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1. Introduction 
 

Since the leader research by Bendsøe and Kikuchi 

(1988), topology optimization has made noteworthy 

progress as a creative numerical and design method, 

drawing an enormous amount of attention from scientific 

and engineering communities (Xu et al. 2012, Rozvany et 

al. 2002, Lee and Shin 2016, Vatanabe et al. 2016, 

Roodsarabi et al. 2016, Bagherinejad and Haghollahi 2018). 

One of the interesting issues which based on main ideas of 

standard topology optimization field is multi-material 

topology optimization. With the same goal of single 

material consideration with respect to achieving both higher 

structural stiffness and material cost savings, multi-material 

application gives a significant opportunity to add stiffer 

materials with the same amount of volume constraint. 
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Multi-material topology optimization also can be 

applied to optimize cellular structures like functionally 

graded concrete (FGC) (Herrmann and Sobek 2017). In the 

concept of FGC material density and therewith material 

stiffness is designed to fulfil the needs of the local stress 

state in the interior of a concrete component, saving up to 

60% of dead weight in comparison to a homogeneous 

concrete beam. The authors are currently applying the 

multi-material topology optimization approach to FGC by 

allowing 5 to 7 predefined concrete mixes in the 

optimization. The hardened concrete properties of the mixes 

available during the optimization were previously 

experimentally determined. Therefore, the optimization 

results will always be physically feasible and do not need to 

be classified in material groups anymore, as it has been 

done before with a typical single material topology 

optimization approach (Bendsøe 1997). Sigmund and 

Torquato (1997) presented the three-phase topology 

optimization method for the design of materials with 

extreme thermal expansion. A method for the multi-material 

structural topology optimization with a generalized Cahn-

Hilliard model is presented by Zhou and Wang (2007). Lieu 

and Lee (2017) proposed a novel multi-resolution scheme to 

perform the multi-material topology optimization in the 

framework of isogeometric analysis. Doan and Lee (2017) 

treated a removal of spurious buckling modes which occur 

in optimal topology designs for multiple steel materials. 

Nguyen et al. (2018) proposed topology optimization 

computation of multi-materials CFRP for retrofitting the 
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concrete beam column joint with various cases of crack 

patterns by using multiple materials. 

To discover the multi-material design distribution for plate-

like structures, Goo et al. (2016) presented topology 

optimization for thin plate structures with bending stress 

constraints. A novel resizing algorithm of topology 

optimization for Mindlin-Reissner plate structures is studied 

by Belblidiaa et al. (2001). El-Sabbagh et al. (2008) 

investigated optimal topologies of plates with various 

periodic configurations by using Mindlin-Reissner plate 

theory. A novel deformation mechanism-based material 

model for topology optimization of laminated plates and 

shells considering large displacements is presented by Luo 

and Tong (2017). Banh and Lee (2019) presented multi-

material topology optimization for Kirchhoff-Love thin 

plates with multi-directional variable thickness. Sun et al. 

(2019) proposed a new topology optimization approach for 

eigenfrequencies of uniform thickness plate via moving 

morphable components. As can be known, the real thick or 

thin plate structures may be defined in thickness 

dependence structures as well as widely used in engineering 

structures and machines. Moreover, the thick plate as a kind 

of plate models has a wider range of applicability, 

especially for mega structures, than the thin plate. 

In this study, the optimal topological thick plate with 

variable thickness based on the Mindlin-Reissner plate 

theory (Reddy 2006, Zienkiewicz and Taylor 2005, Ferreira 

2009) is proposed by using multi-material topology 

optimization approach. To eliminate shear locking 

phenomenon in Mindlin-Reissner plate theory, when plates 

are modeled by shear deformable elements, the mixed 

interpolation of tensorial components (MITC4) scheme 

(Bathe and Dvorkin 1985) is used. In addition, Winkler 

foundation parameter (Kobayashi and Sonoda 1989) is 

utilized to investigate the influence of variable thickness in 

multi-material optimal topological results. 

The presented approach can be a useful design tool for 

engineers and designers in order to evaluate the mechanical 

and numerical interaction of variable thickness thick plates 

on Winkler foundations, in an attempt to achieve higher 

stiffness and provide lightweight as expected, within 

computational multi-material topology optimization. 

Moreover, by using multiple materials in a prescribed 

structure may take the best structural performance and 

lightweight within a mid-surface of variable thickness thick 

plate and explain how to provide stress-path reinforcement 

against damages and nonlinear behaviors of structures (Do 

and Filippou 2017, Crusells-Girona et al. 2017, Herrmann 

and Sobek 2017) and manufacture of mid-surface of 

variable thickness thick plate structures. 

The rest of this study is organized as follows. The body 

of this paper is started in Section 2 with the analytical 

mathematical formulation of variable thickness thick plate 

relying on Winkler foundation. The approximate 

formulations by using finite element analysis and the 

formulation of MITC4 scheme are described in detail in 

Section 3. In Section 4, the model of multi-material 

topology problem including stiffness formulation, 

sensitivity analysis of compliance for structures are derived. 

As numerical examples, the optimal topological variable 

thickness thick plates as well as the influence of the Winkler 

elastic foundation on results are discussed in Section 5. 

Finally, conclusions are drawn in Section 6. 

 

 

2. Formulations of elasticity foundations of the 
variable thickness Mindlin-Reissner plate on Winkler 
foundation 

 

According to Mindlin-Reissner plate theory (first order 

shear deformation plate theory), two-dimensional mid-

surface 
2 , thickness ( , )h x y  and transverse 

coordinate z are given. The deformation at any arbitrary 

point ( , , )x y z  is defined by the three-dimensional 

displacement vector defined by 

0

( , , ) ( , ),

( , , ) ( , ),

( , , ) ( , )

x

y

u x y z z x y

v x y z z x y

w x y z w x y











 (1) 

where ,u v  are in-plane components of the displacement 

field in x  and y  Cartesian coordinate axes. w  is the 

transverse ( z ) component of the displacement field and 

0w  is the midplane deflection. x  and y  are the 

section rotation about y  and x  axes, respectively. They 

are shown in Fig. 1. 

Strain fields are obtained using kinematic relations as 

follows. 

1 2,z      (2) 

where 

   
T T

,xx yy xy xz yz       (3a) 

 
T

1 , , , ,x x y y x y y x       (3b) 

 
T

2 0, 0,x x y yw w      (3c) 

 

 

 

Fig. 1 Deformed plate cross section view 
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Fig. 2 Example of a multi-directional variable thickness 

plate 

 

 

Based on a stress-strain law for the case when 

0zz   for a homogeneous and isotropic plate with 

linear elastic material properties, the stresses can be 

determined as follows 

   1
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b

s
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 
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 (4) 

where    
T T

,xx yy xy xz yz         

and 
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 (6) 

where   is the correction factor account for a parabolic 

variation of transverse shear stresses through a thickness of 

a given plate, it is chosen to be 5/6 in this study. 

Constitutive relations for stress resultants are related to 

strains by the following relationships 

/2 /2

/2 /2
d , d

h h

z
h h

M z z S z    
 

    (7) 

where { , } { , }x y   . 

It is assumed to be multi-directional variable thickness 

as follows 

 0( , ) ,h h x y h x y   (8) 

where 0h  is constant and ( , )x y   is not less than 

1 as shown in Fig. 2. Therefore, the internal force resultants 

are obtained by integrals over the plate thickness in Eqs. 

(4), (7) and (8), as follows. 
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Fig. 3 Plate model embedded in elastic foundation 

presented by Winkler model 

 

 

where 
3 3

0 /12b b

ij ijD h Q  and 
0

s s

ij ijD h Q . 

The virtual strain energy, i.e., the virtual work done by 

the applied transverse distributed load and the foundation 

reaction for a typical finite element 
e  are denoted by 

,U V   and sW , respectively, and given in detail 

below. 
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where 0q  is the distributed transverse load and Wk  is the 

Winkler modulus of subgrade reaction as shown in Fig. 3. 

Now, the weak form of variable thickness Mindlin-

Reissner plate on Winkler foundation problem is derived 

from the Hamilton's principle as 

0 sU V W      (11) 

Substitution of the expressions obtained earlier for 

,U V   and sW , results in 

   
T

1 2 1 2

0 0 0

[ ] [0]
[0] [ ] d d

( )

0

e

b

s

e

W

x y

k w q w

 




  
   
 
   




D

ε ε ε ε
D

 (12) 

 

 

3. Formulations of mixed interpolation of tensorial 
components (MITC4) scheme for variable thickness 
Mindlin-Reissner plates 

 

3.1 Finite element analysis of variable thickness 
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Mindlin-Reissner plates 
 

The generalized deflection and rotation of the plates 

using finite element method (FEM) can be approximated as 

follows. 

   
4

T T

0
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1

h
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
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

u

q

 (13) 

where iN  is the bilinear quadrilateral shape function 

Substituting Eq. (13) into Eqs. (3) and (1), ones obtained 
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where 

 

1 2 3 4

T
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,

{ , , },

k k k k
k
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Substituting Eq. (14) into Eq. (10), we have 
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Finally, the finite element model of static bending 

problems can be, respectively, expressed in the form of the 

following linear algebraic equations 

Kq F  (17) 

where the stiffness matrix and applied load vector 

bs W K K K  and F can be expressed by element 

matrix components as follow. 

{ , , }

d d
e

e T

b s f

x y  






 K B D B  (18a) 

T

0 d d
e

e fq x y


 F B  (18b) 

where 
4

11 /f b
Wk D lD  with Wk  is the 

dimensionless Winkler parameter. 

 
3.2 Assumed MITC4 shear strain field 
 

To eliminate shear locking phenomenon in Mindlin-

Reissner plate theory, the shear energy is defined in terms of 

the assumed covariant transverse shear strain field of the 

MITC4 (Bathe and Dvorkin 1985, Thompson and 

Thangavelu 2002). In other words, the membrane-bending 

part is approximated as a standard analysis, but the 

approximation of the shear strains part has to be re-defined 

by the linear interpolation between mid-points of the 

element edges, namely that assume the transversal shear 

interpolation in local convective coordinates to be linear in 

  direction for  , and linear in   direction for   

as shown in Fig. 4. 

(1 ) (1 )1

(1 ) (1 )2

C A

B D
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
  


    

    

      
    

      
 (19) 

where the strain components at points A, B, C and D, can be 

directly evaluated from the displacement interpolations in 

Eq. (13) to obtain 

   
 

, ,/ 2 / 2

/ 2

a b a b

x x y y

a b

x y

w w
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 
 (20) 

where
}( , , , ) {( , ,2,1),( , ,3,4),( , ,4,1),( , ,3,2)a b C A B D     

 

By using MITC4 technique, the approximation of the 

modified shear strains components may be expressed as 
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in which 

( , , ) {(1, , ),(2, , ),(3, , ),(4, , )}i C B C D A D A B  

, ( , ) / ( , )x y    J is Jacobian transformation 

matrix of the mapping 
2:[ 1,1] e x , i.e., where   

and   stands for the gradient operators with respect to 

the    and x y  variables, respectively. 

Finally, the element stiffness matrix in Eq. (18(a)) can 

be rewritten as follows 

{ , , }

d d
e

e T

b m f

x y  






 K B D B  (23) 

where 
T 1 2 3 4   m

          B J  and 

m sD D  are the modified derivative matrix and material 

property matrix of shear part, respectively. 

 

 

 
(a) A general element in the x y plane 

 
(b) A special element in the x y  plane 

Fig. 4 Geometry of quadrilateral plate element MITC4 

4. Multi-material topology optimization model 

 
According to the modified SIMP approach for multiple 

material (Tavakoli and Mohseni 2014), the relationship 

between Young modulus and multi-phase material density 

variable is expressed by  

1

1

( )
n

p

i i

i

E E 




  (24) 

where p  is the penalization parameter. iE  and i   

denote for elastic Young’s modulus and the material phase 

corresponding to phase i -th, respectively. n  is number of 

non-void materials.  

In this study, the alternating active phase algorithm 

proposed by Tavakoli and Mohseni (2014) is applied. In this 

algorithm, only two phases denoted as ‘ ’ and ‘ ’ are 

active at a time in each subproblem and the other phases are 

fixed. Therefore, in each subproblem of each computational 

step, the material properties for corresponding active phases 

needs to be used accordingly. Due to 
1

1
1

n

jj





  , the 

evident formulation to intimate relationship between two 

active phases ‘ ’ and ‘ ’ at each location may written as 

follow. 

1

1, { , }

1
n

i

i i

 
 

  


 

     (25) 

 

4.1 Optimization problem formulation 
 

Analogous to the main ideal of standard topology 

optimization (TO) (Bendsøe and Kikuchi 1988), Multi-

material topology optimization (MTO) aims to seek the 

optimum materials distribution to attain the maximum 

structural stiffness for multiple materials problem. In other 

words, MTO becomes a minimally total strain energy 

problem (objective function) of the given structure with a 

prescribed material volume under certain constraints. The 

general mathematical formulation of problem is written as 

follow.  

minimize : ( , )

subject to : ( )

d

0 1

T

i

i i

i i

O

V






 







 

  



U U KU

K ρ U F  
(26) 

where C  is compliance or objective function and i  is 

a very small lower bound non-zero value which to avoid 

singularities in computation. i  and iV  are the density 

vector and volume fraction for phase material i-th with 

1: ; ,i n U F  and K  are global load, displacement 

vector and global stiffness matrix, respectively. 
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Fig. 5 Multi-material topology optimization design domain 

with voids and solids 

 

 

4.2 Sensitivity formulation of mean compliance 
 

The element stiffness matrix can be expressed through 

the use of Eqs. (23) and (24) as follows. 
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0
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d d
e
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e p T

t t
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where 0

k

tD  with  , ,k b s f  is the material 

property matrix for an element with unit density 

corresponding to t-th phase. Finally, the sensitivity of 

objective function , /C C
      and the material 

volume , /V V
     in terms of multiple phase 

densities can be determined as follows. 

T

, , ,,e e

e eC V V
      U K U  (28) 

where the derivative component of element stiffness matrix 

component with respect to phase densities ' '  can be 

calculated as follows. 
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(29) 

In order to safeguard of presence of result to topology 

optimization problem and to avoid the establishment of 

checkerboard patterns, a filtering technique on the resulting 

design is suggested (Bendsøe and Kikuchi 1988). The 

filtered sensitivity of compliance , /f fC C
     

and the multi-material volume , /f fV V
    with 

respect to density of phase ' '  of element e -th can be 

displayed such as 

,

, ,,

i i e

ei ei
f fI I

ei ei

i i

H C H V

C V
H H



 

  

 

 

 

 
 
 

 
 (30) 

 

Fig. 6 The computed dimensionless central deflection of 

square thick plate in case central concentrated load, CCCC 

and SSSS boundaries 

 

 

where 
min dist( ,{ | dist( , ) })ei minH r e f N e f r     is a 

convolution operator with minr  which is filter radius, 

dist( , )e f  is distance between the center of element e  and 

𝑓. 

 

 

5. Numerical examples and discussion 
 

5.1 The benchmark solutions relying on thickness of 
Mindlin-Reissner plate theory 

 

In other to verify the accuracy of models, the computed 

dimensionless central deflection of a square plate applied by 

central concentrated load is calculated under two boundary 

condition simply supported (SSSS) and clamped (CCCC) 

boundary conditions at four edge sides of the given thick 

plate. Through the change of the thickness, the present plate 

models are compared with the benchmark solutions is 

presented by Zienkiewicz and Taylor (2005) for thin square 

plate with the dimensionless central deflection for central 

concentrated load P, 
2

11 0/b

centralw D w q l . 

As shown in Fig. 6, by using MITC4 scheme, when the 

thickness of the square plate becomes smaller, the value of 

dimensionless central deflection converges gradually on 

benchmark solutions for thin plate, but it does not match 

exactly original version by using the bilinear four-nodal 

rectangular (Q4) element thanks to shear locking problem. 

To show more clearly the influence of shear locking 

problem in MTO, the optimal topological results of thin 

plate by Mindlin-Reissner plate theory is compared with the 

classical plate theory (CPT), as shown in Figs. 7 and 8. 

Moreover, the sketched optimal topology plates by using  
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MITC4 into isometric view (ISO view) are also 

presented. For the purpose, the plate is considered as a thin 

plate with the non-dimensional thickness 0.01 which is used 

uniformly. For convenience of obtaining optimal 

topological square plates, the total volume fraction is fixed 

to be 50% with plate dimension 1l  , Poisson's ratio 0.3 is 

used, Young's modulus and volume fraction parameter for 

each material are presented in Table 1, with Young's 

modulus and volume fraction of void material are 
410vE   and 1v kk v

V V


  , respectively. 

As can be seen in Figs. 7 and 8, optimal topologies of 

Mindlin-Reissner plate theory by MITC4 scheme tend to be 

analogous to optimal topologies by CPT (Banh and Lee 

2019) for both two kinds of boundary conditions. This once 

again demonstrates the use of MITC4 contributes to 

creating more comprehensive accuracy for Mindlin-

Reissner plate theory when thin plate is considered, even in 

multi-material topology optimization problem. Moreover, 

the converged compliance in three material cases of both 

boundary conditions is shown in Fig. 9. The converged 

compliances in CCCC are always smaller than those of the 

SSSS. Then it leads to produce the optimal topologies of 

this boundary case which is stiffer mid-surface than 

remaining boundary condition. 

 

5.2 The influence of variable thickness on optimal 
topologies of thick plate 

 

In this Section, thick square plates with the variable 

thickness are considered through three cases of uniform 

thickness, linear variable thickness and multi-directional 

variable thickness as shown in Fig. 10. Mathematical 

formulations of the continuous variable thickness cases are 

written as follow to evaluate optimal topologies of a 

targeted internal mid-surface of given thick plates. 

Case 1: 0.3h   (30a) 

Case 2:  0.2 1h x   (30b) 

Case 3:     2 2
0.3 1 0.5 0.5h x y      (30c) 

Here, total volume of thick plates of the above cases is 

given to be all the same magnitudes with previous example, 

50%. Note that three thickness functions are assumed on  

 

 

 

Eq. (30) must ensure the unify the total volume of plate 

0 0.3V  .  

Final optimal designs of three cases of mid-surface 

considering CCCC and SSSS is shown in Fig. 11. As can be 

seen, one of the most recognizable points in the results, 

regardless of uniform or non-uniform thickness and 

boundary conditions, is that the stiffest materials are always 

assigned near at the concentrated load in multi-material 

cases, followed by the effect of boundary condition 

positions. This shows the distribution of the current method 

tends to focus on strong stress concentration regions.  

As the results, the symmetry of material density 

distribution over x- and both directions of case 2 and 3, 

respectively, is displayed quite clearly. Moreover, the stiff 

density distribution of both non-uniform thickness cases 

tends to allocate in places with thinner thicknesses. This 

contributes to demonstrate the influence of the variable 

thickness on material density distribution into optimal 

topological results. Furthermore, the compliance by using 

three materials is smaller than that by using one and two 

materials. It appeals that multi-material may produce stiffer 

structure even in variable thickness cases through 

appropriate proportion of material quantities. 

The converged curves of objective function in three 

material cases of three different thickness cases are shown 

in Fig. 12. 

 

5.3 The influence of Winkler parameter on optimal 
topologies of variable thickness thick plate 

 

This example presents the influence of topology 

optimization results depending on the variable thickness 

thick square plate, when embedded in the Winkler 

foundation. The optimal topological thick plates presented 

in Figs. 13-15 show the variation of number of materials 

with respect to different values of dimensionless Winkler 

stiffness. 

As can be seen, higher value of dimensionless Winkler 

parameter, the objective functions are lower. And the stiff 

material tends to focus in the concentrated load position 

when the Winkler parameter tends to be higher. In addition, 

higher dimensionless Winkler parameters produce more 

sensitive distribution of material densities for optimal 

topological thick plates. According to basic physical theory, 

when the higher value of Winkler parameter is, the stiffer of 

the foundation is. When Winkler parameter comes up to a  

Table 1 Material properties of each material 

Material properties 
Number of materials 

One (red) Two (red, blue) Three (red, blue and green) 

Elastic modulus 

 
0 1rE   

 

0 01, 2r bE E   

 

0 0 01, 2, 4r b gE E E    

Volume 

 

50%rV   

 

20%, 30%r bV V   10%, 15%, 25%r b gV V V    
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large number, the foundation behaves inelastic, in other 

words, it acts as a stiff foundation. Therefore, in the case of 

applying a concentrated load at the center of thick plates 

with the high Winkler parameter such as 44 and 54, some 

optimal topological results do not tend to depend on  

 

 

boundary conditions and the material densities only tend to 

be mainly distributed near the location of the concentrated 

load. Furthermore, in case of SSSS boundary condition with 

Winkler parameter value of 54, optimal topological results 

of both case 1 and 3 are similar in terms of optimal 

topologies to converged value of objective function. 

   

(a) CPT, C=232623 (b) CPT, C=214156 (c) CPT, C=207713 

   

(d) Q4, C=127230 (e) Q4, C=97535 (f) Q4, C=95356 

   

(g) MITC4, C=227963 (h) MITC4, C=200200 (i) MITC4, C=192606 

   

(j) ISO view of MITC4 (k) ISO view of MITC4 (l) ISO view of MITC4 

Fig. 7 Optimal topology configuration of a square thick plate for central concentrated load with the simply supported 

boundary condition (SSSS) 

136



 

Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness… 

 

 

 

 

The influence of various Winkler parameters with 

respect to different boundary conditions as well as different 

number of materials are depicted clearly in Fig. 16. As can 

be seen, the converged objective functions in all cases are 

descending along the ascending of Winkler parameters.  

 

 

 

Besides, it once again demonstrates that by using more 

stiffer material with the same magnitudes of volume 

fraction, the multi-material topology optimization may 

produce stiffer structure, even when affected by variable 

thickness and Winkler foundation parameter. 

   

(a) CPT, C=84627 (b) CPT, C=69748 (c) CPT, C=51677 

   

(d) Q4, C=42902 (e) Q4, C=32823 (f) Q4, C=23952 

   

(g) MITC4, C=82571 (h) MITC4, C=68185 (i) MITC4, C=46387 

 

 

 

  

(j) ISO view of MITC4 (k) ISO view of MITC4 (l) ISO view of MITC4 

Fig. 8 Optimal topology configuration of a square thick plate for central concentrated load with the clamped boundary 

condition (CCCC) 
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6. Conclusions 
 

In this study, computational multi-material topology 

optimization for  searching optimal mid -surface 

configuration of variable thickness thick plate is proposed. 

Target structures based on Mindlin-Reissner plate theory 

relying on Winkler elastic foundation are contributed to the 

present topology optimization method. The mathematical 

formulations of compliance sensitivities of variable 

thickness as well as multi-material densities of plates by 

combining Mindlin-Reissner plate theory with MITC4 

scheme and multi-material topology optimization method 

are derived in detail in this article. Three thickness cases:  

 

 

 

 

 

uniform, linear and multi-directional nonlinear thickness are 

investigated. In addition, in case of multi-material topology 

optimization considering variable thickness thick plates, the 

influence of Winkler parameters on optimal topological 

results is also considered. Finally, optimal topological 

evaluation of visualizing mid-surface within variable 

thickness thick plate resting on Winkler foundation would 

be considered explicitly with respect to manufacturing 

products. Moreover, the present mid-surface topology 

design may be a reasonable in a use of real thick plates for 

the purpose of providing the feasibility and predictability to 

engineers and designers. 

 

 
Fig. 9 Convergence histories of objective functions for thick plates under a concentrated load by using MITC4 

 

Case 1: Uniform thickness 

 
 

Case 2: Linear variable thickness Case 3: Multi-directional nonlinear variable thickness 

Fig. 10 Three dimensions variable thickness thick plate cases 
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 Case 1 Case 2 Case 3 

S
S

S
S

 

 

 

 
C=19.8491 

 
 

 
C=20.5536  

 
C=20.0034 

 

 

C=15.0050  

 

C=14.8889 
 

 

 

C=15.9472 

 

 

C=11.9112  

 

C=12.4331  

 

C=13.5769 

C
C

C
C

 

 

 

C=13.7057 
 

 

C=13.7856  

 

C=13.6441 

 

 

C=9.3593  

 

C=9.3530 
 

 

C=9.4205 

 

 

C=8.1306  

 

C=7.0934  

 

C=6.5006 

Fig. 11 Distributions of optimal topology material densities in mid-surface by using multiple various materials of two 

boundary conditions under a concentrated load 
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(a) Uniform thickness 

  
(b)  Linear variable thickness (c) Multi-directional nonlinear variable thickness 

Fig. 12 Convergence histories of objective functions for three cases variable thickness plates under a concentrated load 
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Wk  SSSS CCCC 

04 

      

C=19.8491 C=15.0050 C=11.9771 C=13.7057 C=9.3593 C=8.1306 

14 

      

C=19.7429 C=14.8145 C=11.6750 C=13.6865 C=9.3333 C=8.0154 

24 

      

C=18.4090 C=13.5368 C=10.2672 C=13.3887 C=8.8106 C=7.5894 

34 

      

C=14.8554 C=9.3822 C=6.9329 C=12.3250 C=7.6517 C=5.4798 

44 

      

C=11.4347 C=6.2843 C=4.1389 C=10.6137 C=5.9798 C=3.7616 

54 

      

C=9.1363 C=4.7962 C=2.6873 C=9.1366 C=4.7557 C=2.6980 

Fig. 13 Optimal topologies of Case 1: Uniform thickness 
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Wk  SSSS CCCC 

04 

      

C=20.5336 C=14.8889 C=12.4331 C=13.7856 C=9.3530 C=7.0334 

14 

      

C=20.4799 C=14.7514 C=11.4347 C=13.7656 C=9.3098 C=7.0111 

24 

      

C=18.9919 C=13.4140 C=11.0396 C=13.4666 C=9.0267 C=6.6270 

34 

      

C=15.1869 C=9.9387 C=7.4503 C=12.3816 C=7.9450 C=5.6926 

44 

      

C=11.4412 C=6.5260 C=4.0783 C=10.6650 C=6.1155 C=3.9740 

54 

      

C=9.1852 C=4.8178 C=2.8433 C=9.1076 C=4.8348 C=2.7736 

Fig. 14 Optimal topologies of Case 2: Linear variable thickness 
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Wk  SSSS CCCC 

04 

      

C=20.0034 C=15.9472 C=13.5769 C=13.6441 C=9.4205 C=6.5006 

14 

      

C=19.8945 C=15.6257 C=13.3591 C=13.6251 C=9.3506 C=6.4325 

24 

      

C=18.5289 C=13.6399 C=10.8462 C=13.3328 C=9.0253 C=6.0850 

34 

      

C=14.9056 C=9.7073 C=6.6797 C=12.2821 C=7.9278 C=5.0756 

44 

      

C=11.4423 C=6.3063 C=4.0548 C=10.5956 C=6.0147 C=3.8046 

54 

      

C=9.1366 C=4.8005 C=2.6847 C=9.0434 C=4.7708 C=2.7472 

Fig. 15 Optimal topologies of Case 3: Multi-directional nonlinear variable thickness 
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