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1. Introduction 
 

In functionally graded materials, the material properties 

varies continuously through one or two directions to 

achieve the desirable properties such as mechanical 

properties (Gupta 2007, Rad et al. 2015a and Khayat et al. 

2017), thermal management (Hasselman and Youngblood 

1978, Lee et al. 1996, Kawasaki and Watanabe 2002 and 

Bouguenina et al. 2015), surface corrosion protection 

(Schulz et al. 2003 and Ocylok et al. 2010) and 

piezoelectric properties (Li and Weng 2002, Shi and Chen 

2004 and Xu et al. 2018). The most important advantage of  
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the FGMs in compared with the laminated materials is the 

elimination of stress concentration and delamination due to 

gradually change in material properties. An extensive 

overview of the existing literature on stability, buckling, and 

free vibration analysis of FGMs can be found in Zhang et 

al. (2019) article.   

Since in common finite element methods (FEMs), the 

material properties within each element are assumed to be 

constant, analysis of FGMs using FEM is encountered 

with some difficulties (Sladek et al. 2005). Thus in recent 

years, several meshless methods have been developed for 

analysis of structures made of FGMs to avoid mesh related 

problems. Zue and Liu (2011) using the local Kriging 

meshless method studied on functionally graded plates 

made of a ceramic and metal mixture in which the volume 

fraction of the ceramic consistent changes continuously 

through the thickness direction. Sladek et al. (2013) 

proposed a meshless method based on the local Petrov-

Galerkin approach for bending analysis of FGM 

piezoelectric plates. Hosseini et al. (2015) worked on 

transient dynamic analysis of non-Fick diffusion-
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Abstract.  The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded 

graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing 

equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on 

total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape 

functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear 

functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure 

responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an 

incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for 

homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and 

FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method 

compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs 

distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show 

that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction 

exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is 

determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the 

present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of 

vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are 

used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more 

accurate results. 
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elastodynamics problems in functionally graded materials 

using the MLPG method. The state space differential 

reproducing kernel (DRK) method was successfully 

developed for three dimensional analysis of FGM 

axisymmetric circular plates by Wu and Liu (2016). The 

static, dynamic and buckling analyses of FG isotropic and 

sandwich plates using the moving Kriging-based meshfree 

method with a higher order deformation theory was carried 

out by Thai et al. (2016). A three dimensional meshfree 

method solution for analysis of functionally graded fiber 

reinforced cylindrical panels was proposed by 

Soltanimaleki et al. (2016). Chu et al. (2016) studied 

buckling of FG thin plates with in-plane material 

inhomogeneity using a radial basis function associated with 

collocation method. The MLPG method was developed by 

Ferezghi et al. (2018) for dynamic analysis of non-

symmetric FG cylindrical shell with nonlinear volume 

fractions through radial direction under mechanical shock 

loading. Thai et al. (2018a) proposed a novel formulation 

based on an improved moving Kriging meshfree method 

with naturally stabilized nodal integration for analysis of 

functionally graded material sandwich plates. Free vibration 

analysis of FG beams with the open edged cracks using the 

meshfree boundary domain integral equation method was 

carried out by Kou and Yang (2019). They presented a 

comprehensive parameter study of the crack properties, 

beam material gradient, gradation direction and boundary 

conditions. Bui et al. (2018) developed a meshfree method 

for analysis of two dimensional fracture problems of 

cracked FGMs.  

One of the most attractive aspects of FGMs is 

application of theme as the heat shielding materials 

(Tutuncu and Ozturk 2001). There are several works on 

analysis of FGMs under thermo-mechanical loadings using 

the different methods. Wang and Qin (2008) using the 

method of fundamental solutions coupling with radial basis 

functions showed that using appropriate graded parameters 

of FG materials can leads to low stress concentration on 

structures subjected to mechanical and thermal loads. 

Krahulec et al. (2016) presented a meshless method for time 

fractional derivative heat conduction in functionally graded 

materials. A numerical formulation based on the MLPG 

method was developed by Vaghefi et al. (2016) for thermo-

elastoplastic analysis of thick FG plates subjected to 

combined thermal and mechanical loads.     

In large deformation problems in which the relationship 

between the strains and displacements of the structure is 

nonlinear, the geometrically nonlinear analysis must be 

taken into account. Some researches have proved that the 

meshless methods are efficient technique for large 

deformation problems due to their advantage in eliminating 

mesh distortion issue (Chen et al. 1997, Gu et al. 2007 and 

Rad et al. 2015b). There are a large number of research 

works on geometrically nonlinear analysis of FGMs using 

meshless methods in the literature. Liu et al. (2002) 

presented the Smooth Particle Hydrodynamics equations 

governing the elastic and elasto-plastic large deformation 

dynamic response of solid structures. The geometrically 

nonlinear analysis of FG thick hollow cylinder with 

nonlinear grading patterns through radial direction using 

meshless local Petrov-Galerkin method was carried out by 

Rad et al. (2015c). The geometrically nonlinear analysis of 

carbon nanotubes reinforced functionally graded composite 

laminated plates was presented in (Lei et al. 2017). A 

comparative study of geometrical linear and nonlinear 

bending deformation of functionally graded beams with 

variable thickness was performed by Lin et al. (2018) using 

the SPH method. A novel plate formulation based on 

refined plate theory and improved moving Kriging 

meshfree method was presented by Nguyen et al. (2018) for 

geometric nonlinear static and dynamic analyses of FGM 

plates. Rad et al. (2019) developed the element free 

Galerkin method for geometrically nonlinear analysis of 

deep beams considering small scale effect.  

Carbon nanotubes reinforced functionally graded 

materials (CNTR-FG) are the special case of FGMs in 

which the CNTs are distributed in a matrix of composite 

material in order to improve its properties. A large number 

of studies have been conducted to analyze the CNTR-FG 

composite structures behavior. Ghayoumizadeh et al. (2013) 

developed a formulation based on MLPG method in 

Laplace-transform domain for 2D elastic wave propagation 

analysis of functionally graded nanocomposites reinforced 

by carbon nanotubes. Free vibration of a double walled 

carbon nanotube beams under axial force was studied by 

Hajnayeb and Khadem (2015) utilizing Euler-Bernoulli 

beam theory. Lei et al. (2016) presented the buckling 

analysis of CNTR-FG composite laminated plates of 

moderate thickness. Arefi et al. (2018) focused on analysis 

of FG-CNTRC cylindrical pressure vessels with different 

patterns of reinforcement subjected to an inner and outer 

pressure under a temperature increase. Thai et al. (2018b) 

studied on analysis of carbon nanotube-reinforced 

composite (CNTRC) plates using the naturally stabilized 

nodal integration (NSNI) meshfree formulations associated 

with the higher-order shear deformation plate theory. 

Mohammadimehr et al. (2019) analyzed the magneto-

electro-elastic vibration of a FG-CNTRC cylindrical shell 

resting on viscoelastic foundation. The significant effects of 

CNTs distribution and orientation on the post buckling 

behavior of CNTR-FG panels and cylindrical shells are 

studied by Nguyen et al. (2019). A good review of research 

activities related to functionally graded carbon nanotube 

reinforced composites is mentioned in Liew et al. (2015 

)article. 

Graphene platelets are another kind of reinforcement 

nanofiller in composites with higher mechanical strength, 

elastic modulus, specific surface area and lower 

manufacturing cost compared to CNTs (Verma et al. 2014, 

Yang et al. 2017 and Mirzaei and Kiani 2017). Recently, 

some research have been carried out to investigate the 

mechanical characteristics of GPLs-reinforced structures. 

For instance, Feng et al. (2017) studied nonlinear free 

vibration of multi-layer GPL/Polymer nanocomposite beam 

with four GPL distribution patterns. Buckling and free 

vibration behavior of initially stressed multilayer Graphene 

platelets reinforced functionally graded composites 

(GPLRC_FG) cylindrical shells were studied by Liu et al. 

(2018). Hosseini and Zhang (2018) using the generalized 

finite difference method proposed a modified 
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micromechanical model for elastic wave propagation 

analysis in the GPLs-reinforced nanocomposite cylinder. 

Thai et al. (2019a) focused on dynamic and buckling 

analysis of GPLRC-FG plates based on four variable 

refined plate theory and using the NURBS formulation. In 

another works, they applied NURBS formulation for 

analysis of multilayer functionally graded GPLRC 

microplates considering small scale effects based on 

modified strain gradient theory (Thai et al. 2019b) and 

modified couple stress theory (Thai et al. 2019c). In past 

few years, some researchers have focused on reinforcing the 

porous material using graphene platelets to achieve more 

controllable and more specific problem targeting 

mechanical properties (Kitipornchai et al. 2017, Chen et al. 

2017, Sahmani et al. 2018 and Li et al. 2018).   

To the best of the authors’ knowledge, the geometrical 

nonlinearity has not been considered for GPLs reinforced 

functionally graded materials with nonlinear grading pattern 

of GPLs distributions. In this paper for the first time, the 

MLPG method which is an effective method for large 

deformation problems is developed for geometrically 

nonlinear analysis of GPLR-FG nanocomposite cylinders. It 
should be mentioned that the MLPG method is based on a set 

of scattered nodes instead of meshes which enables it to easily 

modeling the functionally graded material and eliminate mesh 

distortion issue. In addition in MLPG method, the 

differentiation on the stresses in equilibrium equation is 

transferred to the weight functions. Thus in this method, the 

derivatives of stresses and functionally graded distribution of 

GPLs are not required. The purpose of this paper is to show 

the mechanical and dynamical properties of GPLR-FG 

nanocomposite cylinders. For this purpose, various grading 

pattern of graphene platelets are analyzed using the 

geometrically nonlinear meshless method to study the effect 

of adding the graphene platelets on dynamic properties of 

reinforced nanocomposite cylinder. 

 

 

2. Radial point interpolations for the variations field 
 

In meshless methods, an arbitrary variation field 

function u  in the vicinity of a point of interest can be 

approximated using a small number of nodes located in 

point support domain. 

UΦu  (1) 

where U  is the fictions nodal variation field vector and 

Φ  is the matrix of shape functions given by 

-1
Q

T
RRΦ   (2) 

where R  is the vector of radial basis function and QR  

is the moment matrix of radial basis function which is 

consists of nodal values of radial basis function vector. 
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More details about the radial point interpolation method 

as well as the various radial basis functions can be found in 

a previous work of the authors (Rad et al. 2015a). In this 

paper the multi-quadric (MQ) radial basis function is 

adopted which is given by 

 qii crrR 22)(   (5) 

in which 03.1q  represents the dimensionless shape 

parameter which is determined using numerical 

investigation, c  is the average nodal distance in the 

support domain and ir  is the distance between the point of 

interest and nodes located in support domain. 

 

 

3. Functionally graded graphene platelets reinforced 
cylinder 

 

A cylinder is illustrated with the finite length L , inner 

radius inr  and outer radius outr  as shown in Fig. 1. The 

thick hollow cylinder is reinforced by functionally graded 

distribution of GPLs along the radial direction. The 

effective Young’s modulus E  vary through the radial 

direction considering the Halpin-Tsai micromechanical 

model accordingly to following equation (Yang et al. 2017). 

  TL EErE
8

5

8

3
  (6) 

where LE  and TE  represent the longitudinal and 

transverse moduli of unidirectional lamina, respectively. 

These parameters in Halpin-Tsai model are defined as 

(Yang et al. 2017) 
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In the last equation GPLV  stands for GPLs volume 

fraction. The length, width, thickness, mass density and 

elasticity modulus of the GPLs are denoted by GPLa , 

GPLb , GPLt , GPL  and GPLE , respectively. The other 

parameters of Eqs. (7) and (8) are given by (Yang et al. 

2017). 

 GPLGPLL ta /2  (9) 

 GPLGPLT tb /2  (10) 
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Fig. 1 Studied FG-GPLs reinforced thick hollow cylinder 
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where mE  is the elasticity modulus of polymer matrix. 

The choice of distribution pattern of graphene platelets in a 

composite structure is governed by the achievement of 

interesting mechanical performances. In this paper three 

possible laws for volume fraction GPLV  proposed by 

Hosseini and Zhang (2018) is considered as follows. 
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Table 1 Type and volume fraction exponent of different FG-

GPLs 

FG-GPL Type 
Volume fraction 

exponent 

T1N0.5 1 0.5 

T1N1.0 1 1.0 

T1N2.0 1 2.0 

T1N5.0 1 5.0 

T2N0.5 2 0.5 

T2N1.0 2 1.0 

T2N2.0 2 2.0 

T2N5.0 2 5.0 

T3N0.5 3 0.5 

T3N1.0 3 1.0 

T3N2.0 3 2.0 

T3N5.0 3 5.0 

 

 

 15.0

1



n

H  (17) 

in which, n  is the volume fraction exponent, m  is the 

mass density of polymer matrix and GPLW  is the GPL 

weight fraction. The three nonlinear grading pattern law for 

%3.0GPLW , m5.0inr , m1outr  and various 

volume fraction exponent are presented in Fig. 2. In this 

paper 8 types of FG graphene platelets with different 

grading pattern namely T1N0.2 to T3N5.0 are studied. The 

specifications of these materials are summarized in Table 1. 

Using the rule of mixture, the mass density  r  and 

poisson’s ratio  r  variation through the radial direction 

for FG-GPLs reinforced thick hollow cylinder can be 

expressed by 

  mmGPLGPL VVr    (18) 

  mmGPLGPL VVr    (19) 

It should be mentioned that in Galerkin method, the 

differentiation on the stresses is transferred to the weight 

function. Thus in this method, the derivatives of volume 

fraction GPLV  are not required. 

 

 

4. Kinematics and deformation 

 
As can be seen in Fig. 3, the coordinates of the material 

points of a body are given by the vector X  in the fixed 

reference configuration 0 . After the structure is 

deformed, the position of the material points can be 

described by their position vector x  at the current 

deformed configuration  . 

A differential line in the reference configuration may be 

mapped into one in the current configuration using the 

deformation gradient tensor F  (Zienkiewicz and Taylor 

2005). 
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XFx dd   (20) 

For axisymmetric problem, where the coordinates are 

taken as Z)(R ,,  and z)(r ,,  in the reference and 

current configurations, the deformation gradient 

components are given by (Celigoj 2001) 
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At the initial state, the deformation gradient matrix is 

the unit matrix. The increment of deformation gradient 

components at each load step may be expressed in terms of 

the incremental nodal displacement, using Eqs. (1) and (21). 

UBF  l  (22) 

where F  is the deformation gradient vector, 
l

B  is called 

the linear strain matrix and U  is the nodal displacement 

vector. 
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The deformation gradient tensor is a fundamental 

measure of deformations. With the help of the deformation 

gradient tensor, the Green’s strains can be defined as follow. 

 IFFε  T

2

1
 (26) 

where I  is the unit matrix. The incremental Green’s strain 

components can be computed using the chain rule as 

 FFΔFΔFεΔ
TT

2

1
  (27) 

Expanding the terms in the last equation, gives the 

variation of Green’s strain components in terms of the 

incremental deformation gradient. 

zrzrrrrrrr FFFF ΔΔΔ   (28) 
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The Eqs. (28) to (31) can be written in matrix form as 

FΔFεΔ ˆ  (32) 

where 
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(a) Type 1 (b) Type 2 

 

(c) Type 3 

Fig. 2 The adopted GPLs for various types of dispersion patterns 
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The variation of Green’s strains may now be written 

with respect to the increment of nodal displacement by 

substituting Eq. (22) into Eq. (32) to obtain 

  UΔBUΔBFεΔ
nllˆ   (34) 

where 
nl

B  is called the nonlinear strain matrix and 

defined as 

 nlnl
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5. Constitutive model 

 

The Green’s strain tensor ij  is energetically-

conjugate to the rate of second Piola-Kirchhoff stress tensor 

ijS , since they produces the energy stored in the 

deformable medium with respect to the initial configuration 

(Reddy 2014). In the Lagrangian description in which the 

motion of a body is referred to a reference configuration, 

the second Piola-Kirchhoff stress components are related to 

Green’s strain tensor as 

  εCS ΔΔ r  (36) 

where 

 zrrzzzrr SSSSS T
S  (37) 
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ε  (38) 
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where  rE  and  r  are introduced in Eqs. (6) and 

(19), respectively. Substitution of Eq. (34) in to Eq. (36) 

results in the variation of second Piola-Kirchhoff stress in 

terms of the increment of nodal displacement. 

  UΔBCSΔ
nlr  (40) 

 

 

 

6. Geometrically nonlinear Meshless local Perov-
Galerkin Method 

 
Using quantities related to the current (deformed) 

configuration, the governing equilibrium equation of 

motion for axisymmetric problems in cylindrical 

coordinates can be expressed as 

0,, 
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where   is the Cauchy (true) stress and   is the mass 

density in the current configuration. Using the weight 

function W , the Galerkin weak form of Eqs. (41) and (42) 

in a local subdomain at the current configuration   can 

be written as 

0d,, 
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Applying the Green divergence theorem and using the 

chain rule, Eqs. (43) and (44) can be written as 
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As shown in Fig. 4,   is the boundary of subdomain 

 , which is composed of three parts including interior 

boundary i , essential (displacement) boundary u  and 

natural (force or free) boundary t . Expressed in matrix 

form, Eqs. (45) and (46) becomes 
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where 
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Fig. 4 Local subdomains and parts of boundaries for 

axisymmetric problems 
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The equilibrium equation of motion may also be written 

for the reference configuration using the following relations 

between stress measures (Reddy 2014). 

T1
FSFσ

J
  (53) 

where F  is the deformation gradient matrix, J  is the 

determinant of F  and S  is the second Piola-Kirchhoff 

stress matrix. 
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The mass density, local subdomain, boundary of 

subdomain and unit normal vector (direction cosines) at the 

initial configuration are related to their values at the current 

configuration through the following mappings. 

00
0 dd,dd,  JJ

J


  (55) 
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Substituting Eqs. (53), (55) and (56) into Eq. (47) leads 

to equation of motion with respect to the initial 

configuration. 
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It should be mentioned that the last equation is nonlinear 

because the both sides of this equation are function of nodal 

displacement. Thus, an incremental-iterative setting must be 

established that obtains a solution for a time step tt d  

given the state at time step t . The incremental form of Eq. 

(57) may be obtained using the chain rule given by 

     FSSFSF  ˆˆˆ  (58) 

where 
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Applying the Eq. (58) into Eq. (57) yields to 
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 (60) 

Substituting Eqs. (22) and (40) into Eq. (60), the 

nonlinear incremental equation of motion can be 

summarized in the following matrix form. 

PUKUCUM  T
  (61) 

where 
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In Eq. (61), C  is the damping matrix. In this paper the 

damping matrix is constructed using Rayleigh method with 

respect to the mass and initial stiffness matrices. 

0KMC    (65) 

where 0K  is the initial stiffness matrix,   and   are 

constants with 1s  and s  units, respectively. The   

and   parameters can be determined using specified 

damping ratios i  and j  at the i th and j th modes of 

vibration. 
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In this paper, two first modes of vibration with the same 

damping ratios are considered for obtaining the damping 

matrix. To solve the resulting nonlinear equation (Eq. (61)), 

a standard Newmark/Newton-Raphson solution method has 

been mentioned which is presented in the next section. 

 

 
7. Newmark/Newton-Raphson method 

 
In this paper the implicit time integration method 

(Newmark method) is implemented to discrete the forced 

vibration equations at time domain and the Newton-

Raphson iterative solution scheme is used to linearize the 

equation at each time steps. The Newmark method states 

that the first and second derivatives of displacement vectors 

(velocity and acceleration vectors) at the time step 1it  

can be defined with respect to the pervious time step as 

follows. 
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   11 1   iiii tt UUUU    (68) 

In this study, the Newmark parameters is considered as 

25.0  and 5.0 , which yields to the constant 

average acceleration method. Applying Eqs. (67) and (68) 

into Eq. (61), the nonlinear quasi-static equation of motion 

can be achieved at each time step. 

ii PUK ˆˆ
T   (69) 
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The solution of the nonlinear quasi static equation of 

motion at each time steps is obtained through the iterative 

Newton-Raphson technique as described in our previous 

published paper (Rad et al. 2019). 
 
 
8. Numerical results and discussions 
 

8.1 Verification 
 

To verify the accuracy of proposed MLPG method at 

present study, a FGGPLs-reinforced thick hollow cylinder 

with the following boundary conditions is analyzed and the 

results are compared with those obtained by FEM. 

    0,,0,  zrtzrt izir  (72) 

    0,,,  zrtfzrt oznor  (73) 

    00,,00,  ruru zr  (74) 

where nf  is the external uniform load applied on outer 

surface at top of the cylinder in n ’th load step (see Fig. 5). 










Lz

LzPn
fn

0

0
 (75) 

where mNP /105.3 5
0  . The dimension of the cylinder 

is mri 3.0 , mro 4.0 , and mL 5.0  as the inner 

radius, outer radius and length of the cylinder, respectively. 

The properties of the epoxy matrix and graphene platelets 

are considered as the same reported by Yang et al. (2017). 

34.0,/1200,3 3  mmm mkgGPaE   (76) 

%3.0,5.1

5.1,5.2,186.0

/5.1062,01.1 3







GPLGPL

GPLGPLGPL

GPLGPL

Wnmt

mbma

mkgTPaE





 (77) 

If the GPL weight fraction GPLW  considered to be zero, 

the thick hollow cylinder becomes an isotropic polymer and 

it is possible to compare the obtained results with the FEM. 

In this paper, an axisymmetric four nodes element with two 

degrees of freedom at each node is used in finite element 

model. In Table 2, the radial displacements of point ‘A’ are 

compared with those obtained using finite element method. 

According to this table, a good agreement between the  

84



 

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder… 

 

 

 

 

 

 

 

 

 

  

Fig. 5 An axisymmetric thick hollow cylinder and its boundary conditions 

 

Fig. 6 Comparison between the FEM and MLPG results 

  
(a) Type 1 (b) Type 2 

 
(c) Type 3 

Fig. 7 The load step versus nonlinear radial displacement responses at the point ‘A’ for various volume fraction index 
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results of presented MLPG method (with 8×40 nodal 

distribution) and finite element method with very fine 

meshing (2000 elements with 2021 nodes) is achieved at the 

all load steps. 
In this table, the percentage difference of the MLPG 

method with the FEM is obtained from the following 

equation. 

100(%)dif 



FEM
r

MLPG
r

FEM
r

u

uu
 (78) 

It should be mentioned that after 9th load step, because 

of mesh distortion issue, the FEM results become unstable.  

Fig. 6 plots the load-displacement diagram obtained by 

MLPG method for 20 loading steps comparing with the 

linear and FEM results. According to this figure, it is found 

that very stable results obtained by the presented 

geometrically nonlinear MLPG method. In addition, the 

difference between linear and geometrically nonlinear 

analyses shows that the effect of large deformation cannot 

be negligible. So that the geometrically nonlinear analysis 

makes the cylinder softer than the linear solutions as the 

load steps increases.  

The effect of volume fraction index on stiffness and 

strength of the cylinder for various types of GPLs 

dispersion patterns is investigated in Fig. 7. As it can be 

seen in this figure, the cylinder strength and stiffness 

decreases with the increase of the volume fraction index for 

all three types of distributions. In addition, by comparing 

Figs. 7(a)-7(c) it is obvious that the cylinder stiffness 

depend on the laws for volume fraction (type of nonlinear 

grading pattern). For example at the end of load steps, the 

radial displacement of the T3N0.5 cylinder decreases by 

about 68.24% compared to isotropic polymer cylinder. In 

contrast, the T1N0.5 and T2N0.5 has a lower reduction in 

radial displacement (66.28% and 61.82% lower than 

isotropic polymer cylinder, respectively). 
 

8.2 Free vibration analysis 
 

For free vibration analysis, the following boundary 

conditions is assumed for the aforementioned cylinder (see 

Fig. 8). 

 

 
 

 

Fig. 8 Thick hollow cylinder under axisymmetric shock 

loading at the inner surface 
 
 

      0,,,,,  tzrttPtzrt izir  (79) 

    0,,,0,,  tzrttzrt ozor  (80) 

    0,,,0,0,  tLrttrt rr  (81) 

    0,,,0,0,  tLrutru zz  (82) 

Table 3 shows the values of the normalized frequencies 

associated to the first four vibration modes of the cylinders 

with various grading pattern at the initial state comparing 

with the isotropic polymer cylinder. The normalized natural 

frequencies are defined as 

i
m

m
i

E
L 


 














  (83) 

According to the considered modes, the frequencies of 

the cylinder made of T2N0.5 is 51 to 54% higher than those 

of isotropic polymer ones. The relation between the volume 

fraction index and the normalized frequencies of mode I 

and mode II for various types of grading pattern are shown 

Table 2 Radial displacement of pint ‘A’ obtained by MLPG method compared with reference FEM results (2000 

elements with 2021 nodes)  

Loading steps (n) 1 2 3 4 5 6 7 8 9 

FEM  cmur
A  0.289 0.591 0.906 1.236 1.583 1.945 2.321 2.711 3.107 

MLPG 

(6×24) 
 cmur

A  0.267 0.545 0.834 1.136 1.450 1.777 2.119 2.475 2.847 

dif (%) 7.61 7.78 7.95 8.09 8.40 8.64 8.70 8.71 8.37 

MLPG 

(6×30) 
 cmur

A
 

0.271 0.554 0.848 1.155 1.476 1.810 2.159 2.523 2.902 

dif (%) 6.23 6.26 6.40 6.55 6.76 6.94 6.98 6.93 6.60 

MLPG 

(8×32) 
 cmur

A
 

0.280 0.573 0.879 1.200 1.536 1.888 2.257 2.642 3.045 

dif (%) 3.11 3.05 2.98 2.91 2.97 2.93 2.76 2.55 2.00 

MLPG 

(8×40) 
 cmur

A
 

0.284 0.582 0.894 1.221 1.564 1.924 2.301 2.695 3.105 

dif (%) 1.73 1.52 1.32 1.21 1.20 1.08 0.86 0.59 0.06 
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in Figs. 9 (a) and 9 (b), respectively. It can be seen that for 

larger volume fraction index, the natural frequencies 

become smaller. It may be explained that the higher volume 

fraction index, the lower cylinder stiffness and the 

frequencies hence reduces.  

 
8.3 Dynamic analysis 
 
To continue the analysis, the following radial traction 

force applied on internal bounding surface of the cylinder is 

considered for the problem (see Fig. 10). 

   









0

00

0
,,

tt

tttP
tPtzrt ir  (84) 

where 0P  and 0t  are assumed to be GPa/s100  and 

s004.0 , respectively. The other boundary conditions are the 

same previously defined in Eqs. (79) to (82). 
The time histories of the linear and nonlinear radial 

displacement for T3N0.5 cylinder at point ‘B’ (see Fig. 8) is 

shown in Fig. 11. According to this figure, the large 

deformations effects on amplitude and period of vibration. 

In other words for this kind of loading, the geometrically 

nonlinear analysis causes to smaller amplitude and larger 

period of vibration compared to linear analysis.  

Based on Eq. (79), by increasing the time steps up to the 0t , 

the applied load and consequently the cylinder deformations 

will be increased (see Fig. 11). 
 

 
 

 
 

 

Fig. 10 The radial traction force applied on internal surface 

of cylinder 
 
 

 

Fig. 11 Comparison between the linear and geometrically 

nonlinear time histories 
 
 

  
(a) Mode I (b) Mode II 

Fig. 9 The effect of volume fraction index on initial natural frequencies 

Table 3 The normalized natural frequencies   of the thick hollow cylinder with various GPLs distribution 

patterns compared to isotropic polymer at the initial state  

 Isotropic 
Polymer 

Type 1 Type 2 Type 3 
n=0.5 n=1.0 n=2.0 n=5.0 n=0.5 n=1.0 n=2.0 n=5.0 n=0.5 n=1.0 n=2.0 n=5.0 

1
 

0.2338 0.3502 0.3215 0.2925 0.2668 0.3611 0.3371 0.3101 0.2811 0.3606 0.3385 0.3078 0.2762 

dif (%) - 49.79 37.51 25.11 14.11 54.45 44.18 32.63 20.23 54.23 44.78 31.65 18.14 

2
 

0.2438 0.3655 0.3364 0.3061 0.2742 0.3772 0.3518 0.3228 0.2854 0.3734 0.3424 0.3152 0.2825 

dif (%) - 49.92 37.98 25.55 12.47 54.72 44.30 32.40 17.06 53.16 40.44 29.29 15.87 

3
 

0.3655 0.5423 0.4983 0.4577 0.4204 0.5522 0.5119 0.4730 0.4330 0.5717 0.5342 0.4933 0.4468 

dif (%) - 48.37 36.33 25.23 15.02 51.08 40.05 29.41 18.47 56.42 46.16 34.97 22.24 

4
 

0.5318 0.8189 0.7602 0.6947 0.6208 0.8012 0.7364 0.6688 0.6004 0.8123 0.7505 0.6844 0.6129 

dif (%) - 53.99 42.95 30.63 16.74 50.66 38.47 25.76 12.90 52.75 41.12 28.70 15.25 
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Based on Eq. (79), by increasing the time steps up to the

0t , the applied load and consequently the cylinder 

deformations will be increased (see Fig. 11). The results of 

the higher natural frequencies 1  and 2  for various 

GPLs distributions at four time steps are listed in table 4. 

The effect of large deformations on the first and second 

natural frequencies of the cylinder made of T1N0.5, 

T1N1.0, T1N2.0 and T1N5.0 is presented in Fig. 12. It is 

obvious that by increasing the deformations, the natural 

frequencies become larger. It implies that the dynamic 

characteristics are sensitive to the large deformations, which 

should be considered in cylinder design. 

The time histories of nonlinear radial displacement at point 

‘B’ for Type 2 and various volume fraction indices is  

 

 

 

 

 

 

plotted in Fig. 13. It can be observed from this figure that 

the amplitude and period of vibration increase when the 

volume fraction index increases. 
In Figs. 14 (a) and 14(b), the time histories of the 

cylinders made of T3N0.5 and T3N5.0 are plotted for 

various damping ratios. According to these figures one can 

conclude that as would be expected, by increasing the 

damping ratio, the rate of vibration decays will be 

increased. In addition, by comparing these figures it is 

obvious that the damping ratio has more effect on vibration 

decays for lower volume fraction indices. 
The nonlinear radial displacement wave propagation along 

the radial direction at 2/Lz   can be tracked in Figs. 15 

(a) and 15(b) for T1N0.5 and T1N5.0, respectively. 

  
(a) Mode I (b) Mode II 

Fig. 12 The effect of large deformations on natural frequencies of the GPLRR-FG cylinder (Type I) 

 
Fig. 13 The radial displacement time history of the cylinder made of T2N0.5, T2N1.0 and T2N2.0 

  
(a) T3N0.5 (b) T3N5.0 

Fig. 14 The time history of radial displacement considering Rayleigh damping with various damping ratios 
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In these figures the radial displacement wave front can be 

tracked at various time instants. The distance between the 

graphs at the different times represents the speed of wave 

propagation. Comparing these figures reveals that the 

volume fraction index has significant effect on wave 

propagation. The wave propagation speed increased with 

the volume fraction index decreasing. 
 
 
9. Conclusions 

 

The MLPG method for the geometrically nonlinear 

vibration analysis of FG graphene platelets-reinforced 

nanocomposite cylinder is presented. The radial point 

interpolation method is employed to discretize the problem 

domain. The energy dissipation is taken in to account using 

the Rayleigh damping matrix. The distribution of GPLs 

along the radial direction is described by a micromechanical 

model based on the Halpin-Tsai model and rule of mixture. 

First, the accuracy of present MLPG method is corroborated 

via comparisons with the results obtained by FEM with 

very fine meshing and a good agreement is achieved for 

‘8×40’ nodal distribution. Then, it is demonstrated that the  

 

 

 

 

results of the MLPG method is more stable compared with 

the FEM one’s because of eliminating the mesh distortion 

issue. Finally, various types of GPLRR-FG nanocomposite 

cylinders have been analyzed using the proposed method 

and influence of reinforcement of the cylinder by GPLs 

with various grading patterns on stiffness, natural 

frequencies and periods of vibration are discussed in details. 

Moreover, the effect of Rayleigh damping of cylinder on the 

nonlinear vibration responses is studied. The important 

results can be outlined as follows: 

 The results showed that the GPLRR-FG nanocomposite 

cylinders have higher stiffness, strength and natural 

frequencies compared to isotropic polymer cylinder. 

 The stiffness and strength of the GPLRR-FG increases 

with the decrease of volume fraction index for all 

distribution pattern types.   

 In particular, the T1N0.5 GPLRR-FG nanocomposite 

offers the best compromise in terms of strength and 

stiffness.    

 The normalized natural frequencies increase along with 

the decreasing the volume fraction index. The most 

increasing in natural frequencies comparing with the 

isotropic polymer cylinder with proportions of 51 to 54% 

  
(a) T1N0.5 (b) T1N5.0 

Fig. 15 The nonlinear radial displacement wave propagation along the radial direction for two volume fraction indices of 

Type 1 

Table 4 The normalized higher natural frequencies 1  and 2  at the different time steps for various GPLs 

distribution patterns  

Time step  
Type 1 Type 2 Type 3 

n=0.5 n=1.0 n=2.0 n=5.0 n=0.5 n=1.0 n=2.0 n=5.0 n=0.5 n=1.0 n=2.0 n=5.0 

0t  
1  0.3502 0.3215 0.2925 0.2668 0.3611 0.3371 0.3101 0.2811 0.3606 0.3385 0.3078 0.2762 

2  0.3655 0.3364 0.3061 0.2742 0.3772 0.3518 0.3228 0.2854 0.3734 0.3424 0.3152 0.2825 

025.0 t  
1  0.3683 0.3427 0.3170 0.2983 0.3806 0.3588 0.3391 0.3124 0.3831 0.3559 0.3319 0.3085 

2  0.3832 0.3551 0.3291 0.3012 0.3959 0.3727 0.3440 0.3164 0.3877 0.3663 0.3397 0.3110 

050.0 t  
1  0.3898 0.3598 0.3341 0.3165 0.4059 0.3806 0.3594 0.3360 0.4064 0.3790 0.3533 0.3306 

2  0.4028 0.3724 0.3468 0.3246 0.4184 0.3938 0.3635 0.3384 0.4094 0.3828 0.3570 0.3330 

075.0 t
 

1
 

0.4114 0.3778 0.3479 0.3314 0.4274 0.4076 0.3817 0.3507 0.4238 0.4014 0.3719 0.3469 

2
 

0.4233 0.3938 0.3618 0.3409 0.4382 0.4178 0.3850 0.3577 0.4337 0.4074 0.3752 0.3493 

000.1 t
 

1
 

0.4177 0.4014 0.3607 0.3425 0.4363 0.4253 0.4067 0.3663 0.4337 0.4199 0.3944 0.3599 

2  0.4351 0.4071 0.3783 0.3493 0.4500 0.4293 0.4093 0.3749 0.4433 0.4229 0.3973 0.3632 
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is achieved for T2N0.5 nanocomposite cylinder.   

 It showed that the large deformations, effects on 

stiffness and dynamic characteristics such as natural 

frequencies, amplitude and period of vibration. For 

example under uniform internal pressure, by increasing 

the deformations, the natural frequencies become larger 

and the amplitude of vibration becomes smaller.  

 Increasing the volume fraction index causes to larger 

amplitude and period of vibration. 

 The damping ratio has more effect on vibration decays 

in lower volume fraction indices. 

 Volume fraction index has significant effect on wave 

propagation. The wave propagation speed increased 

with the volume fraction index decreasing. 

 Although the MLPG method needs more computational 

cost compared to the FEM, but it does not need the 

computational cost in the pre-processing which is 

usually more expensive. Additionally based on the 

obtained results, the MLPG method yields to more 

accurate results especially in large deformations 

compared to the FEM which must be considered 

together with the computational cost. 
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