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1. Introduction 
 

Normally, Functionally graded materials (FGMs) are 

heterogeneous materials in which the elastic and thermal 

properties change from one surface to the other, gradually 

and continuously. The material is constructed by smoothly 

changing the volume fraction of its constituent materials. 

FGMs offer great promise in applications where the 

operating conditions are severe, including spacecraft heat 

shields, heat exchanger tubes, plasma facings for fusion 

reactors, engine components, and high-power electrical 

contacts or even magnets. For example, in a conventional 

thermal barrier coating for high-temperature applications, a 

discrete layer of ceramic material is bonded to a metallic 

structure. However, the abrupt transition in material 

properties across the interface between distinct materials 

can cause large interlaminar stresses and lead to plastic 

deformation or cracking (Finot and Suresh 1996). These 

adverse effects can be alleviated by functionally grading the 

material to have a smooth spatial variation of material 

composition. The concept of FGMs was first introduced in 

Japan in 1984. Since then it has gained considerable 

attention (Koizumi 1993). A lot of different applications of 

FGMs can be found in (Zhu and Meng 1995). Mahmoud et  
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al. (2011) investigated free vibration analysis of a non-

uniform column resting on an elastic foundation and 

subjected to follower force. Smith and Herrmann (1972) 

introduced a stability of a cantilevered beam on an elastic 

foundation subjected to a follower force at its free end. He 

found that the critical load for flutter is independent of the 

foundation modulus which characterizes the Winkler-type 

embedding. Sundararajan (1974) presented stability of 

columns on Winkler type elastic foundations subjected to 

stationary forces (conservative or non-conservative). 

Various cases were discussed and a theorem on the 

influence of the foundation on the critical load was derived. 

Hauger and Vetter (1976) discussed the influence of an 

elastic foundation on the stability of a tangentially loaded 

column. Celep (1980) presented the stability analysis of a 

beam on an elastic foundation subjected to a 

nonconservative load. Based on the Lagrange interpolation 

Chan (Quan and Chan, 1989) provided explicit formulations 

to compute the weighting coefficients of the DQ 

discretization of the first and second order derivatives. 

Application of DQM to flexural vibration analysis of a 

geometrically nonlinear beam was introduced by Yusheng 

Feng and Bert (1992). There are many types of grid 

distributions such as; uniform space grid distribution. It was 

introduced by Wang and Bert (1993) as a new approach in 

applying DQ to free vibration analysis of a beam and plates. 

Bert and Malik (1996) indicated an important fact that the 

preferred type of grid points changes with the problem of 

interest; and recommended to use Chebyshev-Gauss-

Lobatto grid distributions for structural mechanics 

computation. Lee and Yang (1994) discussed the influence 
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of a Winkler elastic foundation and the slenderness ratio on 

the non-conservative instability of cantilever non-uniform 

beams subjected to an end concentrated follower force. Du 

et al. (1996) applied the DQM to the buckling analysis of 

columns and plates. The numerical results obtained were 

compared with those from existing literature and achieved 

high accuracy. Also there are many types of implementation 

of boundary conditions such as δ-type a small distance δ 

from the boundary. It was developed in the DQM to apply 

more than one boundary condition at discretized point; 

these results often based on value of δ and may be get ill-

conditioned matrices. The clamped and simply supported 

boundary conditions using generalized DQ were introduced 

by Shu and Du (1997a). This approach directly substitutes 

the boundary conditions into the governing equations, 

abbreviated as SBCGE. It was used to overcome the 

drawbacks of δ-type. Also Shu and Du (1997b) presented an 

implementation of the general boundary conditions in the 

free vibration analysis of rectangular plates which directly 

couples the boundary conditions with the governing 

equations, abbreviated as CBCGE. As shown in the book of 

Shu (2000) the DQ is a global method, which is equivalent 

to the highest-order finite difference scheme. As compared 

to the low order finite difference schemes and finite element 

methods, the DQM can obtain very accurate numerical 

results by using a considerably small number of grid points. 

Consequently, it requires less computational effort and 

virtual storage. In general, the DQM uses a non-uniform 

mesh for numerical discretization. Karami et al. (2003) 

discussed that the differential quadrature element method 

(DQEM) could be employed as an accurate method for 

practical beam applications. The DQEM was applied to a 

non-uniform or discontinuous cross section beam and a 

beam subjected to heavy concentrated masses resting on 

elastic foundation in comparison with the finite element 

method. Ebrahimi et al. (2019) proposed a new gusset plate 

passing through the HSS columns and beams, named as 

through gusset plate to study the force transfer mechanism 

in such gusset plates of SCBFs compared to the case with 

conventional gusset plates. Nguyen et al. (2019) investigate 

the static behavior of a novel RCS beam-column exterior 

joint. The studied joint detail is a through-column type in 

which an H steel profile totally embedded inside RC 

column is directly welded to the steel beam. Wang and Sun 

(2019) investigate on seismic behavior of out-of-code Q690 

circular high-strength concrete-filled thin-walled steel 

tubular (HCFTST) columns made up of high-strength (HS) 

steel tubes (yield strength fy ≥ 690 MPa). Six shear-critical 

square tubed steel reinforced concrete (TSRC) columns 

using the high-strength concrete (fcu,150 = 86.6 MPa) were 

tested under constant axial and lateral cyclic loads (Li et al. 

2019). Song et al. (2019) present a preliminary numerical 

study on stainless steel-concrete composite beam-to-column 

joints with bolted flush endplates. In order to ensure a 

consistent corrosion resistance within the whole structural 

system, all structural steel components were designed with 

austenitic stainless steel, including beams, columns, 

endplates, bolts, reinforcing bars and shear connectors. Lai 

et al. (2019) report additional test data, analytical and 

numerical studies leading to a new design method to predict 

the ultimate resistance of composite columns made of high 

strength steel and high strength concrete. Bambaeechee 

(2019) investigates free vibration of AFG and uniform 

beams with general elastic supports. An efficient and free 

of shear locking finite element model is developed and 

employed to study free vibration of tapered bidirectional 

functionally graded material (BFGM) beams by Nguyen 

and Tran (2018). Investigation on the thermal buckling 

resistance of simply supported FGM beams having 

parabolic-concave thickness variation and temperature 

dependent material properties is presented by Arioui et al. 

(2018). Hadji et al. (2014) study static and free vibration of 

functionally graded beams via a higher order shear 

deformation beam theory. Mirjavadi et al. (2017) 

investigate the thermo-mechanical vibration behavior of 

two dimensional functionally graded (2D-FG) porous 

nanobeam. Shafiei and Setoodeh (2017) study the nonlinear 

free vibration and post-buckling of functionally graded 

carbon nanotube reinforced composite (FG-CNTRC) beams 

resting on a nonlinear elastic foundation. Yaghoobi et al. 

(2014) investigate nonlinear vibration and post-buckling of 

beams made of functionally graded materials (FGMs) 

resting on nonlinear elastic foundation subjected to thermo-

mechanical loading. Marin and Agarwal (2013), proved the 

uniqueness theorem and some continuous dependence 

theorems without recourse to any energy conservation law, 

or to any boundedness assumptions on the thermoelastic 

coefficients. Marin and Florea (2014) considered a porous 

thermoelastic body, including voidage time derivative 

among the independent constitutive variables. For the initial 

boundary value problem of such materials, they analyzed 

the temporal behaviour of the solutions. Marin (2010) 

considered with some basic theorems for microstretch 

thermoelastic materials. He avoided the use of positive 

definiteness assumptions on the thermoelastic coefficients. 

Marin and Nicaise (2016) studied thermoelastic dipolar 

bodies which have a double porosity structure. In contrast 

with previous papers dedicated to classical elastic bodies, in 

our context the double porosity structure of the body is 

influenced by the displacement field, which is consistent 

with real models. In another study (Marin et al. 2016) 

dedicated to some results in the thermodynamic theory of 

porous elastic bodies. Unlike other studies, their study 

included the voidage time derivative among the 

independent constitutive variables. In another study (Marin 

et al. 2017) was dedicated to the Saint-Venant’s problem in 

the context of the theory of porous dipolar bodies. They 

considered a right cylinder consisting of an inhomogeneous 

and anisotropic material. Bacciocchi et al. (2020) focused 

on the long-time behavior of concrete beams reinforced by 

Carbon Fiber Reinforced Polymer (CFRP) strips applied on 

their external surfaces. A simple nonlocal beam model was 

proposed to study buckling response of protein 

microtubules by Civalek and Cigdem (2016). A new size-
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dependent beam model was introduced on the basis of 

hyperbolic shear deformation beam and modified strain 

gradient theory. The governing differential equations and 

corresponding boundary conditions were obtained with the 

aid of minimum total potential energy principle (Akgöz and 

Civalek 2015). Trovalusci et al. (2010) investigated the 

dynamical behavior of composite microcracked solids. 

Erasmo et al. (2016) investigated the dynamic stability of 

cracked beams under conservative and non-conservative 

forces and for various boundary conditions. Tornabene et al. 

(2016) studied the effect of Carbon Nanotube (CNT) 

agglomeration on the free vibrations of laminated 

composite doubly-curved shells and panels reinforced by 

CNTs. The mechanical behavior of the pipe under pure 

tension was investigated by both theoretical and numerical 

analysis, then the contribution of the external pressure to the 

axial problem was examined using an analytical analysis 

(Cornacchia et al. 2019). Fantuzzi and Borgia (2019) 

investigated the limitations of current DNV standards for 

piston design in offshore technologies when compared to 

classical numerical approaches and reference results 

provided by the existing literature. Pingaro et al. (2019) 

used the numerical framework of the virtual element 

method for numerical simulations to reduce the 

computational burden. The computational strategies and the 

discretization adopted allowed them to efficiently solve the 

series (hundreds) of simulations and to rapidly converged to 

the RVE size detection. Sharma et al. (2005a, b) integrated 

an analytical approach with the Chebyshev polynomials 

technique to study the buckling and free vibration of 

isotropic and laminated composite sector plates based on 

the first-order shear deformation theory. Liu and Wang 

(2015) studied Thermal vibration of a single-walled carbon 

nanotube predicted by semiquantum molecular dynamics. 

Zhang and Wang (2018) investigated the nonlinear thermal 

vibrational behavior of single-layered BP (SLBP) via a 

nonlinear orthotropic plate model (OPM) and molecular 

dynamics (MD) simulations. Xu et al. (2016) studied the 

vibration of double-layered graphene sheets (DLGS) using 

A nonlocal Kirchhoff plate model with the van der Waals 

(vdW) interactions. Ahmed Houari et al. (2018) presented a 

closed-form solutions for exact critical buckling loads of 

nonlocal strain gradient functionally graded beams. Chen et 

al. (2017) investigated vibration and stability of initially stressed 

sandwich plates with FGM face sheets. Barka et al. (2016) 

studied thermal post-buckling behavior of imperfect temperature-

dependent FG structures. Bouguenina et al. (2015) studied FG 

plates with variable thickness subjected to thermal buckling. 

Park et al. (2016) used modified couple stress based third-

order shear deformation theory for dynamic analysis of 

sigmoid functionally graded materials (S-FGM) plates. Wu 

and Liu (2016) developed a state space differential 

reproducing kernel (DRK) method in order to study 3D 

analysis of FG circular plates. Arefi (2015) suggested an 

analytical solution of a curved beam with different shapes 

made of functionally graded materials (FGMs). Bennai et al. 

(2015) developed a new refined hyperbolic shear and 

normal deformation beam theory to study the free vibration 

and buckling of functionally graded (FG) sandwich beams 

under various boundary conditions. Bouchafa et al. (2015) 

used refined hyperbolic shear deformation theory (RHSDT) 

for the thermoelastic bending analysis of functionally 

graded sandwich plates. Tahouneh (2016) presented a 3-D 

elasticity solution for free vibration analysis of continuously 

graded carbon nanotube-reinforced (CGCNTR) rectangular 

plates resting on two-parameter elastic foundations. The 

volume fractions of oriented, straight single-walled carbon 

nanotubes (SWCNTs) were assumed to be graded in the 

thickness direction.  Moradi-Dastjerdi and Momeni-

Khabisi (2016) studied Free and forced vibration of plates 

reinforced by wavy carbon nanotube (CNT). The plates 

were resting on Winkler-Pasternak elastic foundation and 

subjected to periodic or impact loading. 

Nowadays, the use of carbon nanotubes in 

polymer/carbon nanotube composites has attracted wide 

attention (Wagner et al. 1997). A high aspect ratio, low 

weight of CNTs and their extraordinary mechanical 

properties (strength and flexibility) provide the ultimate 

reinforcement for the next generation of extremely 

lightweight but highly elastic and very strong advanced 

composite materials. On the other hand, by using of the 

polymer/CNT composites in advanced composite materials, 

we can achieve structures with low weight, high strength 

and high stiffness in many structures of civil, mechanical 

and space engineering. 

Many researchers have reported that mechanical properties 

of polymeric matrices can be drastically increased 

(Montazeri et al. 2010, Yeh et al. 2006) by adding a few 

weight percent (wt%) MWCNTs. Montazeri et al. (2010) 

showed that modified Halpin-Tsai equation with 

exponential Aspect ratio can be used to model the 

experimental result of MWNT composite samples. They 

also demonstrated that reduction in Aspect ratio (L/d) and 

nanotube length cause a decrease in aggregation and Above 

1.5 wt%, nanotubes agglomerate causing a reduction in 

Young’s modulus values. Thus, it is important to determine 

the effect Aspect ratio and arrangement of CNTs on the 

effective properties of carbon nanotube-reinforced 

composite (CNTRC). Yeh et al. (2006) used the Halpin-Tsai 

equation to shows the effect of MWNT shape factor (L/d) 

on the mechanical properties. They showed that the 

mechanical properties of nanocomposite samples with the 

higher shape factor (L/d) values were better than the ones 

with the lower shape factor. The reinforcement effect of 

MWCNTs with different aspect ratio in an epoxy matrix has 

been carried out by Martone et al. (2011). They showed that 

progressive reduction of the tubes effective aspect ratio 

occurs because of the increasing connectedness between 

tubes upon an increase in their concentration. Also they 

investigated on the effect of nanotube curvature on the 

average contacts number between tubes by means of the 

waviness that accounts for the deviation from the straight 

particles assumption. Tornabene et al. (2019) investigated 

free vibration analysis of arches and beams made of 

composite materials via a higher-order mathematical 
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formulation. Tornabene et al. (2017) studied free vibration 

analysis of composite sandwich plates and doubly curved 

shells with variable stiffness. The reinforcing fibers were 

located in the external skins of the sandwich structures 

according to curved paths. Tornabene et al. (2018) studied 

free vibration of laminated nanocomposite plates and shells 

using first-order shear deformation theory and the 

Generalized Differential Quadrature (GDQ) method. Each 

layer of the laminate was modelled as a three-phase 

composite. A survey of several methods under the heading 

of strong formulation finite element method (SFEM) was 

presented by Tornabene et al. (2015). 

The present work aims to investigate the free vibration 

of FG columns with GPLs either uniformly or non-

uniformly dispersed in the metal matrix. The effects of GPL 

reinforcing nanofillers and the porosity distribution are 

studied in detail through a parametric study to find out the 

best GPL and porosity distributions to achieve the highest 

effective column stiffness. 

 

 

2. Problem description 
 

Consider a cantilevered column resting on elastic 

foundation K subjected to a follower force p as shown in 

Fig. 1. The structure has continuous grading of GPLs-

reinforcement through thickness direction. Three different 

GPL dispersion patterns, denoted by A, B, and C, are 

considered for each porosity distribution (Fig. 2). The GPL 

volume content VGPL is assumed to vary along the thickness 

smoothly with its peak values (Sij, i,j=1, 2, 3) being 

determined based on the specific porosity distribution. To 

facilitate a direct and meaningful comparison, the total 

amount of GPLs is kept the same for three different GPL 

distribution patterns. This leads to s1i≠s2i≠s3i (i=1, 2, 3).  

The mechanical properties of a porous structure with 

different types of porosity distributions can be expressed by 

1 0E(z) E (1 e (z))    (1) 

G(z) E(z) / 2(1 (z))    (2) 

1 m(z) (1 e (z))      (3) 

in which, for symmetric porosity distribution 

( ) cos( )zz
h

   (4) 

and for uniform porosity distribution 

( )z   (5) 

where E1, G1, and ρ1 are the maximum values of elasticity 

moduli, shear moduli and mass density. Also, e0 and em are 

the coefficients of porosity and mass density, respectively, 

defined by (Kitipornchai et al. 2017) 

2 2
0

1 1

2.3
0

m

E G
e 1 1

E G

1.121(1 1 e (z))
e

(z)

   

  




 
(6) 

Also based on the closed-cell graphene-reinforcement 

scheme, Poisson’s ratio (z) can be expressed by  

 

Fig. 1 The column resting on an elastic foundation 

subjected to follower force 

 

 

(Kitipornchai et al. 2017) 

2

1(z) 0.221p (0.342p 1.21p 1)       (7) 

In which 𝝊1is the Poisson’s ratio of pure matrix materials 

without pores and 

2.3
0p 1.121(1 1 e (z))     (8) 

Also, λ(z) for uniform porosity distribution can be 

expressed by 

2.3

0 0

1 1 M h 0.121
( )

e e 1.121


    (9) 

In which 
h/2

h/2
M (1 p)dz


   (10) 

According to the distribution patterns depicted in Fig. 2, the 

volume fraction of GPLs can be written as (i=1,2,3) 

 

 

i1

GPL i2

i3

S 1 cos( z / h ,Pattern A

V S 1 cos( z / 2h / 4 , Pattern B

S ,Pattern C


  



    





 
(11) 

The relation between the volume fraction of GPLs and their 

weight fraction WGPL can be expressed by 

h/2
GPL

m
h/2

GPL GPL
GPL GPL

M M

h/2

GPL m
h/2

W
(1 e (z))dz

W W

V (1 e (z))dz





 
 

 
 

  





 
(12) 

In which ρGPL and ρM are mass density of GPL and metal 

matrix, respectively. Based on Halpin-Tsai micromechanical 

model, it is possible to obtain material properties of GPL-

reinforced metal matrix structures 
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1 MGPL
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1 V3
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8 1 V
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8 1 V

   
  

 

   
 

 

 
(13) 

in which Em is Young’s modulus of the metal and 

GPL GPL GPL M
L GPL GPL L GPL

GPL M L

GPL GPL GPL M
W GPL GPL W GPL

GPL M W

(E / E ) 1
2l t , ,

(E / E )

(E / E ) 1
2w t ,

(E / E )


   

 


   

 

 
(14) 

wGPL, lGPL and tGPL denote GPLs’ average width, length, and 

thickness, respectively. Finally, Poisson’s ratio of GPL-

reinforced metal matrix implementing rule of mixture can 

be expressed by 

where VM is the volume fraction of metal matrix (VM= 

1−VGPL). 

 

 

3. Formulation of the problem 
 
Consider a cantilevered column resting on elastic 

foundation K subjected to a follower force p, the column is 

assumed to be graded in the thickness direction, as shown in 

Fig.1. The governing partial differential equation of the 

column resting on an elastic foundation subjected to a 

follower force is given by the following equation of motion 

2 2 2 2

2 2 2 2
( ) . 0,

0

x

w w w
EI p K w A

x x x t

x L


   

   
   

 

 (16) 

Where E is the modulus of elasticity, I is the column inertia, 

p is the follower force, K is the modulus of elastic  

 

 

foundation, v is the lateral displacement of the column, ρ is 

the mass density per unit length of the column and A is the 

cross section of the column. For a non-uniform column 

resting on an elastic foundation, the governing equation can 

be expressed as (Mahmoud et al. 2011) 

24 3 2

4 3 2 2

2

2

2

. 0,

0

fgm x fgm x

fgm x

D I D Iw w
D I p

x x x x x

w
K w A

t

x L



   
   

    


 



 

 
(17) 

For analysis of the natural frequency, Eq. (17) is formulated 

as an eigenvalue problem by assuming the following 

periodic function 

( , ) ( ) i tw x t W x e   (18) 

where W(x) is the mode shape of the transverse motion of 

the beam, therefore 

24 3

4 3 2

2
2

2

2 2

. 0

fgm x fgm x

fgm x

dD I d D Id W d W dW
D I

dx dx dx dx dx

d W
p K W A W

dx
 

  

  

 (19) 

 

 

4. Implementation of boundary conditions 
 

Eq. (19) is a fourth-order ordinary differential equation. 

Thus, it requires four boundary conditions, which are as 

follows: 

For Clamped–Free supports (C-F) with a follower force 

P, where η is the tangency coefficient of a follower force P. 

 

 

 

Fig. 2 Porosity distribution and GPL dispersion patterns 

1 GPL GPL M MV V     (15) 
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2 3

2 3

0 0

(1 ) 0

dW
W at x

dx

d W d W dW
P at x L

dx dx dx


  

    

 
(20) 

 

 

5. Solution procedure 
 

In this stage, the GDQ approach is used to solve the 

governing equations of columns [A brief review of GDQ 

method is given in Appendix]. Quantities have been 

implemented in Eq. (19) by changing variables in the 

following form 

2

0 0

4

2 4 2

0

, , , ,

,

fgm fgm

m m

fgm GPL

m m

D I D Lw x
W X S P p

L L E I E I

D L
K L A

E I






   

  

 
(21) 

Also, according to the GDQ method, the governing Eq. (19) 

should be rewritten in discretized form. Therefore Eq. (19) 

at a sample grid point (xi) can be written as 

(4) (1) (3) (2) (2)

,

1 1 1

(2)

1

2

0,

1,2,...,

N N N

xi ij j xi i j j xi ij j

j j j

N

ij j i i

j

S c W S c W S c W

P c W KW W

i N

  



  

  



  

  (22) 

In Eq. (23)
(4)

,i jc ,
(3)

,i jc and
(2)

,i jc are the weighting coefficients 

of the fourth-, third- and second-order derivatives. Where 

Wi i=1, 2, . . . , N, is the functional value at the grid point xi 

and 
(1)

xiS ,
(2)

xiS are the first- and second-order derivatives of

xS at xi respectively. The boundary conditions Eq. (20) 

should also be rewritten in discretized form. For Clamped-

Free supports (C-F) with a follower force P 

(1)

1 1

1

(2) (3) (1)

1 1 1

0,

(1 ) 0

N

j j

j

N N N

Nj j Nj j Nj j

j j j

W c W

c W c W p c W



  

 

   



  

 (23) 

Applying the GDQ procedure, the whole system of 

differential equations has been discretized and the global 

assembling leads to the linear algebraic equations where the 

natural frequencies for FGM beam are obtained. A Matlab 

program has been used to solve the non-dimensional 

governing differential equation of non-uniform column and 

get the normalized frequencies (Ω) and the corresponding 

mode shapes. In Table 1 convergence and validation study 

of the normalized natural frequency is considered for an 

isotropic column without elastic foundation. As can be seen, 

a fast rate of convergence of the method is evident for 

different boundary conditions and it is found that only 17 

DQ grid in the thickness direction can yield accurate results.  

Table 1 Convergence behavior and accuracy of the first two 

normalized frequencies of non-uniform column with 

P=K=0 

Natural Frequency Present  Mahmoud et al. (2011) 

Ω1   

α=-0.5 3.3274 3.327 

α=0 3.5159 3.516 

α=0.5 3.6732 3.673 

Ω2   

α=-0.5 19.5039 19.503 

α=0 22.0344 22.034 

α=0.5 24.0793 24.079 

 

 

Also, the comparison shows that the present results agree 

very well with similar ones obtained by Mahmoud et al. 

(2011). 

 

 

6. Benchmark results 
 

It is assumed that the thickness of the substrate is an 

arbitrary continuous and smooth function of z, that is 

1, ( )
fgm

x

m

D
S x

E
      (24) 

where Sx is the non-dimensional bending stiffness. 

Fig. 3 shows the effect of GPL weight fractions on the 

first and second non-dimensional frequencies. As observed, 

the critical load (Pcr) of the FG porous column decreases 

with increasing GPL weight fraction. The effect of elastic 

foundation on the first and second natural frequency of a 

non-uniform FG porous column for different amount of 

follower load (P) is shown in Fig. 4. It can be seen that the 

first and second natural frequency of structure increases 

with increasing the amount of elastic coefficient. It should 

be noted that the amount of elastic coefficient does not have 

any effect on the critical load (Pcr) of structure. 

Influences of porosity coefficient and non-dimensional 

bending stiffness S(x) on vibration frequency of GPL 

reinforced non-uniform column are shown in Figs. 5 and 6. 

It is clear that a porous non-uniform column has lower 

natural frequencies than a perfect column (e0=0). In other 

words, increasing porosity coefficient results in smaller 

natural frequencies due to the reduction in the bending 

rigidity of the nanocomposite structure. Therefore, for 

better understanding of mechanical behavior of 

nanocomposite columns, it is crucial to consider porosities 

inside the material structure. Results indicate that the 

natural frequency increases with increasing non-

dimensional bending stiffness S(x). 

The combined effects of porosity distribution and GPL 

distribution pattern on the fundamental frequency are 

investigated in Fig. 7 in which the fundamental natural 

frequency at various GPL weight fractions is presented. 

Symmetric GPL pattern A is proved to be the best 

dispersion method, followed by the uniform pattern C 

which is slightly better than the asymmetric pattern B.  
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Fig. 3 First and second frequency of Clamped-Free GPLs-reinforcement column (μ=0, e0=0.2, K=0) 

 

Fig. 4 First and second frequency of Clamped-Free GPLs-reinforcement column with various P and elastic coefficient (μ=0, 

e0=0.2, wt. 0.1%) 

 

Fig. 5 First frequency of Clamped-Free GPLs-reinforcement column with various μ and porosity coefficient (wt. 0.1%, 

K=0) 
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Results indicate that columns with non-uniform symmetric 

porosity distribution and symmetric GPL pattern A have the 

largest fundamental frequencies, i.e., the highest effective 

stiffness under the same GPL weight fraction, suggesting 

that a nanocomposite column in which both internal pores 

and nanofillers are symmetrically distributed can offer the 

best structural performance. 

 

 

7. Conclusions 
 

The present work is concerned with free vibration 

analysis of non-uniform FG porous column resting on an 

elastic foundation and subjected to follower force where the 

internal pores and graphene platelets (GPLs) are distributed 

in the matrix uniformly or non-uniformly according to three 

differen t  pa t terns .  The elas t ic  modulus  of  the  

 

 

 

 

nanocomposite is obtained by using Halpin-Tsai 

micromechanics model. The differential quadrature method 

as an efficient and robust numerical approach is used to 

discretize the governing equations and to implement the 

boundary F-C boundary condition. It can be concluded that 

the non-uniformity parameters, elastic and porosity 

coefficients have a significant effect on the dynamic 

response of non-uniform nanocomposite columns. From 

this study some conclusions can be made as following: 

 It is observed that the maximum vibration 

frequency obtained in the case of symmetric 

porosity and GPL distribution, while the minimum 

vibration frequency is obtained using uniform 

porosity distribution. 

 Based on the results the frequency parameter is 

sensitive to the value of coefficient of column 

porosity significantly. The results imply that the 

 
Fig. 6 Second frequency of Clamped-Free GPLs-reinforcement column with various μ and porosity coefficient (wt. 0.1%, 

K=0) 

 

Fig. 7 The effect of GPL on the fundamental frequency of nanocomposite F-C columns (K=0, e0=0.2). 
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frequency parameter decreases as the coefficient of 

column porosity increases. 

 It is observed that higher values of Winkler 

foundation constant leads to increase in bending 

rigidity and natural frequency of the column. 

 Results indicate that the critical load (Pcr) of the 

FG porous column decreases with increasing GPL 

weight fractions. 

Results show that for better understanding of 

mechanical behavior of nanocomposite columns, it is 

crucial to consider porosities inside the material structure. 
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Appendix 

In Generalized Differential Quadrature Method 

(GDQM), the nth order partial derivative of a continuous 

function ( , )f x z with respect to x at a given point xi can be 

approximated as a linear summation of weighted function 

values at all the discrete points in the domain of x, that is  

 
 

,
( 1, 2,..., , 1, 2,..., 1),

1

i

ik

n Nf x z nc f i N n Nx ziknx k


   

 

  (1) 

Where N is the number of sampling points and nc
ij

is 

the xi dependent weight coefficient. To determine the 

weighting coefficients nc
ij

, the Lagrange interpolation 

basic functions are used as the test functions, and explicit 

formulas for computing these weighting coefficients can be 

obtained as (Bert and Malik 1996) 

(1) ( )(1)
, , 1,2,..., ,

(1)( ) ( )

M xic i j N i jij
x x M xi j j

  


 (2) 

where 

(1) ( ) ( )

1,

N

M x x xi i j

j i j

 

 

  
(3) 

and for higher order derivatives, one can use the following 

relations iteratively 

( 1)
( ) ( 1) 1( ), , 1, 2,..., ,

( )

n
cijn n

c n c c i j Nij ii ij x xi j




  


 

, 2,3,..., 1i j n N    

(4) 

 

( ) ( )
1,2,..., , 1,2,..., 1

1,

N
n n

c c i N n Nii ij
j i j

    

 

  (5) 

A simple and natural choice of the grid distribution is the 

uniform grid-spacing rule. However, it was found that 

nonuniform grid-spacing yields result with better accuracy. 

Hence, in this work, the Chebyshev-Gauss-Lobatto 

quadrature points are used 

1 1
(1 cos( )) 1,2,...,

2 1

i
x i Ni

N



  


 (6) 
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