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1. Introduction 
 

The problem of a beam under moving masses has been 

of interest for several decades. A wide range of analytical 

and numerical methods have been developed along the time 

to investigate the dynamic behaviour of all customary and 

non-customary components and structures using isotropic, 

composite and FGM models. Jeffcott introduced this at first 

in 1929 and was closely followed by Steuding and Odman 

(Stanis̆ić and Hardin 1969). Their solutions to the problem 

were presented in an approximate form involving rather 

laborious permutation techniques. Investigations regarding 

the problem of moving load are considerable, e.g., Xu et al. 

(1997) applied the finite difference method and the 

perturbation technique to study the longitudinal and 

transverse motions of a finite elastic beam subjected to a 

moving mass. Michaltsos et al. (1996) inquired into the 

mass and velocity influence of the moving load on the linear 

dynamic response of a simply-supported uniform beam. 

Dyniewicz et al. (2019) investigated the dynamic behaviour 

of a nonlinear Gao beam traversed by a moving mass or a 

massless concentrated force. Shokouhifard et al. (2019) 

presented an inverse dynamic analysis of an inclined FGM 

beam under a moving load for estimating the mass of 

moving load based on a conjugate gradient method.  
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Cicirello (2019), Dimitrovová (2019), Froio et al. (2018), 

Greco and Lonetti (2018), Hoang et al. (2017), Hou et al. 

(2015), Ichikawa et al. (2000), Kadivar and Mohebpour 

(1998), Kourehli et al. (2018), Simsek (2011), Song et al. 

(2017), Stojanović et al. (2017), Wu (2004) and Esen and 

Koç (2015) carried out the dynamic analysis of beams 

regarding to the moving masses through different analytical 

or numerical methods. The main studies are limited to the 

problems that the external load moves on the horizontal 

beams, while the many contexts of the inclined beams have 

remained for more investigation. 

Also, in the small number of published literature, the 

effects of Coriolis and centrifugal accelerations of the 

moving mass are considered in the interaction force 

between the mass and the beam. The response of a uniform 

beam excited by a moving mass was determined by 

Cifuentes (1989), which the introduced technique was based 

on a Lagrange Multiplier formulation. Wu (2005) studied 

the dynamic behaviour of an inclined homogeneous beam 

under a concentrated moving mass, which the moving load 

on the beam was considered as a moving mass element. 

Simsek (2010) presented the vibration analysis of a 

horizontal FGM beam under a moving mass, in which the 

moving mass was supposed on the mid-plane of the beam. 

Esen (2011) investigated the dynamic response of a beam 

due to an accelerating moving mass using moving finite 

element approximation. Mohebpour et al. (2013) studied an 

inclined flexible beam carrying one degree of freedom 

moving mass including rotary inertia effects. Mohebpour et 

al. (2016) investigated an inclined cross-ply laminated  

 
 
 

An inclined FGM beam under a moving mass considering Coriolis and 
centrifugal accelerations 

 

Vahid Shokouhifard1, Saeedreza Mohebpour1,2, Parviz Malekzadeh1 and Hekmat Alighanbari2 
 

1Department of Mechanical Engineering, Persian Gulf University, Bushehr, 7516913798, Iran 
2Department of Aerospace Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada 

 
(Received July 30, 2019, Revised February 28, 2020, Accepted March 5, 2020) 

 
Abstract.  In this paper, the dynamic behaviour of an inclined functionally graded material (FGM) beam with different 

boundary conditions under a moving mass is investigated based on the first-order shear deformation theory (FSDT). The 

material properties vary continuously along the beam thickness based on the power-law distribution. The system of motion 

equations is derived by using Hamilton’s principle. The finite element method (FEM) is adopted to develop a general solution 
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of the homogeneous and FGM beams traversed by a moving mass are compared with those in the existing literature. There is a 

good accord in all compared cases. In this study for the first time in dynamic analysis of the inclined FGM beams, the Coriolis 

and centrifugal accelerations of the moving mass are taken into account, and it is observed that these accelerations can be 

ignored for the low-speeds of the moving mass. The new provided results for dynamics of the inclined FGM beams traversed by 

a moving mass can be significant for the scientific and engineering community in the area of FGM structures. 
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Fig. 1 The inclined FGM beam under a moving 

concentrated mass mc 

 

 

composite beam subjected to a moving mass. 

The appearance of FGMs was beginning of a new era in 

applications of composites in various industries due to their 

favorable and continuously varying microstructure and 

mechanical and/or thermal properties (Horii and Nemat-

Nasser 1985, Suresh and Mortensen 1998, Thai and Vo 

2012, Kim and Reddy 2013, Kocaturk and Akbas 2013, 

Miyamoto et al. 2013, Duy et al. 2014, Bourada et al. 2015, 

Chaht et al. 2015, Darilmaz 2015, Kar and Panda 2015, 

Benferhat et al. 2016, Burlayenko et al. 2017, Chen et al. 

2017, Arioui et al. 2018, Esen et al. 2018, Esen 2019, 

Nguyen and Tran 2018, Cho 2019, Moleiro et al. 2019). 

This study presents the dynamic behaviour of an 

inclined FGM beam with different boundary conditions 

under a moving mass considering the effects of Coriolis, 

centrifugal accelerations of the moving mass and the 

friction force between the inclined beam and the moving 

mass. The moving mass is considered on the top surface of 

the beam instead of supposing it on the mid-plane of the 

beam. The new provided results for dynamics of the 

inclined FGM beams under a moving mass can be 

noteworthy for the scientific and engineering community in 

the area of FGM structures. 

 

 

2. The material gradient of FGM beams 
 

The FGM can be fabricated by continuously varying the 

constituents of multi-phase materials in a predetermined 

profile. The preferable features of an FGM member are the 

inhomogeneous microstructures with continuously graded 

material properties. An FGM can be defined by the variation 

of the material properties in terms of the volume fractions. 

Most researchers use the power-law function (P-FGM) or 

exponential function (E-FGM) to characterize the volume 

fractions. However, only there are a few studies that have 

characterised the volume fractions by using sigmoid 

function (S-FGM). Therefore, this paper considers an 

elastic P-FGM beam with rectangular cross-section, in 

which the material mixture varies along the thickness 

direction in terms of the volume fraction according to a 

power-law distribution. As shown in Fig. 1, the spatial 

coordinate x is defined along the beam length, whereas the 

z-axis is in the thickness direction, and originated at the 

middle surface of the beam. The material properties on the 

upper and lower surfaces of the beam are different but pre-

assigned because of compatibility with the performance 

demands. However, the mass density, the Young’s modulus 

and the Poisson’s ratio of the beam vary continuously in the 

thickness direction (z-axis). 

 

2.1 The material properties of P-FGM beams 
 

It is assumed that the material property gradation is 

through the thickness, and represented the profile of volume 

fraction variation by the power-law expression, i.e. 

,)()( ttb PPPzP   (1a) 

,)
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  (1b) 

where P  stand for a generic material property, for 

instance, the Young's modulus and the mass density, also 

the property of the top )2/( hz   and bottom )2/( hz   

faces of the beam are denoted by tP  and bP , respectively, 

and h  is the beam thickness. The material index k  

would specify the material variation profile through the 

beam thickness. 

 

 

3. Theoretical formulations 
 

3.1 General comments 
 

An inclined FGM Timoshenko beam with length L , 

width b , thickness h  and inclination angle   travelled 

by a concentrated mass of cm  with constant speed V  is 

considered (see Fig. 1). The rectangular Cartesian 

coordinate system ),,( zyx  is used to indicate the material 

points of the beam in the unstressed reference 

configuration. Moreover, it is assumed that the mass is in 

full contact with the beam, during its motion, i.e. no 

separation ensues. 

 

3.2 Motion equations of the entire inclined beam itself 
 

It is assumed that the beam deforms in the linear elastic 

range and hence the generalized Hooke’s law is used. In 

this study, the FSDT is employed to approximate the 

deformations of the beam and therefore by assuming small 

deformation, the linear strain-displacement relations are 
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in which ),,( tzxu  is the axial displacement of the beam, 

),( txuu   is the axial displacement of a point on the mid-

plane (i.e., 0z ) of the beam, ),( txww  is the 

transverse displacement of the beam measured downward 

from its equilibrium configuration, i.e. in the z-direction, 

and ),,( tzx   is the rotation of the beam cross-section 

due to the beam bending. Furthermore, x  and xz  are 

the normal strain and transverse shear strain of the beam, 

respectively. To extract the governing differential equations 

of motion by employing Hamilton’s principle, the kinetic 

energy )(K  and the strain energy )(U  of the beam are 

,
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where x  and xz  are the axial and transverse shear 

stresses acting on the beam, respectively. At the boundary 

points of the beam, the bending moment of a beam section 

perpendicular to the x -axis, the normal and shear forces 

are denoted by xxM̂ , xxN̂  and xQ̂ , respectively. The 

work done by the boundary forces and moments is 
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In this study, when the mass enters the left end of the 

beam, the zero initial conditions are supposed for the beam, 

i.e. the beam has not any deflection at time 0t . The 

variation of kinetic and strain energy of the FGM beam can 

be stated as follows. 
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It is assumed that Young's modulus )(E , shear modulus 

)(G  and mass density )(  vary according to Eq. (1a), 

and the shear correction factor 6
5sk . 

By establishing the Lagrangian function of the system as 

)( extWUTL   and applying Hamilton’s principle, the 

variational (or weak) form of the motion equations will be 

obtained as follows. 
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3.3 Finite element formulation 

 

Since the primary variables are the dependent unknowns 

themselves (and do not include their derivative), the 

dependent variables of the eth element of the beam (
eu , 

ew  and 
e ) can be approximated by the Lagrange 

interpolation functions. In this paper, the consistent 

interpolation procedure is used to overcome the shear 

locking phenomenon. The nodal displacements of the eth 

element of the beam ( }{ eu , }{ ew  and }{ e ) are 

approximated as follows. 
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The applied Lagrange interpolation functions k  

)7,,1( k  are defined as follows. 
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x
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The local x-coordinate of any point of the beam element 

with respect to the left end of the beam element is denoted 

by x . 

By substituting Eq. (12) into Eq. (10) 

},{}]{[}]{[ eeeee QqKqM   (16) 

in which ][ eM , ][ eK , }{ eQ  and }{ eq  are the element 

mass, stiffness matrices, the element nodal force and 

displacement vectors of the eth element of the FGM beam, 

respectively. The overhead dot indicates the differentiation 

with respect to time t . The expanded form of ][ eM , 

][ eK  and }{ eQ  are given in Appendix A. Therefore, the 

motion equations of the entire FGM beam itself are 

determined by 

},{}]{[}]{[}]{[ QqKqCqM bbb    (17) 

where ][ bM , ][ bK , }{Q  and }{q  are the overall mass, 

stiffness matrices, the overall nodal force and displacement 

vectors of the entire FGM beam itself, respectively, 

obtained by assembling all its element mass, stiffness 

matrices and nodal force vectors. The Rayleigh damping 

theory is applied for extracting the overall damping matrix 

][ bC  of the FGM beam itself (Bathe 1982). 
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where i  and j are the damping ratios of the structure 

corresponding to any two natural frequencies, i  and 
j . 

 
3.4 Force vector and property matrices of the moving 

mass element 
 

In this study, the effects of Coriolis, centrifugal 

accelerations of the moving mass and the friction force 

between the beam and the moving mass are considered. 

These effects are taken into account by using the contact 

force method for the beam element that the moving mass is 

located on it, at any instant of time, and this element is 

called moving mass element. 

The local x-coordinate of a point of the beam that the 

moving mass is located on it, which this point of the beam 

is further named contact point, is denoted by cx . The 

moving mass is considered on the top surface of the beam 

instead of supposing it on the mid-plane of the beam. 

Therefore, the acceleration component of the contact point 

in x-direction is ),,( 2 txuu h
cc

  . With regarding the 

centrifugal, Coriolis and inertial accelerations of the moving 

mass, the interaction forces in x and z directions ( cm
xF  and 

cm
zF , respectively) are given by using the contact force 

method as follows. 
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where w  and   for the contact point are denoted by 

cw  and c , respectively, and the overhead prime 

indicates differentiation with respect to coordinate x. cm
xF  

acts on the upper face of the beam, hence the corresponding 

moment of it cm
yM  is stated in Eq. (20). 
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so 
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Fig. 2 The equivalent nodal forces (f1–f7) of an inclined 

beam element under a moving concentrated mass mc 
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Substituting Eqs. (12) and (13) into Eqs. (19) and (21) 

results in 

     sin]
2

[ 77662211 gmqq
h

qqmF cc
m
x

c    

(23a)    4433554433 2cos[ qqVqqqgmc
    

  ],554433
2

55 qqqVq     

  VqqqgmF c
m
z

c 2cos[ 554433     

(23b) 

   ],554433
2

554433 qqqVqqq     
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2
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2

77662211 qq
h

qqm
h

M c
m
y

c     

(23c)   Vqqqgmgm cc 2cos[sin 554433     

   ]}.554433
2

554433 qqqVqqq     

The equivalent nodal forces of the inclined moving mass 

element are given by (See Fig. 2) 

),2,1(    kFf cm
xkk   (24a) 

),5,4,3(    kFf cm
zkk   (24b) 

).7,6(    kMf cm
ykk   (24c) 

By substituting Eq. (23) into Eq. (24) 
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. 

Hence the motion equations of the moving mass element in 

matrix form are derived by the following equation 

,}]{[}]{[}]{[}{}{ eee qkqcqmFf    (26) 

where terms of }{ f , }{F , ][m , ][c  and ][k  are given 

in Appendix B at the end of the paper. In Eqs. (23)-(25), i

, i   and i   )7,...,1( i  must be calculated for c  , 

in which c  denotes   for the contact point. 

 

3.5 Motion equations of the entire vibrating system 

 

For including the effects of Coriolis and centrifugal 

accelerations of the moving mass in motion equations of the 
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entire vibrating system, the contribution of the mass, 

damping and stiffness matrices related to the moving mass 

element, ][m , ][c  and ][k , must be added to the each 

one of the corresponding overall matrices of the entire 

inclined FGM beam itself, ][ bM , ][ bC  and ][ bK . In 

other words, the time-dependent overall mass matrix 

)]([ tM , damping matrix )]([ tC  and stiffness matrix 

)]([ tK  of the entire vibrating system are obtained by 

,][][)]([ 77  mMtM nnbnn  (27a) 

,][][)]([ 77  cCtC nnbnn  (27b) 

,][][)]([ 77  kKtK nnbnn  (27c) 

  ,71:except1 ,...ks  i,j,...,n  i,j MM kb,ijij   (27d) 

  ,71:except1 ,...ks  i,j,...,n  i,j CC kb,ijij   (27e) 

  ,71:except1 ,...ks  i,j,...,n  i,j KK kb,ijij   (27f) 

 ,1,...,7pk,  mkp, 
pkpk ssbss MM  (27g) 

 ,1,...,7pk,  ckp, 
pkpk ssbss CC  (27h) 

 ,1,...,7pk,  kkp, 
pkpk ssbss KK  (27i) 

where the total degrees of freedom of the entire vibrating 

system is denoted by n, the subscript )7,...,1( ksk  

represents the numbering of the 7 degrees of freedom of the 

moving mass element. Therefore, the motion equation of 

the entire vibrating system is given by 

)},({)}()]{([)}()]{([)}()]{([ tFtqtKtqtCtqtM    (28) 

where 

,}{}{)}({ 1711   fQtF nn  (29a) 

  ,7,...1siexcept  n  1,...,i k  kQF ii  (29b) 

 .1,...,7i   i  fQF
ii ss  (29c) 

 

 

4. Numerical results and discussion 
 

In the numerical results, forced vibration of the inclined 

FGM beam is investigated with the different boundary 

conditions. The material of the FGM beam is composed of 

Steel (SUS304) and Alumina )O(Al 32 , which their 

properties are shown in Table 1, and its properties vary 

along the thickness direction of the beam according to the 

power-law distribution. The bottom surface of the FGM 

beam is pure Alumina, whereas the top surface of the beam  

Table 1 Material property of FGM constituents 

Property Unit 
Stainless steel 

(SUS304) 

Alumina 

(Al2O3) 

Aluminum 

(Al) 

E  GPa  210 390 70 

  3kg/m  8166 3960 2700 

  - 0.3177 0.3 0.3 

 

 

is pure Steel. The dimensions and material properties of the 

studied inclined FGM beam in this paper are as follows. 

The beam thickness m 072322.0h , the beam width 

m 018113.0b , the length of the beam m 352.4L  and 

the damping ratios 005.021   . The moving mass 

kg 6.4cm , the friction coefficient between the beam and 

the moving mass  tan , and all of the present 

numerical results were acquired based on the acceleration of 

gravity 2m/s 81.9g . The responses of the system in each 

time step are obtained by applying the average acceleration 

scheme from the Newmark's time integration family 

procedures. The number of time steps is 100, and the finite 

element model of the inclined FGM beam is assembled of 

80 identical beam elements. The dimensionless transverse 

displacements of the inclined beam are obtained by the mid-

point static deflection of the simply-supported horizontal 

fully Steel (SUS304) beam under a concentrated shear force 

gmc  at this point, EIgLmD c 48/3 . For convenience, in 

the numerical results, T  and cT denote the total time 

taken by traversing the moving mass from the left end of 

the beam to the right end and the time that the maximum 

transverse displacement of the beam mid-point occurs in it, 

respectively. Furthermore, maxw  and cV  indicate the 

maximum transverse displacement of the beam and a 

moving mass speed leading to the maximum transverse 

deflection of the beam, which is called the critical velocity, 

respectively. In general, there is a difference between the 

critical velocity and the fundamental velocity, the 

fundamental velocity for a beam is calculated based on its 

fundamental frequency. 

 

4.1 Validation 

 

The numerical results of the free vibration analysis for 

the FGM beam in the limit cases are given in order to assess 

the accuracy and validity of the present formulation and 

numerical results. To that end, the first non-dimensional 

natural frequencies of the FGM beam with different 

boundary conditions )/)/(( 2
mm EhL    are shown 

in Table 2, where 
2

2
)(

h

h
m dzz  and 


2

2
)(

h

h
m dzzEE . It is assumed that the FGM beam is 

made from the mixture of Aluminum (Al) and Alumina and 

their volume fractions vary through the thickness of the 

beam according to the power-law expression. The results of 

this free vibration analysis are compared with the results of  
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different theories (Sina et al. 2009). A fast convergence rate 

of the results and their close accordance with those derived 

by the other studies, in all cases, validate the present 

formulation and numerical results. 

For validate the present dynamic solution, the material 

of the beam is considered to be full Steel (SUS304), and the 

effects of Coriolis and centrifugal accelerations of the 

moving mass on the dynamic responses of the beam are 

neglected. In Fig. 3, the results for the dimensionless 

transverse displacements of the contact point, in other 

words, the dimensionless moving mass trajectory, are 

plotted for the beam width m 5.0b , the beam thickness 

m 1h , the beam length m 20L , the speed of the 

moving mass m/s 25V  and different mass ratios, which 

the mass ratio is taken as beamcr Mmm / . The 

comparisons show that the agreement of the present study 

with the analytical solution of the simply-supported 

horizontal beam based on the Euler-Bernoulli theory (EBT) 

(Stanis̆ić and Hardin 1969) and the results reported by 

Şimşek (2010) is excellent. 

 

 

 

 

 

 

 

 

Fig. 4 The time history of the dimensionless transverse 

displacements at the mid-point of the simply-supported 

horizontal FGM beam for different material indices, 

smV / 25 , 20/ hL  and 5.0rm  
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Table 2 Non-dimensional fundamental frequency for the FGM beam with different boundary conditions, different 

length-to-height ratios and 3.0k  

Boundary Conditions Theory L/h = 100 L/h = 30 L/h = 10 

Simply-supported 

FSDBT1 [Sina et al.] 2.817 2.813 2.774 

FSDBT2 [Sina et al.] 2.742 2.737 2.695 

Present (FSDBT) 2.778 2.773 2.734 

Clamped-Clamped 

FSDBT1 [Sina et al.] 6.384 6.343 6.013 

FSDBT2 [Sina et al.] 6.212 6.167 5.811 

Present (FSDBT) 6.211 6.171 5.851 

Clamped-Free 

FSDBT1 [Sina et al.] 1.003 1.003 0.996 

FSDBT2 [Sina et al.] 0.977 0.976 0.969 

Present (FSDBT) 0.977 0.976 0.969 

  

Fig. 3 The dimensionless transverse displacements of the contact point for the horizontal fully steel beam, smV / 25 , 

20/ hL  and 5.0 ,1.0rm  
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Fig. 5 The variations of the Young's modulus and the mass 

density through the FGM beam thickness 

 

 

Moreover, in order to more validate the present 

formulation and numerical results, in Fig. 4, the time history 

of the dimensionless mid-point transverse displacement is 

plotted for 20/ hL , 5.0rm , m/s 25V  and 

different material indices k . The effects of Coriolis and 

centrifugal accelerations of the moving mass on the 

dynamic responses of the horizontal FGM beam are 

considered. As can be seen, there is a good accord between 

the results of the present study and the results of third-order 

shear deformation theory (TSDT) reported by Şimşek 

(2010). 

 

4.2 Effects of power-law index 

 

In Fig. 5, variations of the Young's modulus and the 

mass density through the beam thickness are shown for the 

various material indices, according to the power-law 

distribution. By increasing the material index, the relative 

volume of the steel used in the FGM beam increases, hence, 

as shown in Fig. 5, the Young's modulus and the mass 

density of the FGM beam decreases and increases, 

respectively. 

In Figs. 6 and 7, the variation of dimensionless maxw  

with respect to the velocity of the moving mass is plotted 

for an inclined FGM beam with the clamped-clamped and 

simply-supported boundary conditions and different 

material indices. As can be seen, the dimensionless maxw  

of the clamped-clamped and simply-supported inclined 

FGM beams can be divided into two regions: under-critical 

and over-critical regions, and for both of these regions, by 

increasing the material index, maxw  and cV  increases 

and decreases, respectively. 

The dimensionless mid-point transverse displacement of 

the simply-supported inclined FGM beam for the under-

critical, over-critical velocities of the moving mass and 

different material indices of the FGM beam is plotted in 

Figs. 8-9, and that obtained for the clamped-clamped 

inclined FGM beam is shown in Figs. 10 and 11. It can be 

concluded that the maximum transverse displacement of the 

mid-point of the simply-supported and clamped-clamped 

inclined FGM beams has a time-delay respective to the  

 

Fig. 6 The dimensionless maximum transverse 

displacement of the simply-supported inclined FGM beam 

with respect to the velocity of the moving mass for different 

material indices 

 

 

 

Fig. 7 The dimensionless maximum transverse 

displacement of the clamped-clamped inclined FGM beam 

with respect to the velocity of the moving mass for different 

material indices 

 

 

position of the moving mass when the velocity is in the 

over-critical region, and this tendency cannot always be 

observed in the under-critical region. As one can see, for an 

FGM beam traversed by a mass with an over-critical 

velocity, cT  increases with increasing the material index; 

in other words, the time-delay increases by decreasing the 

beam stiffness. Also, for the over-critical velocities of the 

moving mass, the maximum deflection of the beam mid-

point may occur after or before the moving mass leaving the 

right end of the beam, while for the under-critical velocities 

of the moving mass, it happens before the moving mass 

leaving the right end of the beam ( TTc  ). Moreover, in 

the under-critical region, for cases that 2/TTc  , the 

time-delay respective to the position of the moving mass 

increases with increasing the material index. 
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4.3 Effects of Coriolis and centrifugal accelerations 

 

In Fig. 12, the dimensionless maxw  for the inclined 

FGM beam with the clamped-clamped and simply-

supported boundary conditions and different material 

indices is plotted with respect to the velocity of the moving 

mass. As can be observed, for all studied cases, both maxw  

and cV  increase by considering the centr ifugal 

acceleration, while both of them decrease by considering 

the Coriolis acceleration. The influence of Coriolis and 

centrifugal accelerations on the dynamic behaviour of the 

inclined FGM beams increases with the increase of the 

moving mass velocity. On the other hand, the results 

obtained by simultaneously neglecting Coriolis and 

centrifugal accelerations are in much better agreement with  

 

 

 

Fig. 8 The time history of the dimensionless transverse 

displacement at the mid-point of the simply-supported 

inclined FGM beam for different material indices, 
smV / 20  

 

 

 

Fig. 9 The time history of the dimensionless transverse 

displacement at the mid-point of the simply-supported 

inclined FGM beam for different material indices, 

smV / 100  

 

 

Fig. 10 The time history of the dimensionless transverse 

displacement at the mid-point of the clamped-clamped 

inclined FGM beam for different material indices, 

smV / 80  

 

 

 

Fig. 11 The time history of the dimensionless transverse 

displacement at the mid-point of the clamped-clamped 

inclined FGM beam for different material indices, 
smV / 230  

 

 

those acquired by simultaneously considering both of these 

accelerations rather than those obtained by taking only one 

of them into account since these accelerations undermine 

the effects of each other on the dynamic behaviour of the 

inclined FGM beam. The considering of the Coriolis and 

centrifugal accelerations simultaneously, in comparison 

with neglecting both of these accelerations simultaneously, 

leads to decrease and increase in the critical velocity for the 

clamped-clamped and simply-supported inclined FGM 

beams, respectively. 

The dimensionless mid-point transverse displacement of 

the clamped-clamped and simply-supported inclined FGM 

beams for the under-critical, over-critical velocities of the 

moving mass and the different material indices of the FGM 

beam is plotted in Fig. 13. As it is seen, for all investigated  
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cases, the vibration amplitude of the inclined FGM beam 

mid-point decreases when both effects of the Coriolis and 

centrifugal accelerations are considered simultaneously. The 

influence of considering both of the accelerations for the 

high speeds of the moving mass is much greater in 

comparison with that for the low speeds because according 

to Eq. (19b) the magnitude of the Coriolis and centrifugal 

accelerations are proportional to the moving mass speed and 

square of it, respectively. Hence, the Coriolis and 

centrifugal accelerations can be neglected for a beam 

traversed by a low-speed mass. 

 

4.4 Effects of the inclined angle 

 

In Fig. 14, the dimensionless maxw  with respect to the 

velocity of the moving mass is plotted for the clamped-

clamped and simply-supported inclined FGM beams, which 

the results are computed for the different material indices 

and the different inclined angles of the beam with respect to 

the horizon. As one can observe, for all examined cases, 

maxw  decreases by increasing the inclined angle of the 

beam. 

In Fig. 15, the time history of the dimensionless mid-

point transverse displacement is plotted for the clamped-

clamped and simply-supported inclined FGM beams under 

the moving mass with the under-critical and over-critical 

velocities, which the results are calculated for the different  

material indices and the different inclined angles of the 

beam. As can be seen, for all investigated cases, by 

increasing the inclined angle of the inclined FGM beam, the  

 

 

vibration amplitude of the beam mid-point decreases, 

because of the decrease in the transverse component of the 

moving mass weight. 

 

 

5. Conclusions 
 

The dynamic behaviour of an inclined functionally 

graded material beam with different boundary conditions 

under a moving mass is investigated based on the first-order 

shear deformation theory. The material properties of the 

FGM beam vary continuously, based on the power-law 

distribution along the beam thickness. The moving mass is 

considered on the top surface of the beam instead of 

supposing it on the mid-plane of the beam. The 

comparisons show that the agreement of the present results 

with those in the existing literature is excellent. The effects 

of the boundary conditions, the moving mass velocity, 

various material distributions, inclined angle of the beam, 

Coriolis and centrifugal accelerations of the moving mass 

are studied. In this paper for the first time in dynamic 

analysis of the inclined FGM beams, the Coriolis and 

centrifugal accelerations of the moving mass are taken into 

account. The new provided results for dynamics of the 

inclined FGM beams traversed by a moving mass can be 

significant for the scientific and engineering community in 

the area of FGM structures. Based on the present results, 

one may draw the following conclusions: 

 

 

 

 

 
Fig. 12 The dimensionless maximum transverse displacement of the simply-supported (S-S) and clamped-clamped (C-C) 

inclined FGM beams with respect to the velocity of the moving mass for 5 ,1k , with considering centrifugal acceleration 

( ) ,  with considering Coriolis acceleration ( ), with considering Coriolis and centrifugal accelerations 

simultaneously ( ), with neglecting Coriolis and centrifugal accelerations simultaneously ( ) 
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Fig. 13 The time history of the dimensionless transverse displacement at the mid-point of the simply-supported (S-S) and 

clamped-clamped (C-C) inclined FGM beams for 5 ,1k , different velocities of the moving mass, with considering 

centrifugal acceleration ( ), with considering Coriolis acceleration ( ), with considering Coriolis and centrifugal 

accelerations simultaneously ( ), with neglecting Coriolis and centrifugal accelerations simultaneously ( ) 
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Fig. 14 The dimensionless maximum transverse displacement of the simply-supported (S-S) and clamped-clamped (C-

C) inclined FGM beams with respect to the velocity of the moving mass for 5 ,1k

 and different inclined angle of the beam with respect to the horizon 
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• For the under-critical and over-critical velocities 

of the moving mass, by increasing the material index, 

maxw  and cV  increases and decreases, respectively. 

• The maximum transverse displacement of the 

mid-point of the simply-supported and clamped-clamped 

inclined FGM beams has a time-delay respective to the 

position of the moving mass when the velocity is in the 

over-critical region, and this tendency cannot always be 

observed in the under-critical region. 

• For the over-critical velocities of the moving 

mass, the maximum deflection of the beam mid-point may 

occur after or before the moving mass leaving the right end 

of the beam, while for the under-critical velocities of the 

moving mass, it happens before the moving mass leaving 

the right end of the beam ( TTc  ). 

• For an FGM beam traversed by a mass with an 

over-critical velocity, cT  increases with increasing the 

material index; in other words, the time-delay respective to 

the position of the moving mass increases by decreasing the 

beam stiffness. Moreover, in the under-critical region, for 

cases that 2/TTc  , the time-delay increases with 

increasing the material index. 

• By considering the centrifugal acceleration in the 

dynamic analysis of an inclined FGM beam traversed by a 

moving mass, both maxw  and cV  increase, while both of 

them decrease by considering the Coriolis acceleration. 

• The influence of Coriolis and centrifugal 

accelerations on the dynamic behaviour of the inclined  

 

FGM beams increases with the increase of the moving mass 

velocity. 

• The results obtained by simultaneously neglecting 

Coriolis and centrifugal accelerations are in much better 

agreement with those acquired by simultaneously 

considering both of these accelerations rather than those 

obtained by taking only one of them into account since 

these accelerations undermine the effects of each other on 

the dynamic behaviour of the inclined FGM beam. 

• The considering of the Coriolis and centrifugal 

accelerations simultaneously, in comparison with neglecting 

both of these accelerations simultaneously, leads to decrease 

and increase in the critical velocity for the clamped-

clamped and simply-supported inclined FGM beams, 

respectively. 

• The vibration amplitude of the inclined FGM 

beam mid-point decreases when both effects of the Coriolis 

and centrifugal accelerations are considered simultaneously. 

• The influence of considering both the Coriolis 

and centrifugal accelerations for the high speeds of the 

moving mass is much greater in comparison with that for 

the low speeds because according to Eq. (19b) the 

magnitude of the Coriolis and centrifugal accelerations are 

proportional to the moving mass speed and square of it, 

respectively. Hence, the Coriolis and centrifugal 

accelerations can be neglected for a beam traversed by a 

low-speed mass. 

• By increasing the inclined angle of the FGM 

beams with respect to the horizon, maxw  and the vibration 

amplitude of the beam mid-point decrease, because of the 

 

 
Fig. 15 The time history of the dimensionless transverse displacement at the mid-point of the simply-supported (S-S) and 

clamped-clamped (C-C) inclined FGM beams for different velocities of the moving mass, different inclined angle of the beam 
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decrease in the transverse component of the moving mass 

weight. 
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 (A.1-20) 

and  7,...,1  iQe
i  are the nodal forces of an FGM beam 

element, which for two end nodes of the beam are zero or 

unknown, according to the boundary conditions. 
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At any instant of time, i , i   and i   )7,...,1( i  

must be calculated for c   and substituted into Eqs. 

(B.6)-(B.35), according to Eq. (13(b)). 
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