
Steel and Composite Structures, Vol. 35, No. 1 (2020) 111-127 

DOI: https://doi.org/10.12989/scs.2020.35.1.111                                                                  111 

Copyright © 2020 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=8                                      ISSN: 1229-9367 (Print), 1598-6223 (Online) 

 
1. Introduction 
 

Normally, Functionally graded materials (FGMs) are 

heterogeneous materials in which the elastic and thermal 

properties change from one surface to the other, gradually 

and continuously. The material is constructed by smoothly 

changing the volume fraction of its constituent materials. 

FGMs offer great promise in applications where the 

operating conditions are severe, including spacecraft heat 

shields, heat exchanger tubes, plasma facings for fusion 

reactors, engine components, and high-power electrical 

contacts or even magnets. For example, in a conventional 

thermal barrier coating for high-temperature applications, a 

discrete layer of ceramic material is bonded to a metallic 

structure. However, the abrupt transition in material 

properties across the interface between distinct materials 

can cause large interlaminar stresses and lead to plastic 

deformation or cracking (Finot and Suresh 1996). These 

adverse effects can be alleviated by functionally grading the 

material to have a smooth spatial variation of material  
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composition. The concept of FGMs was first introduced in 

Japan in 1984. Since then it has gained considerable 

attention (Koizumi 1993). A lot of different applications of 

FGMs can be found in (Zhu and Meng 1995). Ramakris and 

Kunukkas (1973) provided a closed-form analytical solution 

for free vibration of an annular sector plate with radial 

edges simply supported. Mukhopadhyay (1979, 1982) used 

a semi-analytical method and Srinivasan and 

Thiruvenkatachari (1983, 1986) used the integral equation 

technique to analyze the vibrations of annular sector plates, 

respectively. Kim and Dickinson (1989) used one-

dimensional (1-D) orthogonal polynomials and Liew and 

Lam (1993) used two-dimensional (2-D) orthogonal 

polynomials as admissible functions to study the free 

vibration of annular sector plates by the Rayleigh–Ritz 

method. Ramaiah and Vijayakumar (1974) studied the free 

vibration of annular sector plates with simply supported 

radial edges by a combination of the Rayleigh-Ritz method 

and coordinate transformation. Swaminadham et al. (1984) 

compared the natural frequencies of annular sector plates 

from the finite element method and experiments. Seok and 

Tiersten (2004) used a variational approximation procedure 

to analyze the free vibration of cantilevered annular sector 

plates. Houmat (2001) used the hierarchical finite element 

method to study the free vibration of annular sector plates. 

Marin and Marinescu (1998), studied thermoelasticity of 
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Abstract.  The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on 

vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is 

formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either 

uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the 

thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is 

obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial 

edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped 

and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the 

governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate 

the results, comparisons are made between the present results and those reported by well-known references for special cases 

treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration 

frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained 

using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, 

it is crucial to consider porosities inside the material structure. 
 

Keywords:   sectorial plates; vibration; pores and graphene platelets; Halpin-Tsai micromechanics model; elastic 

foundation 

 



 

Anqiang Jia, Haiyan Liu, Lijian Ren, Yingxia Yun and Vahid Tahouneh 

 

initially stressed bodies. They first wrote the mixed initial 

boundary value problem within the context of 

thermoelasticity of initially stressed bodies. 

Then they established some Lagrange type identities and 

also introduced the Cesaro means of various parts of the 

total energy associated to the solutions. In another study 

(Marin et al. 2017) is dedicated to the Saint-Venant’s 

problem in the context of the theory of porous dipolar 

bodies. Marin and Craciun (2017) use dipolar elasticity to 

model composites with microstructure that can display 

nonlocal effects. A mixed initial boundary problem is 

addressed for dipolar thermoelasticity. Marin et al. (2017) 

investigate the theory of micropolar thermoelastic bodies 

whose micro-particles possess microtemperatures. Marin 

and Lupu (1998) obtained a spatial estimate, similar to that 

of Saint-Venant type by using a measure of Toupin type 

associated with the corresponding steady-state vibration and 

assuming that the exciting frequency was lower to a certain 

critical frequency. Marin (2010) extended the concept of 

domain of influence in order to cover the elasticity of 

microstretch materials. Sharma et al. (2005a, b) integrated 

an analytical approach with the Chebyshev polynomials 

technique to study the buckling and free vibration of 

isotropic and laminated composite sector plates based on 

the first-order shear deformation theory. Liu and Wang 

(2015) studied Thermal vibration of a single-walled carbon 

nanotube predicted by semiquantum molecular dynamics. 

Zhang and Wang (2018) investigated the nonlinear thermal 

vibrational behavior of single-layered BP (SLBP) via a 

nonlinear orthotropic plate model (OPM) and molecular 

dynamics (MD) simulations. Xu et al. (2016) studied the 

vibration of double-layered graphene sheets (DLGS) using 

A nonlocal Kirchhoff plate model with the van der Waals 

(vdW) interactions. Ahmed Houari et al. (2018) presented a 

closed-form solutions for exact critical buckling loads of 

nonlocal strain gradient functionally graded beams. For 

moderate thickness plates, the first-order shear deformable 

plate theory is commonly used, which could provide a result 

more accurate than that from the CPT. Liew and Liu (2000) 

used the differential quadrature method to analyze the free 

vibration of thick annular sector plates. Rao et al. (1977) 

and Guruswamy and Yang (1979) used the finite element 

method to analyze the vibrations of thick annular sector 

plates. Chen et al. (2017) investigated vibration and stability of 

initially stressed sandwich plates with FGM face sheets. Barka et 

al. (2016) studied thermal post-buckling behavior of imperfect 

temperature-dependent FG structures. Bouguenina et al. (2015) 

studied FG plates with variable thickness subjected to 

thermal buckling. Park et al. (2016) used modified couple 

stress based third-order shear deformation theory for 

dynamic analysis of sigmoid functionally graded materials 

(S-FGM) plates. Wu and Liu (2016) developed a state space 

differential reproducing kernel (DRK) method in order to 

study 3D analysis of FG circular plates. Benson and Hinton 

(1976) and Cheung and Chan (1981) used the finite strip 

method to carry out static and dynamic analyses of thick 

annular sector plates. Mizusawa (1991) used the finite 

element method to study the natural frequencies of thick 

annular sector plates. Xiang et al. (1993) applied the Ritz 

method to study the free vibration of thick annular sector 

plates. Leissa et al. (1993 and 1995) considered the effect of 

stress singularities on the vibration analysis of thick annular 

sector plates and presented the corner functions to improve 

the convergence of the numerical solutions. Zhou et al. 

(2009) used the Chebyshev-Ritz method to study the free 

vibration of thick annular sector plates, Nie and Zhong 

(2008) investigated the free and forced vibration analysis of 

FGM annular sector plates with simply-supported radial 

edges by using a semi-analytical approach. Arefi (2015) 

suggested an analytical solution of a curved beam with 

different shapes made of functionally graded materials 

(FGMs). Bennai et al. (2015) developed a new refined 

hyperbolic shear and normal deformation beam theory to 

study the free vibration and buckling of functionally graded 

(FG) sandwich beams under various boundary conditions. 

Bouchafa et al. (2015) used refined hyperbolic shear 

deformation theory (RHSDT) for the thermoelastic bending 

analysis of functionally graded sandwich plates. Tahouneh 

(2016) presented a 3-D elasticity solution for free vibration 

analysis of continuously graded carbon nanotube-reinforced 

(CGCNTR) rectangular plates resting on two-parameter 

elastic foundations. The volume fractions of oriented, 

straight single-walled carbon nanotubes (SWCNTs) were 

assumed to be graded in the thickness direction.  Moradi-

Dastjerdi and Momeni-Khabisi (2016) studied Free and 

forced vibration of plates reinforced by wavy carbon 

nanotube (CNT). The plates were resting on Winkler-

Pasternak elastic foundation and subjected to periodic or 

impact loading. 

Nowadays, the use of carbon nanotubes in 

polymer/carbon nanotube composites has attracted wide 

attention (Wagner et al. 1997). A high aspect ratio, low 

weight of CNTs and their extraordinary mechanical 

properties (strength and flexibility) provide the ultimate 

reinforcement for the next generation of extremely 

lightweight but highly elastic and very strong advanced 

composite materials. On the other hand, by using of the 

polymer/CNT composites in advanced composite materials, 

we can achieve structures with low weight, high strength 

and high stiffness in many structures of civil, mechanical 

and space engineering. 

Several researches have recently investigated the elastic 

properties of multiwalled carbon nanotube (MWCNT) and 

their composites (Fidelus et al. 2005, Ghavamian, 

Rahmandoust and Öchsner 2012). Gojny et al. (2005) 

focused on the evaluation of the different types of the CNTs 

applied, their influence on the mechanical properties of 

epoxy-based nanocomposites and the relevance of surface 

functionalization. Therefore, the study of the mechanical 

performance of CNT-based composites and the discovery of 

possible innovative applications has recently attracted the 

interest of many researchers. 

Many researchers have reported that mechanical 

properties of polymeric matrices can be drastically 

increased (Montazeri et al. 2010, Yeh et al. 2006) by adding 

a few weight percent (wt%) MWCNTs. Montazeri et al. 

(2010) showed that modified Halpin-Tsai equation with 

exponential Aspect ratio can be used to model the 

experimental result of MWNT composite samples. They 

also demonstrated that reduction in Aspect ratio (L/d) and 
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nanotube length cause a decrease in aggregation and Above 

1.5 wt%, nanotubes agglomerate causing a reduction in 

Young’s modulus values. Thus, it is important to determine 

the effect Aspect ratio and arrangement of CNTs on the 

effective properties of carbon nanotube-reinforced 

composite (CNTRC). Yeh et al. (2006) used the Halpin-Tsai 

equation to shows the effect of MWNT shape factor (L/d) 

on the mechanical properties. They showed that the 

mechanical properties of nanocomposite samples with the 

higher shape factor (L/d) values were better than the ones 

with the lower shape factor. The reinforcement effect of 

MWCNTs with different aspect ratio in an epoxy matrix has 

been carried out by Martone et al. (2011). They showed that 

progressive reduction of the tubes effective aspect ratio 

occurs because of the increasing connectedness between 

tubes upon an increase in their concentration. Also they 

investigated on the effect of nanotube curvature on the 

average contacts number between tubes by means of the 

waviness that accounts for the deviation from the straight 

particles assumption. Tornabene et al. (2019) investigated 

free vibration analysis of arches and beams made of 

composite materials via a higher-order mathematical 

formulation. Tornabene et al. (2017) studied free vibration 

analysis of composite sandwich plates and doubly curved 

shells with variable stiffness. The reinforcing fibers were 

located in the external skins of the sandwich structures 

according to curved paths. Tornabene et al. (2018) studied 

free vibration of laminated nanocomposite plates and shells 

using first-order shear deformation theory and the 

Generalized Differential Quadrature (GDQ) method. Each 

layer of the laminate was modelled as a three-phase 

composite. A survey of several methods under the heading 

of strong formulation finite element method (SFEM) was 

presented by Tornabene et al. (2015). 

The present work aims to investigate the free vibration 

of FG sectorial plates with GPLs either uniformly or non-

uniformly dispersed in the metal matrix. Two non-uniform 

and the uniform porosity distributions are employed and 

their performance is compared. A 3-D theory of elasticity is 

used for theoretical formulations of the nanocomposite plate 

with porosity coefficients and GPL nanofiller contents 

varying in the thickness direction. The effects of GPL 

reinforcing nanofillers and the porosity distribution are 

studied in detail through a parametric study to find out the 

best GPL and porosity distributions to achieve the highest 

effective plate stiffness. 

 

 

2. Problem description 
 

Consider an annular sector plate resting on two-

parameter elastic foundations as shown in Fig. 1. This plate 

is referring to a cylindrical coordinate system ( , , )r z , as 

depicted in Fig. 1. It is assumed the thickness of structure is 

“h”. The structure has continuous grading of GPLs-

reinforcement through thickness direction. Three different 

GPL dispersion patterns, denoted by A, B, and C, are 

considered for each porosity distribution (Fig. 2). The GPL 

volume content VGPL is assumed to vary along the z-axis 

smoothly with its peak values (Sij, i,j=1, 2, 3) being 

determined based on the specific porosity distribution. To 

facilitate a direct and meaningful comparison, the total 

amount of GPLs is kept the same for three different GPL 

distribution patterns. This leads to s1i≠s2i≠s3i (i=1, 2, 3).  

The mechanical properties of a porous plate with 

different types of porosity distributions can be expressed by 

1 0E(z) E (1 e (z))    (1) 

G(z) E(z) / 2(1 (z))    (2) 

1 m(z) (1 e (z))      (3) 

in which, for symmetric porosity distribution 

( ) cos( )zz
h

   (4) 

for asymmetric porosity distribution 

( ) cos( )
2 4

zz
h

     (5) 

and for uniform porosity distribution 

( )z   (6) 

where E1, G1, and ρ1 are the maximum values of elasticity 

moduli, shear moduli and mass density. 

Also, e0 and em are the coefficients of porosity and mass 

density, respectively, defined by (Kitipornchai et al. 2017) 

2 2
0

1 1

2.3
0

m

E G
e 1 1

E G

1.121(1 1 e (z))
e

(z)

   

  




 
(7) 

Also based on the closed-cell graphene-reinforcement 

scheme, Poisson’s ratio (z) can be expressed by 

(Kitipornchai et al. 2017) 

2

1(z) 0.221p (0.342p 1.21p 1)       (8) 

In which 𝝊1is the Poisson’s ratio of pure matrix materials 

without pores and 

2.3
0p 1.121(1 1 e (z))     (9) 

 

 

 
Fig. 1 The sketch of a thick nanocomposite sectorial plate 

and setup of the coordinate system 
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Also, λ(z) for uniform porosity distribution can be 

expressed by 

2.3

0 0

1 1 M h 0.121
( )

e e 1.121


    (10) 

In which 
h/2

h/2
M (1 p)dz


   (11) 

According to the distribution patterns depicted in Fig. 2, the 

volume fraction of GPLs can be written as (i=1,2,3) 

 

 

i1

GPL i2

i3

S 1 cos( z / h ,Pattern A

V S 1 cos( z / 2h / 4 , Pattern B

S ,Pattern C


  



    





 
(12) 

The relation between the volume fraction of GPLs and their 

weight fraction WGPL can be expressed by 

h/2
GPL

m
h/2

GPL GPL
GPL GPL

M M

h/2

GPL m
h/2

W
(1 e (z))dz

W W

V (1 e (z))dz





 
 

 
 

  





 
(13) 

 

 

In which ρGPL and ρM are mass density of GPL and metal 

matrix, respectively. Based on Halpin-Tsai micromechanical 

model, it is possible to obtain material properties of GPL-

reinforced metal matrix structures 
GPL GPL

L L GPL
1 MGPL

L GPL

GPL GPL

W W GPL
MGPL

W GPL

1 V3
E E

8 1 V

1 V5
E

8 1 V

   
  

 

   
 

 

 
(14) 

in which Em is Young’s modulus of the metal and 

GPL GPL GPL M
L GPL GPL L GPL

GPL M L

GPL GPL GPL M
W GPL GPL W GPL

GPL M W

(E / E ) 1
2l t , ,

(E / E )

(E / E ) 1
2w t ,

(E / E )


   

 


   

 

 
(15) 

wGPL, lGPL and tGPL denote GPLs’ average width, length, and 

thickness, respectively. Finally, Poisson’s ratio of GPL-

reinforced metal matrix implementing rule of mixture can 

be expressed by 

1 GPL GPL M MV V     (16) 

where VM is the volume fraction of metal matrix (VM= 

1−VGPL). 

 

Fig. 2 Porosity distribution and GPL dispersion patterns 
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3. Governing equations  
 

In the absence of body forces, the governing equations 

are as follows 

2
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(17) 

Where , ,r z   are axial stress components, , ,r z rz    are 

shear stress components, , ,r zu u u
are displacement 

components,  denotes material density and t is time. The 

relations between the strain and the displacement are 

 

(18) 

Where , , , , ,r z z r rz        are strain components. The 

constitutive equations for material are (Reddy 2013): 
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(19) 

where 
ijc are material elastic stiffness coefficients. 

Using the three-dimensional constitutive relations and 

the strain-displacement relations, the equations of motion in 

terms of displacement components for a linear elastic FG 

plate with infinitesimal deformations can be written as 

r r
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u uu u
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r r r r r r r
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where
dz

dc
c

ij

ij '  

Eqs. (20) and (21) represent the in-plane equations of 

motion along the r and -axes, respectively; and Eq. (22) is 

the transverse or out-of-plane equation of motion.  

The related boundary conditions are as follows: 

at z=-h/2 

,zr z

z z z
z w z g

u u u
K u K

r r r r

 




 

   
    

   

2 2

2 2 2

0 0

1 1  (23) 

at z=h/2 

, ,zr z z    0 0 0  (24) 

wK and
gK  are the Winkler and shearing layer elastic 

coefficients of the foundation. In this paper three different 

kinds of boundary conditions are considered for circular 

edges including clamped-clamped (c-c), simply supported-

clamped (s-c) and free-clamped (f-c).The boundary 

conditions at edges are 

Clamped(r=R0)-Clamped(r=R1) 

at  r = R1      
r zu u u  0  

at  r = R0      
r zu u u  0  (25) 

Simply supported(r= R0)-Clamped(r=R1): 
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at  r = R0      
z ru u   0 

at  r = R1      
r zu u u  0  

(26) 

Free(r=R0)-Clamped(r=a): 

at  r = R1      
r zu u u  0 

at  r = R0      0 rzrr  
 

(27) 

 

 

4. Solution procedure 
 

Using the geometrical periodicity of the plate, the 

displacement components for the free vibration analysis can 

be represented as 
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(28) 

Where m (=0,1,…, ) is the circumferential wavenumber;

 is the natural frequency and i (= 1 )is the imaginary 

number. It is obvious that m=0 means axisymmetric 

vibration.  At this stage the GDQ [A brief review of GDQ 

method is given in Appendix] rules are employed to 

discretize the free vibration equations and the related 

boundary conditions. Substituting for the displacement 

components from (28) and then using the GDQ rules for the 

spatial derivatives, the discretized form of the equations of 

motion at each domain grid point ),( kj zr with (j = 2,3,…,

1rN ) and(k =2,3,…, 1zN ) can be obtained as 
Eq. (20) 
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Eq. (21) 
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Eq. (22) 
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Where
r

ijA ,
z

ijA and
r

ijB ,
z

ijB are the first and second order 

GDQ weighting coefficients in the r- and z- directions, 

respectively. 
In a similar manner the boundary conditions can be 

discretized. For this purpose, using Eq. (28) and the GDQ 

discretization rules for spatial derivatives, the boundary 

conditions at z =-h/2 and h/2 become, 

Eq. (23) 
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Eq. (24): 

at z = h/2 
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(33) 

where k = 1 at z = -h/2 and k =
zN  at z = h/2, andj = 1,2, . . 

.,
rN . The boundary conditions at r = R0 and R1 stated in (25-

27) become, 

Simply supported (S) 
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(34.1) 

Clamped (C) 

, ,rmjk mjk zmjku u u  0 0 0  (34.2) 

Free (F) 
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(34.3) 

In the above equations k = 2, . . ., 1zN ; also j = 1 at r = R0 

and j =
rN  at r = R1. 

In order to carry out the eigenvalue analysis, the domain 

and boundary degrees of freedom are separated and in 

vector forms they are denoted as {d} and {b}, respectively. 

Based on this definition, the discretized form of the 

equilibrium equations and the related boundary conditions 

take the following forms, 

Equations of motion (29-31) 

  
 

 
    db dd

b
K K M d

d


  
     

  

2 0  (35) 

Boundary conditions (21, 22) and (23.1-3) 

       bd bbK d K b  0  (36) 

Eliminating the boundary degrees of freedom in Eq. (35) 

using Eq. (36), this equation become 

       -K M d 2 0  (37) 

where         bdbbdbdd KKKKK
1-

- The above eigenvalue 

system of equations can be solved to find the natural 

frequencies and mode shapes of the plates. 

 

 

5. Convergence and comparison studies 
 

In this section, the convergence behavior and accuracy 

of the method in evaluating the non-dimensional natural 

frequencies of isotropic and FGM annular sector plates with 

different set of boundary conditions along the circular edges 

are investigated. 

Leissa et al. (1993, 1995) provided the exact results for 

sector plates with a re-entrant corner, based on the Mindlin 

plate theory. As a first example, the comparative studies of 

the fundamental frequency parameters are given in Table 1. 

It is seen from Table 1 that for thin plates ( . )h R 1 0 01  
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there is an excellent agreement between the present 3-D 

solutions and the classical solutions. For moderately thick 

plates ( . )h R 1 0 2 the present 3-D solutions also agree 

quite well with the Mindlin solutions. For very thick plates

( . )h R 1 0 4 the discrepancies increase, particularly for c-c 

plates. It is found that only nineteen DQ grid points in each 

direction (r and z) can yield accurate results. The same 

problem has been analyzed by D. Zhou et al. (2009). It is 

obvious that the error of the Mindlin plate theory increases 

with the increase of the plate thickness, especially for very 

thick plates ( . )h R 1 0 4 . The two-dimensional theories, 

such as the classical plate theory, the first and the higher 

order shear deformation plate theories neglect transverse 

normal deformations, and generally assume that a plane 

stress state of deformation prevails in the plate. These 

assumptions may be appropriate for thin plates but do not 

give good results for thick plates. It is seen from Table 1 

that the maximum differences between the 3-D solutions 

and the Mindlin solutions occur at the clamped-clamped  

 

 

 

plates. A numerical value of 19 zr NN is used for 

the next studies. As the second example, the convergence 

behavior and accuracy of the method for lowest non-

dimensional frequency parameter  11h C  
of thick 

FG annular sector plates with two different set of circular 

edges conditions including clamped-clamped and clamped -

simply supported are studied in Tables 2 and 3. The results 

are compared with those of the three-dimensional elasticity 

solutions of Nie and Zhong (2008) which were obtained 

using the State space method (S.S.M). It is assumed that the 

m a t e r i a l  p r o p e r t i e s  v a r y  e x p o n e n t i a l l y

))(,)((
)()(

h

z

Mh

z

M

ijij ezeczc



  through the thickness of 

the plate. Superscripts M denote the material properties of 

the bottom surface of the plate, is the material property 

graded index. One can see that an excellent agreement 

exists between the converged results of the presented 

approach and the other one. The material property and 

geometry parameters of GPLs are WGPL=1.5 μm, lGPL=2.5  

Table 1 Comparison of fundamental frequency parameter ( )R h D  2
1

for flexural vibration of annular sector 

plates with two straight edges simply supported for .R R 0 1 0 5  
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71.9143 

48.6618 
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50.0056 
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89.6828 

89.7655 
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71.6588 

71.6586 

48.4901 

49.8361 

49.8360 

89.4931 

89.6519 

89.6520 

70.4307 

71.5435 

71.5433 

48.4105 

49.7559 

49.7561 

21.4263 

21.4074 

21.4076 

19.9986 

20.0967 

20.0968 
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17.7636 

17.7638 

20.9496 

20.9368 

20.9369 

19.6097 

19.7064 

19.7063 

17.2943 

17.4733 

17.4735 

19.7282 

19.7258 

19.7259 

18.6218 

18.7149 

18.7150 

16.5657 

16.7386 

16.7387 

18.8711 

18.8831 

18.8829 

17.9366 

18.0283 

18.0285 

16.0630 

16.2316 

16.2315 

10.8761 

10.8522 
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10.2268 
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10.2384 

9.3661 

9.3961 
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8.5633 

8.1304 

8.1386 
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7.5461 
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7.2502 
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6.9426 

6.9423 

6.5171 
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μm, tGPL l.5 nm, EGPL=1.01 TPa, ρGPL=1062.5 kg/m3, 

𝝊=0.186 (Rafiee et al. 2009, Liu et al. 2007), and the 

material properties of metal are EM = 130 GPa, ρM = 8960 

kg/m3, 𝝊M= 0.34 (Kitipornchai et al. 2017). 

In this study, the non-dimensional natural frequency is 

as follows 

2 3 2, 121 (1 )h D D E hm m m m mR       (38) 

The non-dimensional natural frequency, Winkler and 

shearing layer elastic coefficients are as follows 

,g g m w w mK k D K kR R D 1 1
2 4  (39) 

where ρM, EM and 𝝊M are mechanical properties of Copper. 

 

 

6. Benchmark results 
 

The influences of the sector angle on the fundamental 

frequency parameters of GPLs-reinforcement annular sector 

plates on two-parameter elastic foundation with different  

 

 

circular edges boundary conditions are shown in Fig. 3. It is 

obvious that for all types of boundary condition, with 

increasing the sector angle, the frequency parameters 

decrease. It is observed that the natural frequency of 

Clamped-Clamped sector plates is significantly higher than 

those of sector plates with Simply supported-Clamped and 

Free-Clamped boundary conditions. As expected, increasing 

the degrees of freedom in the edges, decreases the natural 

frequencies. The variation of inner-to-outer radius ratio 

(R0/R1) with the frequency parameters of a Clamped-

Clamped, Simply supported-Clamped and Free-Clamped 

GPLs-reinforcement annular sector plates for different 

values of h/R1 ratios is shown in Figs. 4-6. According to 

these figures, the general behavior of the frequency 

parameters of the plates for all R0/R1 ratios is that the effects 

of the h/R1 ratios are more prominent at high inner-to-outer 

radius ratios. As it is observed, the frequency parameter 

decreases rapidly with the decrease of R0/R1 ratio and then 

remains almost unaltered for the R0/R1<0.3. The influences 

of the coefficient of porosity on the fundamental frequency 

parameters of GPLs-reinforcement annular sector plates 

with different circular boundary conditions are investigated  

Table 2 The lowest non-dimensional frequency parameter  11h C   for FGMs annular sector plates having 

clamped (r=R0) and clamped (r=R1) conditions 
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Fig. 3 Influence of the sector angle on the non-dimensional natural frequency parameter of GPLs-reinforcement sectorial 

plates (Kw=100, Kg=0, R0/R1=0.6, h/R1=0.1, e=0.5) 

 
Fig. 4 Variation of natural frequency of Uniform GPL-reinforced sectorial plates versus inner-to-outer radius ratios 

(R0/R1) for C-C boundary condition at the circular edges (h/R1=0.1, e=0.5, GPL weight fraction wt. 1%, Kw=100, Kg=0, 

ф=100o) 

 
Fig. 5 Variation of natural frequency of Uniform GPL-reinforced sectorial plates versus inner-to-outer radius ratios 

(R0/R1) for S-C boundary condition at the circular edges (h/R1=0.1, e=0.5, GPL weight fraction wt. 1%, Kw=100, Kg=0, 

ф=100o) 
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Fig. 6 Variation of natural frequency of Uniform GPL-reinforced sectorial plates versus inner-to-outer radius ratios 

(R0/R1) for F-C boundary condition at the circular edges (h/R1=0.1, e=0.5, GPL weight fraction wt. 1%, Kw=100, Kg=0, 

ф=100o) 

 
Fig. 7 The influence of plate porosity and sector angle on the natural frequency of C-C sectorial plates (h/R1=0.1, GPL 

weight fraction wt. 1%, Kw=100, Kg=0) 

 
Fig. 8 The influence of plate porosity and sector angle on the natural frequency of S-C sectorial plates (h/R1=0.1, GPL 

weight fraction wt. 1%, Kw=100, Kg=0) 
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Table 3 The lowest non-dimensional frequency parameter  11h C   for FGMs annular sector plates having 

clamped (r=R0) and simply supported (r=R1) conditions 

 deg  
1

h
R

 0

1

R
R

 m 
       

 1 2 3 4 5 

 

195 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

210 

 

0.1 

 

 

 

 

 

 

 

0.3 

 

 

 

 

 

 

 

0.1 

 

 

 

 

 

 

 

0.3 

 

 

0.1 

 

 

 

0.3 

 

 

 

0.1 

 

 

 

0.3 

 

 

 

0.1 

 

 

 

0.3 

 

 

 

0.1 

 

 

 

0.3 

 

1 

 

2 

 

1 

 

2 

 

1 

 

2 

 

1 

 

2 

 

1 

 

2 

 

1 

 

2 

 

1 

 

2 

 

1 

 

2 

 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

Nie and Zhong 2008 

Present 

 

0.0442 

0.0444 

0.0582 

0.0584 

0.0727 

0.0726 

0.0802 

0.0803 

0.3152 

0.3153 

0.4316 

0.4314 

0.4565 

0.4564 

0.5198 

0.5199 

0.0438 

0.0437 

0.0552 

0.0550 

0.0724 

0.0722 

0.0787 

0.0786 

0.3103 

0.3101 

0.4105 

0.4106 

0.4538 

0.4540 

0.5077 

0.5076 

 

0.0412 

0.0411 

0.0542 

0.0544 

0.0680 

0.0682 

0.0751 

0.0750 

0.2948 

0.2949 

0.4039 

0.4041 

0.4245 

0.4243 

0.4828 

0.4826 

0.0409 

0.0407 

0.0515 

0.0517 

0.0678 

0.0679 

0.0736 

0.0735 

0.2904 

0.2905 

0.3840 

0.3842 

0.4221 

0.4221 

0.4715 

0.4716 

 

0.0372 

0.0374 

0.0488 

0.0487 

0.0617 

0.0618 

0.0680 

0.0680 

0.2687 

0.2689 

0.3679 

0.3680 

0.3922 

0.3920 

0.4442 

0.4442 

0.0369 

0.0371 

0.0463 

0.0464 

0.0614 

0.0615 

0.0667 

0.0669 

0.2648 

0.2650 

0.3495 

0.3493 

0.3901 

0.3900 

0.4340 

0.4342 

 

0.0329 

0.0329 

0.0431 

0.0429 

0.0548 

0.0548 

0.0604 

0.0605 

0.2418 

0.2416 

0.3304 

0.3304 

0.3600 

0.3600 

0.4059 

0.4060 

0.0327 

0.0329 

0.0408 

0.0408 

0.0546 

0.0547 

0.0593 

0.0594 

0.2384 

0.2384 

0.3137 

0.3138 

0.3582 

0.3584 

0.3968 

0.3969 

 

0.0289 

0.0287 

0.0377 

0.0378 

0.0484 

0.0485 

0.0532 

0.0531 

0.2166 

0.2164 

0.2951 

0.2950 

0.3290 

0.3290 

0.3693 

0.3690 

0.0287 

0.0287 

0.0357 

0.0356 

0.0482 

0.0481 

0.0522 

0.0523 

0.2137 

0.2135 

0.2800 

0.2801 

0.3275 

0.3277 

0.3613 

0.3612 

 
Fig. 9 The influence of plate porosity and sector angle on the natural frequency of F-C sectorial plates (h/R1=0.1, GPL 

weight fraction wt. 1%, Kw=100, Kg=0) 
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in Figs. 7-9. Based on the results the frequency parameter is 

sensitive to the value of coefficient of plate porosity 

significantly as well as the sector angle. The results imply 

that the frequency parameter decreases as the coefficient of 

plate porosity increases. The combined effects of porosity 

distribution and GPL distribution pattern on the 

fundamental frequency are investigated in Fig. 10 in which 

the fundamental natural frequency at various GPL weight 

fractions is presented. Symmetric GPL pattern A is proved 

to be the best dispersion method, followed by the uniform  

 

 

 

pattern C which is slightly better than the asymmetric 

pattern B. Results indicate that plate with non-uniform 

symmetric porosity distribution 1 and symmetric GPL 

pattern A have the largest fundamental frequencies, i.e., the 

highest effective stiffness under the same GPL weight 

fraction, suggesting that a nanocomposite plate in which 

both internal pores and nanofillers are symmetrically 

distributed can offer the best structural performance. It 

should be noted this tendency has been seen in other types 

of boundary conditions but for the sake of brevity, they are 

 

Fig. 10 The effect of GPL on the fundamental frequency of nanocomposite C-C sectorial plates (h/R1=0.1, e=0.5, Kw=100, 

Kg=0, ф=100o) 

 
Fig. 11 Variation of dimensionless frequency of sectorial plates versus Winkler elastic parameter for various thickness-to-

outer radius ratios (e=0.5, GPL weight fraction wt. 1%, Kg=0, ф=100o). 
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not reported here. It is observed that the maximum 

vibration frequency obtained in the case of symmetric 

porosity and GPL distribution, while the minimum vibration 

frequency is obtained using uniform porosity distribution. 

Figure 11 indicates the effect of Winkler and Pasternak 

foundation parameters when e0=0.5, GPL weight fraction 

wt. 1% and e=0.5. A Clamped-Clamped annular sector plate 

with uniform porosities has been considered in this figure. It 

is crystal clear that higher values of Winkler foundation 

constant leads to increase in bending rigidity and natural 

frequency of the annular sector plates. 

 

 

6. Conclusions 
 

This paper deals with vibration analysis of functionally 

graded porous nanocomposite annular sector plate resting 

on elastic foundation where the internal pores and graphene 

platelets (GPLs) are distributed in the matrix uniformly or 

non-uniformly according to three different patterns. The 

elastic foundation is considered as a Pasternak model with 

adding a shear layer to the Winkler model. Three 

complicated equations of motion for the plate under 

consideration are semi-analytically solved by using 2-D 

differential quadrature method. The annular sector plate is 

assumed to be simply supported in the radial edges while 

any arbitrary boundary conditions are applied to the other 

two circular edges including simply supported, clamped and 

free. Using the 2-D differential quadrature method in the r- 

and z-directions, allows one to deal with FG plates with 

arbitrary thickness distribution of material properties and 

also to implement the effects of the elastic foundations as a 

boundary condition on the lower surface of the plate 

efficiently and in an exact manner. The fast rate of 

convergence and accuracy of the method are investigated 

through the different solved examples. From this study 

some conclusions can be made as following: 

 It is observed that the maximum vibration 

frequency obtained in the case of symmetric 

porosity and GPL distribution, while the 

minimum vibration frequency is obtained using 

uniform porosity distribution. 

 It is obvious that for all types of boundary 

condition, with increasing the sector angle, the 

frequency parameters decrease. 

 As expected, increasing the degrees of freedom in 

the edges, decreases the natural frequencies. 

 As it is observed, the frequency parameter 

decreases rapidly with the decrease of R0/R1 ratio 

and then remains almost unaltered for the 

R0/R1<0.3. 

 Based on the results the frequency parameter is 

sensitive to the value of coefficient of plate 

porosity significantly as well as the sector angle. 

The results imply that the frequency parameter 

decreases as the coefficient of plate porosity 

increases. 

 It is observed that higher values of Winkler 

foundation constant leads to increase in bending 

rigidity and natural frequency of the annular 

sector plates. 

Results show that for better understanding of 

mechanical behavior of nanocomposite plates, it is crucial 

to consider porosities inside the material structure. 
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Appendix 

 
In Generalized Differential Quadrature Method 

(GDQM), the nth order partial derivative of a continuous 

function ( , )f x z with respect to x at a given point xi can be 

approximated as a linear summation of weighted function 

values at all the discrete points in the domain of x, that is  

 
 

,
( 1, 2,..., , 1, 2,..., 1),

1

i

ik

n Nf x z nc f i N n Nx ziknx k


   

 

  (1) 

Where N is the number of sampling points and nc
ij

is 

the xi dependent weight coefficient. To determine the 

weighting coefficients nc
ij

, the Lagrange interpolation 

basic functions are used as the test functions, and explicit 

formulas for computing these weighting coefficients can be 

obtained as (Bert and Malik 1996) 

(1) ( )(1)
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(3) 

and for higher order derivatives, one can use the following 

relations iteratively 
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  (5) 

A simple and natural choice of the grid distribution is the 

uniform grid-spacing rule. However, it was found that 

nonuniform grid-spacing yields result with better accuracy. 

Hence, in this work, the Chebyshev-Gauss-Lobatto 

quadrature points are used 

1 1
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