performed finite element 

studies on the buckling strength of cracked plates under 

compression. The considered plate was assumed to be 

simply supported and also limited to the cracks with lengths 

no longer than half the width of plate; in addition, the 
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location of cracks was chosen such that the crack centers 

were in a distance from the center of plate in the direction 

perpendicular to loading edges. It was found that the plate 

aspect ratio is an effective parameter on buckling behavior; 

also, the crack size and location may have major effects on 

buckling mode (Brighenti 2005). 

This paper aims to investigate the buckling behavior of 

non-centrally cracked plates under tensile loading. 

Parameters examined in this study are the crack length 

(including short to long cracks), plate aspect ratio (0.5, 1.0, 

and 2.0), plate support conditions, and location of the cracks 

with eccentricities in directions parallel or perpendicular to 

loading edges. Also, the influence of crack location on the 

stress intensity factor (SIF) is investigated to predict the 

plate failure (fracture or buckling) mode. To this end, 

Mindlin’s first-order shear deformation theory (FSDT) of 

plates is used in the frame-work of extended finite element 

method (XFEM) (Khoei 2014, Mohammadi 2008) to 

analyze both in-plane and eigen-buckling equations. To 

verify the validity of models, the results for buckling and 

SIF are compared with both analytical and numerical 

solutions available in the literature. XFEM is able to model 

singularity of the stress field near the crack tips and also to 

capture strong discontinuities in the forms of jumps in 

displacement field across the crack faces. According to 

Nasirmanesh et al. (2015), this ability of XFEM leads to an 

increase in accuracy of results compared to the conventional 

finite element method (FEM) used in previous research 

endeavors (Brighenti 2005 and 2009, Seifi and Kabiri 

2013). It is noted that XFEM was used by some researchers 

(Amiri Rad et al. 2014, Nasirmanesh et al. 2015, Liu et al. 

2015) to analysis of buckling of cracked plates. Moreover, 

Rayleigh-Ritz method has also been previously (Pan et al. 

2013, Satish Kumar and Paik 2014) used for the analysis of 

such plates. 

The novelty and contribution of this research endeavor 

is that it considers large-size cracks, while previous 

research has focused on relatively small-size cracks. In fact, 

this study aims to demonstrate the different performances of 

plates with large cracks in terms of changing the buckling 

mode to semi-global instability and also the significant 

effectiveness of plate boundary conditions on the buckling 

coefficient. Furthermore, the effects of crack location on the 

buckling and collapse behaviors of tensioned plates are 

investigated in this paper. 

 

 

2. Basic formulation 
 

In this study, the element formulation is based on 

Mindlin-Reissner theory of plates which includes transverse 

shear deformations. The linear buckling equations are 

solved by XFEM. 4-noded quadrilateral plate elements, as 

illustrated in Fig. 1, are used here to discretize the geometry 

of the plate. Fig. 1 gives geometric of the cracked 4-noded 

plate element. 

 

2.1 Kinematics 
 

The general form of the XFEM approximation for the 

displacement field of any point x is defined as the 

conventional finite element approximation in addition to 

terms added in order to consider the crack face 

discontinuity and the stress singularity at crack tips. 

Including the transverse shear deformation effects, the 

XFEM approximation field in modeling of crack interface 

for an isotropic flat plate can be written by applying some 

simplifications on the case of general shell element 

(Nasirmanesh and Mohammadi 2015) as 

𝑢 =  ∑ 𝑁𝑖𝑢̅𝑖
𝑓𝑒𝑚

𝑖∈𝒩𝑓𝑒𝑚

+∑𝑁𝑗𝑢̅𝑗
𝑑𝑖𝑠(𝐻(𝐱) − 𝐻(𝐱𝑗))

𝑗∈

+∑𝑁𝑘∑𝑢̅𝑘𝑙
𝑡𝑖𝑝
(𝐹𝑙(𝐱) − 𝐹𝑙(𝐱𝑗))

4

𝑙=1𝑘∈

 

(1) 

𝑣 =  ∑𝑁𝑖𝑣̅𝑖
𝑓𝑒𝑚

𝑖∈

+∑𝑁𝑗𝑣̅𝑗
𝑑𝑖𝑠(𝐻(𝐱) − 𝐻(𝐱𝑗))

𝑗∈

+∑𝑁𝑘∑𝑣̅𝑘𝑙
𝑡𝑖𝑝
(𝐹𝑙(𝐱) − 𝐹𝑙(𝐱𝑘))

4

𝑙=1𝑘∈

 

(2) 

𝑤 = ∑𝑁𝑖𝑤̅𝑖
𝑓𝑒𝑚

𝑖∈

+∑𝑁𝑗𝑤̅𝑗
𝑑𝑖𝑠(𝐻(𝐱) − 𝐻(𝐱𝑗))

𝑗∈

+∑𝑁𝑘𝑤̅𝑘
𝑡𝑖𝑝
(𝐺(𝐱) − 𝐺(𝐱𝑘))

𝑘∈

 
(3) 

where u, v and w are the displacement components in x, y 

and z directions, respectively; 𝑁𝑖 are conventional shape 

functions; The superscripts: fem, dis and tip denote that 

superscripted variables are associated with conventional 

FEM, discontinuity across the crack face and singularity 

around the crack tip, respectively; 𝒩𝑓𝑒𝑚 is the set of all 

nodal points of element; as well as 𝒩𝑑𝑖𝑠 and 𝒩𝑡𝑖𝑝 are the 

sets of nodes that contain the crack face and crack tip in the 

support of shape functions enriched by Heaviside (𝐻(𝐱)) 

and asymptotic (𝐹(𝐱) or 𝐺(𝐱)) functions, respectively; 𝑢𝑖
∎

 

and 𝑣𝑖
∎

 and 𝑤𝑖
∎

 are defined as below 

𝑢□
∎
= 𝑢□

∎ + 𝑧 𝛽□
∎ , 𝑣□

∎
= 𝑣□

∎ − 𝑧 𝛼□
∎ and 𝑤□

∎
= 𝑤□

∎   

 
(4) 

 

 

 

Fig. 1 Geometry of the 4-noded cracked plate element 
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where ∎ is a superscript which can be replaced by one of 

the previously defined superscripts: fem, dis or tip; □ is a 

subscript which indicates that the subscribed variable 

belongs to nodal point □; whereas, in which case (∎ = 𝑡𝑖𝑝) 

the subscript □ consists of two indices as kl in Eqs. (1) and 

(2). The first index, k, is related to the number of nodes and 

the second one, l, corresponds to the asymptotic 

function  𝐹𝑙(𝐱) . (𝑢𝑖 , 𝑣𝑖 )  and (𝛼𝑖
□, 𝛽𝑖

□)  are the nodal 

degrees of freedom corresponding to the displacements and 

rotations at node i with respect to x and y directions, 

respectively. 𝐮∎ is defined as 

𝐮∎ = {𝑢□
∎, 𝑣□

∎, 𝑤□
∎, 𝛼□

∎, 𝛽□
∎}𝑇 (5) 

where, ∎ and □ are the previously defined superscripts 

and subscripts, respectively; 𝐮𝑓𝑒𝑚 is the standard vector of 

unknowns; while, 𝐮𝑑𝑖𝑠 and 𝐮𝑡𝑖𝑝 are enrichment vectors of 

degrees of freedom added to consider the discontinuity of 

crack face and stress singularity at crack tip, respectively. 

The Heaviside function at point x is defined as 

𝐻(𝐱) = {
+1     𝐱 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑒 𝑐𝑟𝑎𝑐𝑘
−1     𝐱 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑟𝑎𝑐𝑘

 (6) 

The in-plane tip enrichment functions are derived 

according to the asymptotic solution for displacements 

around a finite line crack in an infinite plate under in-plane 

tension and shear (Williams 1957). The mentioned 

displacements are expressed as below (Broek 1974) 

{𝑢
𝑡𝑖𝑝

𝑣𝑡𝑖𝑝
}

=

{
 

 
𝐾𝐼(1 + 𝜈)

𝐸
√
𝑟

2𝜋
cos

𝜃

2
(𝜗 − 1 + 2 sin2

𝜃

2
)

𝐾𝐼(1 + 𝜈)

𝐸
√
𝑟

2𝜋
sin

𝜃

2
(𝜗 + 1 − 2 cos2

𝜃

2
)
}
 

 

+

{
 

 
𝐾𝐼𝐼(1 + 𝜈)

𝐸
√
𝑟

2𝜋
sin

𝜃

2
(𝜗 + 1 + 2 cos2

𝜃

2
)

𝐾𝐼𝐼(1 + 𝜈)

𝐸
√
𝑟

2𝜋
cos

𝜃

2
(𝜗 − 1 − 2 sin2

𝜃

2
)
}
 

 

 

(7) 

where (𝑟, 𝜃)  are the polar coordinates of the local 

coordinate system defined with an origin at the tip of crack 

and with basis vectors defined by the unit vector’s tangent 

and normal to the crack at the crack tip (Fig. 2(a)); 𝐾𝐼 and 

𝐾𝐼𝐼 are the modes I and II membrane stress intensity factors 

(SIFs); and 𝜗 = (3 − 𝜈)/(1 + 𝜈) for plane stress; where, 

E and 𝜈  are the elastic modulus and Poisson’s ratio, 

respectively. Thus, four in-plane enrichments based on Eq. 

(7) are defined for two-dimensional isotropic media as 

𝐹(𝑟, 𝜃)

=  {√𝑟sin
𝜃

2
, √𝑟cos

𝜃

2
, √𝑟sin

𝜃

2
sin𝜃, √𝑟sin

𝜃

2
cos𝜃}

𝑇

 
(8) 

Also, the out-of-plane and rotation enrichment functions 

can be derived according to the asymptotic solution for out-

of-plane displacement and rotations. The mentioned 

displacement and rotations based on the Mindlin–Reissner 

theory for a shear-deformable plate under out of plane 

loading are as below (Delbow 2000) 

 

 

𝑤𝑡𝑖𝑝 =
6√2𝑟

5𝜇𝑡
𝐾𝑏3sin

𝜃

2
 

+
6√2𝑟

3
2𝐾𝑏1

𝐸𝑡3
[
1

3
(7 + 𝜈)cos

3𝜃

2
− (1 − 𝜈)cos

𝜃

2
]

+ 
6√2𝑟

3
2𝐾𝑏2

𝐸𝑡3
[−
1

3
(5 + 3𝜈)sin

3𝜃

2

+ (1 − 𝜈)sin
𝜃

2
] 

(9) 

𝛼𝑡𝑖𝑝 =
6√2𝑟𝐾𝑏1
𝐸𝑡3

cos
𝜃

2
[4 − (1 + 𝜈)(1 + cos𝜃)] 

+
6√2𝑟𝐾𝑏2
𝐸𝑡3

sin
𝜃

2
[4 + (1 + 𝜈)(1 + cos𝜃)]

+
6√2𝑟

3
2𝐾𝑏3

𝐸𝑡3
(
18

15
) [−sin

𝜃

2

− (1 + 3𝜈)cos
𝜃

2
sin𝜃] 

(10) 

𝛽𝑡𝑖𝑝 =
6√2𝑟𝐾𝑏1
𝐸𝑡3

sin
𝜃

2
[−4 − 2(1 + 𝜈) cos2

𝜃

2
] 

+
6√2𝑟𝐾𝑏2
𝐸𝑡3

cos
𝜃

2
[(1 − 𝜈) + (1 + 𝜈) sin2

𝜃

2
]

+
6√2𝑟

3
2𝐾𝑏3

𝐸𝑡3
(
18

15
)cos

𝜃

2
[1

+ (1 + 3𝜈)cos𝜃] 

(11) 

where, t is the plate thickness; 𝜇 is shear modulus; and 

𝐾𝑏1 , 𝐾𝑏2 , 𝐾𝑏3  are the bending stress intensity factors. 

Then, according to Eqs. (9)-(11), out-of-plane and rotation 

enrichments are defined as Eqs. (12) and (13), respectively 

𝐺(𝑟, 𝜃) = {
√𝑟sin

𝜃

2
, 𝑟
3
2sin

𝜃

2
, 𝑟
3
2cos

𝜃

2
, 𝑟
3
2sin

3𝜃

2
,

𝑟3/2cos
3𝜃

2

}

𝑇

 

 

(12) 

𝑅(𝑟, 𝜃)

= {√𝑟sin
𝜃

2
, √𝑟cos

𝜃

2
, √𝑟sin

𝜃

2
sin𝜃, √𝑟sin

𝜃

2
cos𝜃}

𝑇

 
(13) 

It should be noted that, these rotation enrichments (R) 

are similar to in-plane enrichments (F); therefore, Eqs. (1) 

and (2) are the simplified equations assuming equality of R 

and F. By considering only the terms those are proportional 

to √𝑟 for 𝑤𝑡𝑖𝑝, the out of plane enrichments are simplified 

to (Nasirmanesh and Mohammadi 2015, Bayesteh and 

Mohammadi 2011) 

𝐺(𝑟, 𝜃) = √𝑟sin
𝜃

2
 (14) 

𝜀𝑖𝑗
𝐿  and 𝜀𝑖𝑗

𝑁𝐿 components of the respective linear and non-

linear parts of Green-Lagrange strain tensor can be written 

in terms of displacement derivatives, as below 

𝜀𝑖𝑗
𝐿 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)    and  (15) 
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    𝜀𝑖𝑗
𝑁𝐿 =

1

2
∑𝑢𝑘,𝑖𝑢𝑘,𝑗

3

𝑘=1

(𝑖, 𝑗 = 1, 2, 3) 

where, the indices 1, 2 and 3 are corresponding to x, y and z 

directions, respectively. Further, a subscript with comma 

denotes the coordinate partial derivative with respect to the 

geometric variables. 
 

2.2 Buckling analysis 
 

Assuming no in-plane motion of mid-plane at the 

moment of buckling, the terms representing the in-plane 

motions, i.e., 𝑢□
∎ and 𝑣□

∎, can be removed from Eqs. (4) 

and (5); therefore, Eq. (5) is simplified to 

𝐰∎ = {𝑤□
∎, 𝛼□

∎, 𝛽□
∎}𝑇 (16) 

where, 𝐰∎  is the vector of out-of-plane degrees of 

freedom. In the case of buckling, the expression for the 

principle of virtual work is 

∫ 𝛿𝛆𝐿
𝑇

𝑉

𝐃 𝛆𝐿 𝑑𝑉 + ∫ 𝛿𝛆𝑁𝐿
𝑇

𝑉

𝐒̂ 𝑑𝑉 = 0 (17) 

in which, 𝛿 denotes virtual quantities. Given that the state 

of stress in the plate corresponding to the plane stress, 𝛿𝜀𝑧𝑧
𝐿 , 

does not contribute to total virtual work; therefore, the 

linear (𝛆𝐿) and non-linear (𝛆𝑁𝐿) strain vectors in Eq. (17) 

can be written as 

𝛆𝐿 = {𝜀𝑥𝑥
𝐿 , 𝜀𝑦𝑦

𝐿 , 𝜀𝑥𝑦
𝐿 , 𝜀𝑦𝑧

𝐿 , 𝜀𝑧𝑥
𝐿 }

𝑇
     and     

 𝛆𝑁𝐿 = {𝜀𝑥𝑥
𝑁𝐿, 𝜀𝑦𝑦

𝑁𝐿, 𝜀𝑥𝑦
𝑁𝐿, 𝜀𝑦𝑧

𝑁𝐿, 𝜀𝑧𝑥
𝑁𝐿}

𝑇
 

(18) 

which can be obtained from Eq. (15). D is the tensor of 

material properties 

𝐃 =
𝐸

(1 − 𝜈2)
 

[
 
 
 
 
1 𝜈 0
𝜈 1 0
0
0
0

0
0
0

(1 − 𝜈) 2⁄
0
0

0 0
0 0
0

𝜅(1 − 𝜈) 2⁄
0

0
0

𝜅(1 − 𝜈) 2⁄ ]
 
 
 
 

 

(19) 

where, E and 𝜈 are the elastic modulus and Poisson’s ratio, 

respectively; also,𝜅 is a constant to account for actual non-

uniformity of the shearing stresses (which is usually taken 

as 5/6) (Bathe 1996). Corresponding to the strain vector, the 

initial stress vector, 𝐒̂, is written as below 

𝐒̂ = {𝑆𝑥𝑥, 𝑆𝑦𝑦, 𝑆𝑥𝑦, 𝑆𝑦𝑧, 𝑆𝑧𝑥}
𝑇

 (20) 

whereas, its components are second Piola-Kirchhoff 

stresses obtained by pre-buckling in-plane analysis of the 

cracked plate described in section 2.3 Substituting from 

Eqs. (18)-(20) into Eq. (17), the following eigenvalue 

equation is obtained 

(𝐊𝑆 + 𝜆 𝐊𝐺){𝐰} = 0 (21) 

where, 𝜆 represents eigenvalue and 𝐰 is eigenvector 

𝐰 =
{(𝐰𝑓𝑒𝑚)𝑇, (𝐰𝑑𝑖𝑠)𝑇 , (𝐰𝑡𝑖𝑝|1)

𝑇,

 (𝐰𝑡𝑖𝑝|2)
𝑇, (𝐰𝑡𝑖𝑝|3)

𝑇 , (𝐰𝑡𝑖𝑝|4)
𝑇}

𝑇

 (22) 

where, 𝐰∎ has been defined in Eq. (16) and𝐰𝑡𝑖𝑝|𝑙 means 

𝐰𝑡𝑖𝑝 corresponding to 𝐹(𝐱) = 𝐹𝑙(𝐱). 𝐊𝑆 and 𝐊𝐺 are the 

standard and geometric stiffness matrices, respectively 

𝐊𝑆 = ∫ 𝐁𝑆
𝑇𝐃

𝑉
𝐁𝑆𝑑𝑉     and    

  𝐊𝐺 = ∫ 𝐁𝐺
𝑇𝐒

𝑉
𝐁𝐺𝑑𝑉 

(23) 

in which 

𝐁𝑆 = [𝐁𝑆
𝑓𝑒𝑚

𝐁𝑆
𝑑𝑖𝑠 𝐁𝑆

𝑡𝑖𝑝
|1 𝐁𝑆

𝑡𝑖𝑝
|2 𝐁𝑆

𝑡𝑖𝑝
|3 𝐁𝑆

𝑡𝑖𝑝
|4] 

𝐁𝐺 = [𝐁𝐺
𝑓𝑒𝑚

𝐁𝐺
𝑑𝑖𝑠 𝐁𝐺

𝑡𝑖𝑝
|1 𝐁𝐺

𝑡𝑖𝑝
|2 𝐁𝐺

𝑡𝑖𝑝
|3 𝐁𝐺

𝑡𝑖𝑝
|4] 

(24) 

In Eq. (24), 𝐁𝑆
𝑡𝑖𝑝
|𝑙  and 𝐁𝐺

𝑡𝑖𝑝
|𝑙  indicate that the 

respective 𝐁𝑆
𝑡𝑖𝑝

 and 𝐁𝑆
𝑡𝑖𝑝

 correspond to 𝐹(𝐱) = 𝐹𝑙(𝐱). By 

applying some simplifications, 𝐁𝑆
∎  and 𝐁𝐺

∎  can be 

obtained for plate elements (Cook 2007) 

𝐁𝑆
∎ =

[
 
 
 
 
 
0 −𝑧𝑁𝑖,𝑥

∎ 0

0 0 𝑧𝑁𝑖,𝑦
∎

0 −𝑧𝑁𝑖,𝑦
∎ 𝑧𝑁𝑖,𝑥

∎

𝑁𝑖,𝑦
∎ 0 𝑁𝑖

∎

𝑁𝑖,𝑥
∎ −𝑁𝑖

∎ 0 ]
 
 
 
 
 

    

  and  

𝐁𝐺
∎ =

[
 
 
 
 
 
 
 
 
 
 
0 −𝑧𝑁𝑖,𝑥

∎ 0

0 0 𝑧𝑁𝑖,𝑦
∎

0 −𝑁𝑖
∎ 𝑁𝑖

∎

0 −𝑧𝑁𝑖,𝑥
∎ 0

0 0 𝑧𝑁𝑖,𝑦
∎

0 −𝑁𝑖
∎ 𝑁𝑖

∎

𝑁𝑖,𝑥
∎ −𝑧𝑁𝑖,𝑥

∎ 0

𝑁𝑖,𝑦
∎ 0 𝑧𝑁𝑖,𝑦

∎

0 −𝑁𝑖
∎ 𝑁𝑖

∎ ]
 
 
 
 
 
 
 
 
 
 

 

(25) 

where, superscript ∎ was previously defined and can be 

replaced by one of the superscripts: fem, dis or tip. 𝑁𝑖
∎ is 

defined as below 

𝑁𝑖
𝑓𝑒𝑚

= 𝑁𝑖,  𝑁𝑖
𝑑𝑖𝑠 = 𝑁𝑖 (𝐻(𝐱) − 𝐻(𝐱𝑖))  and  

𝑁𝑖
𝑡𝑖𝑝
= 𝑁𝑖 (𝐹(𝐱) − 𝐹𝑙(𝐱𝑖)) 

(26) 

Stress matrix (S) in Eq. (23) is written as 

𝐒 = [
𝐒̅ 0 0
0 𝐒̅ 0
0 0 𝐒̅

] (27) 

where 

𝐒̅ = [

𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑧𝑥
𝑆𝑥𝑦 𝑆𝑦𝑦 𝑆𝑦𝑧
𝑆𝑧𝑥 𝑆𝑦𝑧 𝑆𝑧𝑧

] (28) 

 
2.3 Pre-buckling analysis 
 

As seen in Eq. (17), the buckling analysis needs to know 

about the stress distribution across the plate. Due to the 

presence of crack, the distribution of stresses in the plate is 

not uniform; however, the stress distribution can be found 

through a well-known linear in-plane analysis. Thus, the 

components 𝑆𝑧𝑧, 𝑆𝑧𝑥 and 𝑆𝑦𝑧 of 𝐒̂ and 𝐒̅ in Eqs. (20)- 

218



 

Effect of crack location on buckling analysis and SIF of cracked plates under tension 

 

 

 

(28), respectively, should be equal to zero. XFEM 

approximation for in-plane analysis of cracked plate is also 

based on Eqs. (1)-(3). The details of in-plane analysis is not 

given here for brevity. 

 

2.4 Shear locking 
 

The basic difficulty in formulation of the plate elements 

in the framework of Mindlin theory is the effect of shear 

locking. This phenomenon occurs in thin plates and shells 

due to the prediction of spurious shear stresses that leads to 

a strong artificial stiffening of the element. Some 

researchers intended to use 8-noded elements, because these 

elements in conjunction with reduced integration scheme 

avoid mesh distortion and shear locking (Nasirmanesh and 

Mohammadi 2015); however, the use of lower-order 

elements can save time in numerical simulation calculations 

of the FEM program.  

In this research endeavor, 4-noded elements were used 

to mesh the plate domain. It is evident that the shear locking 

effect is more pronounced for low-order elements (Bathe 

1996); hence, in order to avoid the shear locking, the 

selective integration scheme was adopted to numerically 

evaluate the stiffness matrices in Eq. (23). In the case of 

selective integration, different strain terms were integrated 

with different orders of integration (Bathe 1996). In the 

following, the details of the applied numerical integration 

technique are presented. 

 

2.5 SIF analysis 
 

For calculating SIF, in-plane results are employed to 

apply the J-integral technique. In this technique, J-integral 

is defined as (Khoei 2014): 

𝐽 = ∫ (𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥1

−𝒲𝛿1𝑗)
𝜕𝑞

𝜕𝑥𝑗
𝑑𝐴

𝐴

 (29) 

where, 𝜎𝑖𝑗  and 𝑢𝑖  are denoting the stress tensor and 

displacement field in local crack tip coordinate system 

(𝑥1,𝑥2) as shown in Fig. 2(a), respectively; 𝒲 is the strain 

energy density defined as 

𝒲 =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 (30) 

with 𝜀𝑖𝑗 = strain tensor; 𝜀𝑖𝑗 , 𝜎𝑖𝑗  and 𝑢𝑖  are obtained  

 

 

from XFEM in-plane analysis, and are transferred from the 

global to local crack tip coordinate system by using an 

appropriate transformation; 𝛿 is the Kronecker delta and 𝑞 

is a weighting function defined over the domain of 

integration; Such that is equal to unit at the crack tip and 

vanishes on an outer prescribed contour (C2 in Fig. 

2(b)). 𝐴 is the J-integral domain for computation of SIF 

bounded by crack interface, inner and outer contours (C1 

and C2 in Fig. 2(b), respectively). 

In XFEM modeling, the J-integral domain is obtained 

by assuming a virtual circle with a specific radius around 

the crack tip, and the integration is performed over the 

elements crossed by this circle (shaded elements in Fig. 

2(b)) (Khoei 2014). The distribution of 𝑞 can be obtained 

within an element using the standard FE interpolation as 

𝑞 =  ∑𝑁𝑖𝑞𝑖
𝑖∈

 (31) 

where, 𝑞𝑖 is the nodal value of 𝑞, which is equal to 1.0 if 

the node is on the inner contour (C1, near the crack tip) and 

is equal to 0 if the node is on the outer contour (C2). 

The energy release rate (𝒢) for 2D mixed-mode crack 

problems can be generally defined based on the SIFs of the 

modes I and II, i.e. 𝐾𝐼 and 𝐾𝐼𝐼, as (Khoei 2014) 

𝐽 ≡ 𝒢 =
1

𝐸′
(𝐾𝐼

2 + 𝐾𝐼𝐼
2) (32) 

In this equation, 𝐸′ = 𝐸  for plane stress. By 

considering two states of a crack body, that is, the true state 

(1) called by (𝑢𝑖
(1), 𝜀𝑖𝑗

(1),𝜎𝑖𝑗
(1)) and an auxiliary state (2) 

denoted by (𝑢𝑖
(2), 𝜀𝑖𝑗

(2),𝜎𝑖𝑗
(2)), the J-integral for the sum of 

states (1) and (2) can be written according to Eq. (29) and 

(30) as 

𝐽(1+2) = ∫ ((𝜎𝑖𝑗
(1) + 𝜎𝑖𝑗

(2))
𝜕

𝜕𝑥1
(𝑢𝑖

(1) + 𝑢𝑖
(2))

𝐴

−
1

2
(𝜎𝑖𝑗

(1) + 𝜎𝑖𝑗
(2))(𝜀𝑖𝑗

(1)

+ 𝜀𝑖𝑗
(2))𝛿1𝑗)

𝜕𝑞

𝜕𝑥𝑗
𝑑𝐴 

(33) 

Expanding this expression results in 

𝐽(1+2) = 𝐽(1) + 𝐽(2) + 𝐼(1,2) (34) 

  
(a) (b) 

Fig. 2 (a) Local crack tip and global coordinate systems and (b) J-integral domain selected by virtual  circle and bounded 

by inner and outer contours 
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where 𝐼(1,2) is called the interaction integral for state (1) 

and (2) defined as 

𝐼(1+2) = ∫ (𝜎𝑖𝑗
(1)
𝜕𝑢𝑖

(2)

𝜕𝑥1
+ 𝜎𝑖𝑗

(2)
𝜕𝑢𝑖

(1)

𝜕𝑥1𝐴

−𝒲(1,2)𝛿1𝑗)
𝜕𝑞

𝜕𝑥𝑗
𝑑𝐴 

(35) 

where 𝒲(1,2) is the interaction strain energy defined by 

𝒲(1,2) = 𝜎𝑖𝑗
(1)𝜀𝑖𝑗

(2) = 𝜎𝑖𝑗
(2)𝜀𝑖𝑗

(1) (36) 

Based on Eq. (32), Eq. (34) can be rewritten as 

𝐽(1+2) = 𝐽(1) + 𝐽(2) +
2

𝐸′
(𝐾𝐼

(1)𝐾𝐼𝐼
(2) + 𝐾𝐼

(2)𝐾𝐼𝐼
(1)) (37) 

Comparing Eq. (35) with (37), the interaction 𝐼(1+2) 
can be obtained as 

𝐼(1+2) =
2

𝐸′
(𝐾𝐼

(1)𝐾𝐼𝐼
(2) + 𝐾𝐼

(2)𝐾𝐼𝐼
(1)) (38) 

If the auxiliary state (2) is assumed as the pure mode I 

(𝐾𝐼
(2) = 1 𝑎𝑛𝑑 𝐾𝐼𝐼

(2) = 0) or II (𝐾𝐼
(2) = 0 𝑎𝑛𝑑 𝐾𝐼𝐼

(2) =
1) asymptotic fields (based on Eq. (7)), the mode I SIF 

(𝐾𝐼
(1) ) or the mode II SIF (𝐾𝐼𝐼

(1) ) can be calculated, 

respectively. 

Where the cracked plate has a perpendicular axis of 

symmetry to the crack, only the crack opening mode I is 

present and the crack has no sliding mode II (𝐾𝐼𝐼 = 0); in 

such cases, the mode I SIF (𝐾𝐼) can be obtained from Eqs. 

(29)-(32). 

 

2.6 Numerical integration 
 

By the XFEM, the singularity occurs in the integrand of 

related terms, in the stiffness matrix. Those terms consist a 

combination of {1 𝑟⁄ ,1 √𝑟⁄ ,1,√𝑟,r} multiplied by harmonic 

functions, in addition to terms coming from regular shape 

functions. The radial parts are singular and so create 

difficulties for the integration. Here, the crack tip elements 

are divided to triangular sub-domains, in order to have 

continuous integrand functions on every sub-domain. In this 

way, singular point lies on a vertex. Béchet at al. (2005) 

found that convergence achievement by a standard Gauss 

integration is very slow; so clearly, a better quadrature 

scheme is needed. In this order, the real triangular 

interpolation cell is mapped to a reference quadrature cell; 

and hence, the singular functions are transformed into 

regular ones. Based on the study of Béchet at al. (2005), 

this transformation is useful to integrate singular functions, 

in a fast way, with significant improvements in the 

convergence characteristics, and within the prescribed 

accuracy. Béchet at al. (2005) indicate that considering 9 

integration points would be sufficient, for the case of 

XFEM stiffness matrix. More details about the singular 

integration by the transformation scheme can be found in 

references (Béchet at al. 2005, Khoei 2014).  

Fig. 3 shows the Gauss points in different types of elements 

existing in this study. The standard elements (type 1) use 

2×2 Gauss integration. The elements cut by a crack and 

enriched by the Heaviside function (type 2) are divided into  

 

Fig. 3 Gauss points in various element types 

 

 

two quadrilateral sub-domains, and for each one 2×4 Gauss 

points is used. The elements with crack tip enrichments 

(type 3) use more sub-domains and more Gauss points due 

to the singular nature of stress fields in the vicinity of crack 

tip; hence, these elements are divided into six triangular 

sub-domains, and each one is mapped to a rectangular 

domain with 3×3 Gauss points, as depicted in Fig. 4. The 

elements which are not cut by a crack but they are partially 

enriched by crack tip enrichments (type 4) use 5×5 Gauss 

points. Lastly, elements cut by a crack and partially 

enriched by crack tip enrichments (type 5) are divided into 

two quadrilateral sub-domains with 3×6 Gauss points per 

sub-domain (Fig. 3). It should be noted that for calculating 

the J-integral, a 4×4 Gauss integration is performed for 

standard elements existing in the domain of J-integral. For 

all elements, 2 Gauss points through thickness are 

considered. 

The integration of typical function (𝑓) on the domain of 

element is calculated using the following equation 

∫ 𝑓(𝜉, 𝜂, 𝜍)𝑑𝑉
𝑉

= ∑ ∑ ∑ ∑ 𝑓(𝜉𝑖
𝑠 , 𝜂𝑗

𝑠, 𝜍𝑘
𝑠)

𝑁𝐺𝑝𝜉𝑠

𝑖=1

𝑁𝐺𝑝𝜂𝑠

𝑗=1

𝑁𝐺𝑝𝜍𝑠

𝑘=1

𝑁𝑠𝑢𝑏

𝑠=1

𝑊𝑖
𝜉𝑠𝑊𝑗

𝜂𝑠𝑊𝑘
𝜍𝑠𝑑𝑒𝑡𝐽𝑠𝑢𝑏𝑑𝑒𝑡𝐽𝑒𝑙𝑚 

(39) 

where, 𝑁𝑠𝑢𝑏  is the number of sub-domains; 𝑁𝐺𝑝𝜍𝑠 , 

𝑁𝐺𝑝𝜂𝑠 and 𝑁𝐺𝑝𝜉𝑠 are the number of Gauss points, and 

𝑊𝑖
𝜍𝑠 , 𝑊𝑗

𝜂𝑠  and 𝑊𝑘
𝜍𝑠  are the weights of Gauss points, 

corresponding to the natural coordinates of each subdomain 

( 𝜉𝑠, 𝜂𝑠, 𝜍𝑠 ) (Fig. 4); 𝐽𝑠𝑢𝑏  and 𝐽𝑒𝑙𝑚  are the Jacobian 

matrices, corresponding to the subdomain and to the 

element, respectively, expressed as below 

𝐽𝑠𝑢𝑏 =

[
 
 
 
 
 
 
𝜕𝜉𝑒

𝜕𝜉𝑠
𝜕𝜂𝑒

𝜕𝜉𝑠
𝜕𝜍𝑒

𝜕𝜉𝑠

𝜕𝜉𝑒

𝜕𝜂𝑠
𝜕𝜂𝑒

𝜕𝜂𝑠
𝜕𝜍𝑒

𝜕𝜂𝑠

𝜕𝜉𝑒

𝜕𝜍𝑠
𝜕𝜂𝑒

𝜕𝜍𝑠
𝜕𝜍𝑒

𝜕𝜍𝑠]
 
 
 
 
 
 

, (40) 
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𝐽𝑒𝑙𝑚 =

[
 
 
 
 
 
 
𝜕𝑥

𝜕𝜉𝑒
𝜕𝑦

𝜕𝜉𝑒
𝜕𝑧

𝜕𝜉𝑒

𝜕𝑥

𝜕𝜂𝑒
𝜕𝑦

𝜕𝜂𝑒
𝜕𝑧

𝜕𝜂𝑒

𝜕𝑥

𝜕𝜍𝑒
𝜕𝑦

𝜕𝜍𝑒
𝜕𝑧

𝜕𝜍𝑒]
 
 
 
 
 
 

 

where, 𝜉𝑒 , 𝜂𝑒 , 𝜍𝑒 are the natural coordinate of the element 

(Fig. 4). 

In order to avoid the effect of shear locking, all the 

standard elements and sub-domains use only 1 Gauss point 

for integration of those parts of the standard stiffness matrix 

that contain transverse shear strain terms; in this way, the 

selective integration scheme is applied. It is noticeable that 

the aforementioned arrangements for the Gauss points were 

found by performing a large number of XFEM analyses in 

order to achieve more accurate results and a good mesh 

convergence, which are not discussed herein for brevity. 

 

 

3. XFEM modeling of cracked plates 
 

3.1 General 
 

The geometry of a cracked plate is shown in Fig. 5. In 

this figure, 𝑊 and 𝐿 are the width and length of the plate, 

respectively, and 𝑎denotes the crack length. Parameters 

involved in numerical modeling of the cracked plate include: 

plate aspect ratio (𝐿 𝑊⁄ ), crack (size) ratio (𝑎 𝑊⁄ ), plate 

support conditions, and the crack location. 

The considered geometrical properties of the cracked plates 

include: aspect ratios 0.5, 1.0, and 2.0, crack ratios 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, three different boundary 

conditions namely SS, CS, and CC, where SS and CC 

denote simple and clamped supports along all four edges, 

respectively, and CS denotes clamped loaded edges and 

simply supported unloaded edges; furthermore, in some 

limited cases SC boundary conditions are also considered in 

order to better discuss the results.  

 

 

 
Fig. 4 Geometric transformation of a triangular sub-

domain 

 

 

 

Fig. 5 Geometry of a cracked plate 

 

 

The location of the crack center on the plate is characterized 

by two eccentricity parameters 𝑒𝑥 =
𝑥𝑐

𝑊/2
 and 𝑒𝑦 =

𝑦𝑐

𝐿/2
 

where 𝑥𝑐 and 𝑦𝑐 are the distances from the center of a 

crack to the plate centerlines, as depicted in Fig. 5. For a 

central crack, the values of 𝑒𝑥 and 𝑒𝑦 are equal to zero 

and for non-central cracks, the values of |𝑒𝑥| and |𝑒𝑦| 

would be between (but not equal to) zero and one. 

Regarding the symmetry, the considered values for 𝑒𝑦 in 

the present study are 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

and 0.9. The values considered for 𝑒𝑥 would be different 

contingent upon the crack sizes. Consistent with all cases, 

the plate width (𝑊) and thickness (𝑡) are set to 305 cm and 

2.54 cm, respectively. The material considered in this 

research is aluminum alloy with modulus of elasticity 𝐸 = 

70 GPa and Poisson’s ratio 𝜈 = 0.3. 

Non-dimensional buckling stress coefficient (𝑘𝑐𝑟) and 

multiplier (𝜆𝑇 ) employed in this study to evaluate the 

buckling behavior of the cracked plates are defined as 

below 

𝑘𝑐𝑟 =
𝜎𝑇
𝐸

12(1 − 𝜈2)

𝜋2
(
𝑊

𝑡
)
2

 (41) 

where, 𝑘𝑐𝑟 is the buckling coefficient, 𝜎𝑇 is the buckling 

stress in tension, and 𝑡 is the plate thickness. Also 

𝜆𝑇 = |
𝜎𝑇
𝜎𝐸
| (42) 

where, 𝜆𝑇 is the buckling multiplier in tension and 𝜎𝐸 is 

the Euler buckling stress of the un-cracked plate under 

uniaxial compression which can be obtained using the well-

established theoretical and/or numerical methods (Brighenti 

2009). 

For presenting the mode I SIF results, a dimensionless 

stress intensity factor (𝜑) is defined as below 

𝜑 =
𝐾𝐼

𝜎0√
𝜋𝑎
2

 
(43) 

in which 𝜑, 𝐾𝐼, and 𝜎0 are the dimensionless SIF, mode I 

SIF, and applied edge stress, respectively. In addition, as 

defined above,𝑎 is the crack length. A XFEM code was 

developed using the programming software MATLAB 

(MATLAB 2014) for the analysis of the cracked plate 

models. 
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3.2 Mesh convergence study 
 
In order to check the mesh convergence towards the 

buckling coefficient and/or mode I SIF, several simulations 

were performed for cracked plate models with 𝐿 𝑊⁄ =1.0, 

𝑎 𝑊⁄ =0.5, and different uniform mesh sizes. The effect of 

integration radius on the mode I SIF was investigated as 

well. The sensitivity of  𝑘𝑐𝑟 to the number of elements is  

 

 

 

 

 

 

illustrated in Fig. 6 for centrally- and non-centrally-cracked 

plates; however, the details of the SIF sensitivity analyses 

are not given in here. In order to ensure accuracy in the 

results for 𝑘𝑐𝑟 and 𝜑, a mesh containing 5041 (71×71) 

elements was chosen. For calculating the J-integral, the 

selected radius of integration was equal to the three times 

the diameter of the element. 

 

  
(a) (b) 

Fig. 6 Mesh sensitivity analysis: (a) centrally-cracked plates with different boundary conditions and (b) non-centrally-

cracked plates (with simple supports) 

Table 1 Theoretical and numerical buckling coefficients for un-cracked plates 

𝐿 𝑊⁄  
Support 

conditions 

Buckling coefficient (𝑘𝑐𝑟) 
Percentage 

difference     Theoretical 

(Timoshenko and Gere (1961)) 

Numerical  

(This study) 

0.5 

SS 6.25 6.2011 -0.78 

CC - 18.8966 - 

CS - 18.1377 - 

1.0 

SS 4 3.9705 -0.74 

CC 10.07 10.0699 -0.001 

CS 6.74 6.7281 -0.18 

2.0 

SS 4 3.9781 -0.55 

CC 7.88 7.8673 -0.16 

CS 4.85 4.8332 -0.35 

Table 2 Buckling multipliers for plate aspect ratio of 2.0 and different crack sizes (𝐿 𝑊⁄ = 2.0 & 𝑒𝑥 = 𝑒𝑦 = 0) 

Support 

conditions 
𝑎 𝑊⁄  

Buckling multiplier (𝜆𝑇)  

 (Shaw and Haung (1990)) Brighenti (2009) This study 

Difference 

with  

Brighenti (2009) 

(%) 

Simply 

supported 

edges 

0.2 40.2562 40.6830 42.7496 5.08 

0.3 - 17.8093 18.2053 2.22 

0.4 - 9.8232 10.0081 1.88 

0.5 - 6.0133 6.0977 1.40 

Clamped 

edges 

0.2 - 20.8768 21.7463 4.16 

0.3 - 9.1678 9.2912 1.35 

0.4 - 5.0392 5.0893 0.99 

0.5 - 3.1122 3.1262 0.45 
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3.3 Model verification  
 
To verify the validity of the numerical simulation, the 

numerical predictions of this study are compared with some 

reliable references available in the literature. The theoretical 

and numerical buckling coefficients for un-cracked plates 

are compared in Table 1. Also, the buckling multipliers for 

plates with an aspect ratio of 2.0 (𝐿 𝑊⁄ = 2.0), different 

crack sizes, and 𝑒𝑥 = 𝑒𝑦 = 0 are compared in Table 2. 

Additionally, Table 3 summarizes the dimensionless SIF 

results for plates with an aspect ratio of 2.0, different crack 

sizes, and 𝑒𝑥 = 𝑒𝑦 = 0. The tabulated results are indicative 

of accuracy of the numerical predictions of the present 

study. 

 

 

4. Results and discussion 
 

The obtained numerical results give useful information 

about the buckling behavior and SIF of cracked plates under 

tension. In this section, these results are presented in three 

subsections including the centrally-cracked plates, cracked 

plates with eccentricity in 𝑦-direction (𝑒𝑦), and cracked  

 

 

 

plates with eccentricity in 𝑥 and 𝑦-directions (𝑒𝑥 and 𝑒𝑦). 

In all subsections, the effects of different parameters such as 

the plate aspect ratio, crack size ratio, boundary conditions, 

and crack location on the buckling coefficient, mode shapes, 

and dimensionless SIF are investigated. 

 

4.1 Centrally-cracked plates 
 

The effect of crack size on the buckling coefficient of 

centrally-cracked plates under tension is illustrated in Fig. 7. 

Unlike the results reported for many cases of compressed 

cracked plates (Brighenti 2009, Khedmati et al. 2009), in 

plates under tension, increasing of the crack size always 

results in the reduction of the buckling coefficient. It is also 

observed that boundary conditions have a little effect (less 

than 2%) on the buckling coefficients of plates with a small 

crack (crack size ratio of 0.1 and 0.2); however, with 

increasing of the crack size, the buckling coefficient is more 

affected by the boundary conditions; such that, the 

coefficients for SS and CC conditions are obviously 

different in the cases of large cracks (𝑎 𝑊⁄ =0.7, 0.8, and 

0.9).  

As seen in Fig. 7(a) for the aspect ratio of 0.5, the curves  

Table 3 Dimensionless SIF for plate aspect ratio of 2.0 and different crack sizes (𝑒𝑥 = 𝑒𝑦 = 0) 

𝐿 𝑊⁄  𝑎 𝑊⁄  
Dimensionless SIF (𝜑) Difference with 

 Brighenti (2009) 

(%) Isida (1971) Brighenti (2009)  This study 

2.0 

0.2 1.0233 1.0386 1.0041 -3.32 

0.3 1.0581 1.0476 1.0525 0.47 

0.4 1.1116 1.1145 1.1044 -0.91 

0.5 1.1860 1.1921 1.1813 -0.91 

  
(a) (b) 

 
(c) 

Fig. 7 Buckling coefficient vs. crack size ratio for centrally-cracked plates with different boundary  conditions and aspect 

ratios of (a) 0.5; (b) 1.0 and (c) 2.0 
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corresponding to CS and CC support conditions and also 

the curves corresponding to SC and SS support conditions 

are very close, while this observation is vice versa for the  

aspect ratio of 2.0 (Fig. 7(c)) in which the curves of SC and 

CC support conditions and also CS and SS support 

conditions are very close. This is attributed to the fact that 

tensioned cracked plates undergo localized buckling and 

those plate edges that are far from the compressive areas of 

the crack faces (shown in Figs. 8(a)-8(c)) play a negligible 

role in the buckling; therefore, the unloading and loading 

edges in plates with aspect ratios of 0.5 and 2.0, 

respectively, have negligible effects on the buckling 

coefficient. For instance, in the case of 𝑎 𝑊⁄ =0.8, 

clamping the loaded edges (CS) increases the buckling 

coefficient by 52% and 3.5% for respective aspect ratios of 

0.5 and 2.0, while clamping the unloaded edges (SC)  

 

 

 

 

increases the coefficient by 0.5% and 43% for the 

aforementioned respective aspect ratios. 

As shown in Fig. 8(b) for the case of 𝐿 𝑊⁄ =1.0, the 

distances of loading and unloading edges to the crack 

compressive area are roughly the same; hence, for the 

above-mentioned reason, the curves corresponding to SC 

and CS conditions are close to each other (Fig. 7(b)) in this 

case. As an example, in the case of 𝑎 𝑊⁄ =0.8, clamping 

separately the loading edges (CS) and/or unloading edges 

(SC) increases the buckling coefficients by 22% and 16%, 

respectively. 

In Fig. 9, the first buckling mode shapes for tensioned 

cracked plates are displayed for the cases corresponding to 

SS, CS, and CC support conditions. As seen in Fig. 9(a) and 

consistent with the findings reported in Brighenti 2005, 

Brighenti 2005, Brighenti 2009, buckling mode shapes of  

 

  
(a) (b) (c) 

Fig. 8 Compressive areas around the crack edges (dark and light blue) for plates with aspect ratios of (a) 0.5, (b) 1.0 and 

(c) 2.0 

SS 

  

CS 

  

CC 

  
 (a) 𝑎 𝑊⁄ =0.2 (b) 𝑎 𝑊⁄ =0.8 

Fig. 9 First buckling mode shapes for plates with different support conditions and 𝑎 𝑊⁄  ratios (𝐿 𝑊⁄ =1.0) 
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the tensioned plates with small- or medium-length cracks, 

i.e., 𝑎 𝑊 ≤ ⁄ 0.6, are localized around the crack area and 

seem to be slightly or even not affected by the different 

boundary conditions. Based on the results of the present 

study for the case of large cracks, it is found that by 

increasing of the crack size, buckling mode shapes tend to  

 

 

change to a semi-global instability with large and diffuse 

out-of-plane displacements, as illustrated in Fig. 9(b). 

 
4.2 Cracked plates with eccentricity in y-direction 
 

Fig. 10 shows the plots of the buckling coefficient (𝑘𝑐𝑟)  

 
(a) 

 
 

(b) 

 

 
(c) 

Fig. 10 Buckling coefficient vs. 𝑒𝑦 for cracked plates with (a) 𝐿 𝑊⁄ = 0.5, (b) 𝐿 𝑊⁄ = 1.0 and (c) 𝐿 𝑊⁄ = 2.0 
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versus eccentricity in 𝑦-direction (𝑒𝑦 =
𝑦𝑐

𝐿/2
) for different 

plate aspect ratios and boundary conditions. It is observed 

that increasing of the crack size for a given eccentricity 

results in decreasing of the buckling coefficient. From Fig. 

10, in case of the small cracks, the effect of the crack 

eccentricity on the buckling coefficient is not notable, 

except for very high eccentricities where the coefficient 

decreases slightly. This can explained by considering the 

results of Fig. 11 where the 𝜎𝑥𝑥 stress field obtained from 

pre-buckling in-plane analysis of the cracked plate under 

unit tension load per edge length is shown. As seen, greater 

compressive stresses are developed in the case of 𝑒𝑦 =0.9 

(Fig. 11(c)) rather than the cases of 𝑒𝑦 = 0 (Fig. 11(a)) and 

𝑒𝑦 =  0.7 (Fig. 11(b)); in fact, development of such 

considerable compressive stresses in cases of very high 

eccentricities is effective in lowering the buckling 

coefficient. 

For the case of large cracks, variation of the buckling 

coefficient is different depending on the plate aspect ratio 

and the crack eccentricity (Fig. 10). This behavior can be 

explained by referring to the 𝜎𝑥𝑥 stress field shown in Fig. 

12 for different plate aspect ratios and eccentricities. The 

depicted results of Figs. 10 and 12 indicate that increasing 

of the eccentricity results in the development of greater 

compressive stresses which, in turn, lowers the buckling 

coefficient generally. Although, according to Fig. 10 for 

large cracks in 𝐿 𝑊⁄ <=1.0, a minima in the curves can be 

observed; this observation is explainable by focusing on Fig. 

12. As seen, the minima point is just corresponding to the 

condition in which there is the maximum compressive area 

around the crack. Furthermore, comparison of the results 

shown in Figs. 11 and 12 reveals that the stresses developed 

around the large crack tips are significantly greater than 

those of the small cracks. This finding is expected, since the 

mode I SIF (𝐾𝐼) is directly related with the square root of 

crack length (Broek 1974). In addition, as seen in Fig. 12, 

large cracks located in the vicinity of the loading edge (with 

high eccentricity) experience larger tensile stresses at the 

areas near the crack tips, while relatively lower stresses are 

developed in cracks with no (central) or low eccentricities. 

So, it can be concluded that the SIF is a crack eccentricity-

related parameter and the stress field can be determined by  

 

 

employing the concept of SIF (Khoei 2014). Past research  

on SIF has been largely limited to central cracked plates 

(Kaman and Cetisli 2012); however, this research studies 

the SIF in non-central cracked plates. It should be noted that, 

as mentioned earlier, in cracked plates with eccentricity in 

only y-direction, there is no sliding mode II, because of the 

symmetry. 

In order to further investigate the effect of crack 

eccentricity on 𝐾𝐼, the dimensionless SIF (𝜑) is plotted 

against the 𝑦-direction eccentricity (𝑒𝑦 ) for plates with 

different aspect ratios as seen in Fig. 13. It is evident that 

SIF increases by increasing of the crack eccentricity. The 

rate of this increase is higher in cases of larger cracks. This 

finding is consistent with the results of Fig. 12 where 

greater stresses are developed around the tips of the cracks 

with higher eccentricity. In case of small cracks, SIF is not 

remarkably affected by the variation of eccentricity (Fig. 

13). Fig. 13, also, shows that plate aspect ratio can be 

effective on the value of SIF, particularly in plates with 

larger crack sizes. As seen in Figs. 13(a)-13(c), the value of 

𝜑 increases by decreasing of the 𝐿 𝑊⁄  ratio. 

To evaluate the effect of support conditions, the relative 

difference in 𝑘𝑐𝑟 of the clamped plates (CC) and that of 

the corresponding simply supported ones (SS) is illustrated 

in Fig. 14 for different crack length ratios. As shown in Figs. 

14(b) and 14(c), in the cases of plates with aspect ratios 1.0 

and 2.0 having small and medium size cracks (𝑎 𝑊 ≤⁄  0.6), 

the effect of support conditions on 𝑘𝑐𝑟  is up to 8%. 

Nevertheless, for plates with large cracks, the effect of the 

support conditions is significant; for instance, in the plate 

with 𝐿 𝑊 =⁄  2.0 and 𝑎 𝑊 =⁄  0.9, this effect is up to 70% 

for the central crack. Also, it is found that the effect of the 

support conditions is more considerable for plates with 

central cracks rather than those with eccentric ones. 

Table 4 provides the critical mode shapes of the simply-

supported and clamped cracked plates with 𝑎 𝑊⁄ = 0.8 

and different aspect ratios. From the table, the boundary 

conditions may alter the buckling mode shape; for instance, 

the buckling mode shapes of the plates with 𝐿 𝑊 =⁄  0.5 

and 𝑒𝑦 = 0 and 0.9 are affected by the SS and CC support 

conditions. 

   
 

(a) 𝑒𝑦 = 0 (b) 𝑒𝑦 = 0.7 (c) 𝑒𝑦 = 0.9  

Fig. 11 Stress field (𝜎𝑥𝑥) in a cracked plate with aspect ratio of 1, 𝑎 𝑊⁄ = 0.2, and various 𝑒𝑦 eccentricities 
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In order to be able to evaluate 𝑘𝑐𝑟 and 𝜑 in different 

common practical cases characterized by the geometrical 

parameters ranging in the considered intervals, the 

logarithm of the results have been interpolated by using a 

weighted least square fitting with 8th-order polynomial 

expression. The maximum errors in this way for 𝑘𝑐𝑟 and 

𝜑  in the considered ranges are about 1.8% and 4.6%, 

respectively. 

To answer the question: “will a plate under tension 

collapse due to buckling or fracture?”, the following 

equation can be used based on Brighenti (2009) for 

calculating the value of buckling-fracture collapse function  

 

 

(𝐹𝑐𝑜𝑙) 

𝐹𝑐𝑜𝑙 =
𝛽2

𝜋.
𝑎
2

− 𝜆𝑇
2. 𝜑2 (44) 

where, 𝜆𝑇 is the buckling multiplier in tension (Eq. (42)), 

𝜑 is the dimensionless stress intensity (SIF) factor (Eq. 

(43)), 𝑎  is the crack length, and 𝛽  is the fracture 

toughness parameter defined as Brighenti (2009) 

𝛽 =
𝐾𝐼𝐶
𝜎𝐸

 (45) 

 

   

 
(a) 

    
(b) 

   

 
𝑒𝑦 = 0 𝑒𝑦 = 0.7 𝑒𝑦 = 0.9  

(c) 

Fig. 12 Stress field (𝜎𝑥𝑥) in a cracked plate with 𝑎 𝑊⁄ = 0.8 and aspect ratios of (a) 𝐿 𝑊⁄ = 0.5, (b) 𝐿 𝑊⁄ = 1.0 and 

(c) 𝐿 𝑊⁄ = 2.0 
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Table 4 Critical mode shapes of plates with 𝑎 𝑊⁄ =0.8 and various boundary conditions 

𝐿 𝑊⁄  B.C. 𝑒𝑦 = 0 𝑒𝑦 = 0.7 𝑒𝑦 = 0.9 

0.5 

SS 

   

CC 

   

1.0 

SS 

   

CC 

   

2.0 

SS 

   

CC 

   

  
(a) (b) 

 
(c) 

Fig. 13 Dimensionless SIF (𝜑) vs. eccentricity (𝑒𝑦) for cracked plates with (a) 𝐿 𝑊⁄ = 0.5, (b) 𝐿 𝑊⁄ = 1.0 and (c) 

𝐿 𝑊⁄ = 2.0 
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in which, 𝐾𝐼𝐶  is the critical value of the mode I stress 

intensity factor corresponding to the material of the plate 

and 𝜎𝐸  is the Euler buckling stress for uncracked plate 

depending on the aspect ratio (𝐿 𝑊⁄ ), width-to-thickness 

ratio (𝑊 𝑡⁄ ), and material properties 𝐸 and 𝜈 of the plate. 

In Eq. (44), if the value of the buckling-fracture collapse 

function is found to be higher than zero (𝐹𝑐𝑜𝑙 > 0) then the 

buckling collapse will occur, and if its value is found to be 

lower than zero (𝐹𝑐𝑜𝑙 < 0) then the fracture collapse will 

take place (Brighenti 2009). 

 

 

 

 

 

 

 

Through the assessment of the parameter 𝛽 from Eq. 

(45), a region for the present study’s domain (Ω = (0.1 ≤

(
𝑎

𝑊
) ≤ 0.9 ;  0 ≤ 𝑒𝑦 ≤ 0.9 ; 𝑒𝑥 = 0.0)  corresponding to 

the buckling collapse can be specified by using Eq. (45). 

For aluminum alloy, 𝐾𝐼𝐶 = 40.7 𝑀𝑃𝑎√𝑚 (Brighenti 2009) 

and 𝜎𝐸 can be calculated using Table 1. 

As mentioned before, 𝜎𝐸  depends on the width-to-

thickness ratio (𝑊 𝑡⁄ ). Assuming 𝑊 𝑡⁄ =120, the value of 

the buckling-fracture collapse function (𝐹𝑐𝑜𝑙) would be 

negative and this is indicative of the occurrence of the 

fracture collapse in the previously-defined domain. Since  

  
(a) (b) 

 
(c) 

Fig. 14 Increase of 𝑘𝑐𝑟 due to clamping of the edges of simply supported cracked plates with (a) 𝐿 𝑊⁄ = 0.5, (b) 

𝐿 𝑊⁄ = 1.0 and (c) 𝐿 𝑊⁄ = 2.0 

   
(a) 𝐿 𝑊⁄ = 0.5 (b) 𝐿 𝑊⁄ = 1.0 (c) 𝐿 𝑊⁄ = 2.0 

Fig. 15 Plots of 𝑒𝑦 (vertical) vs. 𝑎 𝑊⁄  (horizontal) for simply supported cracked plates with different aspect ratios 

(shaded area = region of buckling collapse; white area = region of fracture collapse) 
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the parameters 𝜆𝑇 and 𝜑 are independent of the material 

properties 𝐾𝐼𝐶 , 𝐸, and 𝜈 as well as the 𝑊 𝑡⁄  ratio, the 

function 𝐹𝑐𝑜𝑙  can be calculated for different values of 

𝑊 𝑡⁄  using the previous results. In Fig. 15, the regions 

corresponding to the buckling collapse are illustrated for 

simply supported aluminum alloy plates with 𝑊 𝑡⁄ =400 

and different aspect ratios. 
As shown in Fig. 15, plates with small cracks are always 

subjected to fracture collapse under ultimate tensile loading, 

without experiencing the buckling. In addition, it is seen 

that the possibility of this failure mode decreases for plates 

with larger cracks and/or smaller eccentricities ( 𝑒𝑦 ). 

Moreover, it is found that by increasing of the aspect ratio, 

the shaded area corresponding to the buckling collapse 

increases. The findings of the current research endeavor 

also indicate that the plate support conditions do not have a 

notable effect on the areas of the buckling-fracture collapse 

regions. The results related to the other boundary conditions 

have not presented here for brevity. 
 
4.3 Cracked plates with eccentricities in x- and y-

directions 
 
In order to investigate the effect of crack location on the 

buckling and fracture failure modes, 1450 plates with bi-

eccentric cracks were modeled. For presenting the results, 

an interpolation function is considered as a 6th-order 

polynomial which was obtained by using a weighted least 

square fitting. The maximum errors in this way for 𝑘𝑐𝑟 and 

𝜑 are about 8.67% and 12.16%, respectively. Figs. 16 and 

17 show the graphical results of the fitted surfaces for 

simply supported cracked plates with 0.1-0.7 crack sizes 

and different aspect ratios. 
 

 
 
As seen in Fig. 16, the fitted surfaces do not intersect. 

This indicates that for a plate with a crack located at a 

specified location, increasing of the crack length generally 

results in decreasing of the buckling load. Also, Fig. 16 

shows that buckling coefficient is more sensitive to the 

crack length rather than the location of the crack. Moreover, 

it is found that near-the-corner located cracks are more 

effective in lowering the buckling capacity than those 

placed at other locations; therefore, considering plates with 

central cracks for representing the cracked plates is not a 

conservative approach to study the stability performance of 

such plates. 
Fig. 17 shows that the mode I SIF of the crack tips 

located near the plate edges is significantly higher than that 

of the crack tips far from the edges. As seen, the 

eccentricity in 𝑦-direction is more effective on mode I SIF 

than the eccentricity in 𝑥 -direction. The results of the 

present study, also, indicate that from the two tips of a 

crack, the one closer to the plate edge has relatively higher 

mode I SIF. In addition, Fig. 17(a)-17(c) shows that for a 

given crack size and an eccentricity, decreasing of the 

aspect ratio results in increasing of the mode I SIF. 
While Figs. 16 and 17 depict the results for small- and 

medium-size cracks, the results corresponding to large-size 

cracks are illustrated in Figs. 18 and 19. From Fig. 18, it is 

evident that by increasing of 𝑒𝑦, consistent with most of the 

cases, the buckling coefficient decreases initially and then 

at higher eccentricities increases slightly. Fig. 19 shows that 

in case of the large cracks, as well, mode I SIF increases 

when the crack tip gets closer to the loaded edge; however, 

this increase is rather significant relative to those of the 

small-and medium-size cracks. 
 
 

    

 

(a) 𝐿 𝑊⁄ = 0.5 (b) 𝐿 𝑊⁄ = 1.0 (c) 𝐿 𝑊⁄ = 2.0  

Fig. 16 Fitted surfaces of 𝑘𝑐𝑟 for simply supported cracked plates with (a) 𝐿 𝑊⁄ = 0.5, (b) 𝐿 𝑊⁄ = 1.0 and (c) 

𝐿 𝑊⁄ = 2.0 

(Surfaces for 
𝑎

𝑊
= 0.1 to 

𝑎

𝑊
= 0.7 are top to bottom respectively.) 
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(a) (b) 

 
(c) 

Fig. 17 Fitted surfaces of 𝜑 for cracked plates; (a) 𝐿 𝑊⁄ = 0.5, (b) 𝐿 𝑊⁄ = 1.0 and (c) 𝐿 𝑊⁄ = 2.0 

(The value of 𝜑 is related to the crack tip that is closer to the edge of plate.) 

(Surfaces for 
𝑎

𝑊
= 0.1 to 

𝑎

𝑊
= 0.7 are top to bottom respectively.) 

  
(a) (b) 

 
(c) 

Fig. 18 Buckling coefficient vs. 𝑒𝑦 for simply supported cracked plates With (a) 𝐿 𝑊⁄ = 0.5, (b) 𝐿 𝑊⁄ = 1.0 and 

(c) 𝐿 𝑊⁄ = 2.0 
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Regarding Figs. 16 and 18, there is not a general 

condition for the un-safest crack location wherein the 

buckling failure occurs; while, that depends on the crack 

length and the plate aspect ratio. On the other hand, as seen 

in Figs. 17 and 19 for the fracture failure, it can be said that 

in most cases, the un-safest condition is when the crack is 

located near the plate edges.       

In cases that the crack is placed non-symmetrically 

inside the plate, the existence of the sliding mode II, in 

addition to opening mode I is expected. However, the 

results of the present study for tensioned cracked plates 

showed that the sliding mode II has no effective 

contribution in mixed mode SIF and consequently in the 

value of the energy release rate (Eq. (32)). For a typical 

example in which sliding mode II has the most contribution 

in the energy release rate, among the cases studied here, the 

ratio of mode I to mode II SIFs (𝐾𝐼 𝐾𝐼𝐼⁄ ) is 8, related to the 

cracked plate with 𝐿 𝑊 =⁄  0.5, 𝑎 𝑊 =⁄  0.3, 𝑒𝑥 = 0.5, 

and 𝑒𝑦 = 0.6; since, in Eq. (32) for calculating energy 

release rate, the SIF is of order of 2, then the contribution of  

𝐾𝐼𝐼 is 1/64 of the contribution of 𝐾𝐼 and it can be ignored. 

Fig. 20 shows the deformation of the mentioned typical 

case. As seen, the opening mode I of crack is significantly 

dominant. Therefore, the effect of crack length and location 

on mode II SIF has not presented in this paper. 

 

 

 

 

 

 

Fig. 20 Deformed cracked plate under tension 

 

 

5. Conclusions 
 

In this paper, the effects of various parameters on the 

buckling stability performance of the cracked plates under 

tensile loading were investigated. The considered 

parameters included the crack length, crack location, and 

plate aspect ratio as well as support conditions. To fulfill the 

objectives of the present study, a sophisticated code was 

developed using MATLAB in the framework of XFEM. 

The cracks were categorized as small, medium, and large. 

Simple and clamped support conditions as well as plate 

aspect ratios of 0.5, 1.0, and 2.0 were considered. From the 

results and findings of this study, the following conclusions 

are drawn: 

  
(a) (b) 

 
(c) 

Fig. 19 Dimensionless SIF (𝜑) vs. eccentricity (𝑒𝑦) for cracked plates with (a) 𝐿 𝑊⁄ = 0.5, (b) 𝐿 𝑊⁄ = 1.0 and (c) 

𝐿 𝑊⁄ = 2.0 

(The value of 𝜑 is related to the crack tip that is closer to the edge of plate.) 
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 The buckling coefficient is more sensitive to the 

crack length rather than the location of the crack. In 

cracked plates under tension, unlike those subjected 

to compression, increasing of the crack size results 

in the reduction of the buckling coefficient. This 

result is consistent for both centrally- and non-

centrally cracked plates. 

 Buckling of the plates under tension with small-and 

medium-size cracks ( 𝑎 𝑊⁄ ≤ 0.6) is localized 

around the crack area and seems to be less or even 

not influenced by the different boundary conditions. 

According to the results of the present study for the 

case of large cracks, by increasing of the crack size, 

buckling mode shape tends to change to a semi-

global instability with large and diffuse out-of-plane 

displacements. 

 The effect of the crack eccentricity on the buckling 

coefficient depends on the size of the crack and in 

some cases on the plate aspect ratio. For small 

cracks, this effect is not notable, except for the 

cases with high eccentricity in which the buckling 

coefficient decreases. For large cracks, there is a 

discrepancy in the effect of eccentricity which 

would be different depending on the plate aspect 

ratio. The performance of plates with medium-size 

cracks lies in between those of the plates with small 

and large cracks. 

 On the basis of the findings of this study, cracks 

located near the corner of a plate are more effective 

in lowering the buckling capacity than those placed 

at other locations. Accordingly, consideration of the 

crack location is quite important in the buckling 

stability assessment of the plates. 

 Plate support conditions have little effect (less than 

8%) on the buckling coefficients of the plates with 

small-and medium-size cracks ( 𝑎 𝑊⁄ ≤ 0.6 ); 

however, by increasing of the crack size, the 

effectiveness of the boundary conditions increases, 

such that for large cracks, this effect might be 

significant (up to 70%). This study shows that the 

effect of boundary conditions is generally more 

considerable in plates with central cracks rather 

than those with eccentric cracks. 

 The SIF evidently increases due to increasing of the 

crack eccentricity for larger crack sizes. In small 

cracks, SIF is almost not affected by the eccentricity. 

Plate aspect ratio may influence the SIF particularly 

in case of the larger cracks where the SIF for 

𝐿 𝑊⁄ = 0.5 was found to be higher than those for 

the aspect ratios of 1.0 and 2.0. 

Finally, plates with small cracks under tensile loading 

are always subjected to fracture rather than the buckling 

failure mode. By increasing of the crack size, particularly 

for the lower crack eccentricities, the possibility of this type 

of collapse (fracture) decreases. For plates with larger 

aspect ratios, the occurrence of buckling is more probable 

relative to the fracture collapse, where the out-of-plane 

boundary conditions do not have a notable effect on the 

failure mode. 
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Nomenclature 
 
a 

E, 𝜈 

𝑒𝑥 =
𝑥𝑐

𝑊/2
, 𝑒𝑦 =

𝑦𝑐

𝐿/2
 

𝐹, 𝐺, 𝑅 
𝐹𝑐𝑜𝑙 
H 

𝐾𝐼 
𝐾𝐼𝐶 
𝑘𝑐𝑟 
L, W, t 
N 

u, v, w 
𝑥𝑐, 𝑦𝑐 
𝜆𝑇 
𝜎𝑇 
𝜎𝐸 

𝜑 
𝛽   

𝛆𝐿, 𝛆𝑁𝐿  

D  

𝐒̂ 
S 
𝐊𝑆, 𝐊𝐺  

𝐁𝑆, 𝐁𝐺 

 
 
Crack length 
Material plate modulus of elasticity and Poisson’s ratio 

Eccentricity ratio in the axis direction x and y 

In-plane, out-of-plane and rotation enrichment functions 

Fracture collapse function 

Heaviside function 

Mode I stress intensity factor 

Critical value of the mode I stress intensity factor  

Buckling coefficient 
Plate length, width and thickness 
Conventional shape functions 

Displacement components in x, y and z directions 

Eccentricity of the crack in the axis direction x and y 
Buckling multiplier in tension 
Buckling stress in tension 
Euler buckling stress in compression for un-cracked plate 
Dimensionless stress intensity factor 
Fracture toughness parameter 
Linear and non-linear strain vectors 

Tensor of material properties 

Initial stress vector 
Stress matrix 
Standard and geometric stiffness matrices 

Standard and geometric strain-displacement matrices  
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