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1. Introduction 
 

Plate frame structures are utilized in various 

applications of engineering, like the marine industry, 

aircraft, and many other structures. Advancements in 

composite materials, on the other hand, enables to lighten 

and strengthen these structures. Mechanical properties of 

such a structure can be varied by changing lamination 

material, lamination angle, stacking sequence. Although 

numerous studies about laminated composite frame 

structures are reported in the literature, it has been seen that 

there has not been any published paper about laminated 

composite parabolic thick plate frames. There are several 

similar studies about composite folded plates (Wittrick and 

Horsington 1984, Liu and Huang 1992, Peng 2015), which 

are dealt with flat folded plates with different methods and 

theories.  

Vibration analysis of structures like beams, plates, 

frames, etc. has been a popular field of interest for a long 

time. Since mentioning about all studies is not possible, 

some publications are discussed as follows briefly. Marbur 

and Kant (1996) carried out a study that was aimed to 

conduct free vibration analysis of fiber -reinforced 

composite beams by utilizing the Higher-Order Shear  
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Deformation Theory (HSDT). They also investigated the 

dynamical behavior of sandwich composite beams in that 

work. Atlihan et al. (2009) utilized the Differential 

Quadrature Method (DQM) to perform free vibration 

analysis of a laminated composite beam. Ramtekkar (2009) 

used a 2-D plane stress mixed finite element model in order 

to perform a free vibration analysis of laminated beams 

with delaminations. Jun and Hongxing (1996) investigated 

the free vibration behavior of axially loaded laminated 

composite beams by using Higher Order Shear Deformation 

Theory. They introduced the dynamic stiffness matrix 

method to solve both free vibration and buckling problems. 

In addition, several boundary conditions. Ozturk (2012) 

investigated the vibration analysis of a pre-stress laminated 

composite curved beam. In that study, a curved beam was 

modeled by utilizing the Finite Element Method with a 

straight beam element. In addition, to obtain the curved 

shape, the Reversion Method was used to obtain a non-

linear deflection curve. Narita and Leissa (1992) presented 

an analytical approach to investigate the free vibration of 

cantilevered and symmetrically laminated rectangular plates 

by using the Ritz method. Afshari and Widera (2000) 

developed a series of the plate by considering the modified 

complementary energy principle formulations for free 

vibration analysis of composite plates. Pandit et al. (2007) 

investigated the free vibration analysis of composite 

rectangular plates by using a nine node isoparametric 

bending element with an effective mass lumping scheme. 

Besides simple rectangular plates, they also obtained natural 

frequency results not only for plates that have cutouts but 

also for plates on which distributed mass exists. Ngo-Cong 

et al. (2011) presented an effective Radial Basis Function 

for free vibration analysis of laminated composite plates via 
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the First-Order Shear Deformation Theory (FSDT). Ganesh 

et al. (2016) studied the free vibration analysis of laminated 

composite plates by using the finite element method and by 

considering several boundary conditions. Helloty (2016) 

examined parameters that affect the free vibration analysis 

of stiffened laminated composite plates. Belarbi et al. 

(2017) developed a higher-order layerwise finite element 

model for the free vibration analysis of multilayer sandwich 

plates. Fallah and Delzendeh (2018) utilized a Meshless 

Finite Volume (MFV) method for free vibration analysis of 

laminated composite plates. They tested MFV for different 

parameters such as plate thickness, stacking sequences, 

boundary conditions, and plate shapes. Cantin and Glough 

(1968) developed a curved cylindrical shell finite element 

for curved shells and proceeded a finite element analysis to 

find the displacement of a curved shell. Petyt and Deb Nath 

(1971) conducted a free vibration analysis for singly curved 

rectangular plates. Yas and Chakravorty et al. (1996) 

presented a finite element analysis for free vibration 

analysis of doubly curved shells by using First-Order Shear 

Deformation Theory. Garmsiri (2010) investigated three-

dimensional free vibration analysis of fiber-reinforced 

functionally graded cylindrical shells by using differential 

quadrature method (DQM). Ye et al. (2013) studied on free 

vibration analysis of laminated composite shallow shells 

with general elastic boundaries by using Rayleigh–Ritz 

procedure. Javed et al. (2016) studied on free vibration 

analysis of composite shells that have non-uniform 

thickness walls by using first-order shear deformation 

theory. Javed et al. (2016) utilized higher-order shear 

deformation theory to perform vibration analysis of 

antisymmetric angle-ply laminated plates for simply 

supported boundary conditions. Civalek (2017) investigated 

the vibration behavior of laminated composite truncated 

conical panels and annular sector panels with functionally 

graded materials (FGM) by using Love’s shell theory and 

First Order Shear Deformation Theory. Governing 

differential equations of this study were solved via 

Differential Quadrature (DQ) and Discrete Singular 

Convolution (DSC) method. Chaubey and Kumar (2017) 

conducted a free vibration finite element analysis of 

laminated composite cylindrical, spherical, hypar, saddle, 

and elliptical shells with cutouts and concentrated mass by 

using Third Order Shear Deformation Theory (TSDT). 

Javed et al. (2018) used higher-order shear deformation 

theory to evaluate the natural frequency values of the cross-

ply laminated plates depending on the aspect ratio, side-to-

thickness ratio, number of laminae, ply orientations, and 

stacking sequence. Hafizah and Viswanathan (2018) studied 

on the vibration of antisymmetric angle-ply composite 

annular plates by using first-order shear deformation theory 

and considering linear, exponential, and sinusoidal 

thickness variations. Guha Niyogi et al. (1993) modeled 

laminated composite folded structures and performed free 

and forced finite element vibration analysis by using First-

Order Shear Deformation Theory. Haldar and Sheikh (2005) 

presented a flexible shear element to conduct free vibration 

analysis of both isotropic and laminated composite plates. 

Thinh et al. (2012) studied finite element bending and 

vibration analysis of multi-folding laminated composite 

plates by using First-Order Shear Deformation Theory. 

This paper presents the free vibration finite element 

analysis of laminated parabolic thick plate frames 

(LCPTPF), which includes two square flat plates and one 

singly curved plate which is perpendicular to those flat 

plates. Governing equations are obtained by using First-

Order Shear Deformation Theory (FSDT). In order to 

perform finite element analysis, 4-node quadrilateral plate 

element and similarly, 4-node cylindrical shell element is 

utilized. Although both elements are used widely, it has 

been seen that there has not been any study about the 

combination of those elements in order to model a frame 

structure. This study proves that these two elements are in 

good agreement when integrated with each other. The 

natural frequency results of free vibration analysis of 

LCPTPF are obtained for several parameters such as 

curvature, aspect ratio, boundary conditions, stacking 

orders, and multi-bay structure. For comparison, the same 

structure is modeled and simulated via ANSYS. It is seen 

that finite element analysis results show good agreement 

with simulation results. 

 

 

2. Mathematical formulation 
 

In order to proceed free vibration analysis of LCPTPF, 

which is shown in Fig. 1, it is necessary to select an 

appropriate finite element and plate theory for both flat and 

curved plates. For flat plates, the four-node quadrilateral 

plate element that is shown in Fig. 2 is used. For the curved 

plate, on the other hand, the four-node cylindrical shell 

element, which is shown in Fig. 3, is utilized. The First 

Order Shear Deformation (FSDT) theory is selected as the 

plate theory for free vibration analysis of LCPTPF. 

Although there are numerous methods for analyzing 

composite structures, First Order Shear Deformation 

Theory (FSDT), an equivalent single-layer theory, is 

utilized to perform finite element free vibration analysis of 

LCPTPF. For an orthotropic laminated composite plate with 

n-layers, which is shown in Fig. 4, displacement 

components can be written as in Eq. (1). 

 

 

Fig. 1 Laminated Parabolic Thick Plate Frame 
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Fig. 2 Four-node quadrilateral element 

 

 
 

Fig. 3 Four-node cylindrical shell element 

 

 
 

Fig. 4 Laminated Composite Plate 
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𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜃𝑦(𝑥, 𝑦) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜃𝑥(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(1) 

Strain relations in accordance with displacements can be 

written as 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕𝜃𝑦

𝜕𝑥
 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
=

𝜕𝑣0

𝜕𝑦
+ 𝑧

𝜕𝜃𝑥

𝜕𝑦
 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
=

𝜕𝑣0

𝜕𝑥
+

𝜕𝑢0

𝜕𝑦
+ 𝑧 (

𝜕𝜃𝑥

𝜕𝑥
−

𝜕𝜃𝑦

𝜕𝑦
) 

𝛾𝑥𝑧 = −𝜃𝑦 +
𝜕𝑤

𝜕𝑥
 

𝛾𝑦𝑧 = 𝜃𝑥 +
𝜕𝑤

𝜕𝑦
 

(2) 

or 

{𝜀} = {𝜀0} − {𝜀1} =

[
 
 
 
 
 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦
𝜕𝑣0

𝜕𝑥
+

𝜕𝑢0

𝜕𝑦 ]
 
 
 
 
 
 

+ 𝑧

[
 
 
 
 
 
 −

𝜕𝜃𝑦

𝜕𝑥
𝜕𝜃𝑥

𝜕𝑦

𝜕𝜃𝑥

𝜕𝑥
−

𝜕𝜃𝑦

𝜕𝑦 ]
 
 
 
 
 
 

 

{𝛾0} =

[
 
 
 −𝜃𝑦 +

𝜕𝑤

𝜕𝑥

𝜃𝑥 +
𝜕𝑤

𝜕𝑦 ]
 
 
 

 

(3) 

In order to perform finite element analysis, a four-node 

quadrilateral plate element with five degrees of freedom at 

each node is considered. Displacement representation for 

each node is given as 

𝑢 = ∑𝑢𝑖𝑁𝑖

4

𝑖=1

    𝑣 = ∑𝑣𝑖𝑁𝑖

4

𝑖=1

   𝑤 = ∑𝑤𝑖𝑁𝑖

4

𝑖=1

 

𝜃𝑦 = ∑𝜃𝑦𝑖𝑁𝑖

4

𝑖=1

   𝜃𝑥 = ∑𝜃𝑥𝑖𝑁𝑖

4

𝑖=1

 

(4) 

Substituting Eq. (3) into Eq. (2) and writing in matrix 

form gives the strain matrix, which can be defined as 

[𝑩𝒔] =

[
 
 
 
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

𝛾𝑥𝑧

𝛾𝑦𝑧 ]
 
 
 
 

= ∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥
0 0 0 0

0
𝜕𝑁𝑖

𝜕𝑦
0 0 0

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑥
0 0 0

0 0 0 0 −
𝜕𝑁𝑖

𝜕𝑥

0 0 0
𝜕𝑁𝑖

𝜕𝑦
0

0 0 0
𝜕𝑁𝑖

𝜕𝑥
−

𝜕𝑁𝑖

𝜕𝑦

0 0
𝜕𝑁𝑖

𝜕𝑥
0 −𝑁𝑖

0 0
𝜕𝑁𝑖

𝜕𝑦
𝑁𝑖 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑢𝑖

𝑣𝑖

𝑤𝑖

𝜃𝑥𝑖

𝜃𝑦𝑖]
 
 
 
 4
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 (5) 

 

The constitutive relations of a layer of a laminated plate 

can be written with respect to the fiber-matrix axis as 

[
 
 
 
 
𝜎1

𝜎2

𝜏12

𝜏13

𝜏23]
 
 
 
 

=

[
 
 
 
 
𝑞11 𝑞12 0 0 0
𝑞12 𝑞22 0 0 0
0 0 𝑞66 0 0
0 0 0 𝑞44 0
0 0 0 0 𝑞55]

 
 
 
 

[
 
 
 
 
𝜀1

𝜀2

𝛾12

𝛾13

𝛾14]
 
 
 
 

 (6) 

where 

𝑞11 =
𝐸1

1 − 𝜗12𝜗21
 

𝑞12 =
𝜗12𝐸2

1 − 𝜗12𝜗21
 

𝑞22 =
𝐸2

1 − 𝜗12𝜗21
 

𝑞66 = 𝐺12 

𝑞44 = 𝐺13 

𝑞55 = 𝐺23 

𝐸1𝜗21 = 𝐸2𝜗12 

Since the stress and strain relations are given in local 

coordinates (along fibers), it is needed to transform these 

relations into the global coordinate axis (x,y,z). The 

stress and strain relations of the kth lamina in global axis 

can be expressed as 

(7) 

 

[𝝈]𝑘 = [𝑸]𝑘{𝜀} (8) 

or 

[
 
 
 
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

𝜏𝑥𝑧

𝜏𝑦𝑧 ]
 
 
 
 
𝑘

=

[
 
 
 
 
𝑄11 𝑄12 𝑄16 0 0
𝑄12 𝑄22 𝑄26 0 0
𝑄16 𝑄26 𝑄66 0 0
0 0 0 𝑄44 0
0 0 0 0 𝑄55]

 
 
 
 
𝑘

[
 
 
 
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

𝛾𝑥𝑧

𝛾𝑦𝑧]
 
 
 
 

 (9) 

where 
Q11 = 𝑞11𝑐

4 + 2(𝑞12 + 2𝑞66)𝑠
2𝑐2 + 𝑞22𝑠

4 

Q12 = (𝑞11 + 𝑞22 − 4𝑞66)𝑠
2𝑐2 + 𝑞12(𝑠

4 + 𝑐4) 

Q22 = 𝑞11𝑠
4 + 2(𝑞12 + 2𝑞66)𝑠

2𝑐2 + 𝑞22𝑐
4 

Q16 = (𝑞11 − 𝑞12 − 2𝑞66)𝑠𝑐
3 + (𝑞12 − 𝑞22 + 2𝑞66)𝑠

3𝑐 

Q26 = (𝑞11 − 𝑞12 − 2𝑞66)𝑠
3𝑐 + (𝑞12 − 𝑞22 + 2𝑞66)𝑠𝑐

3 

Q66 = (𝑞11 + 𝑞22 − 2𝑞12 − 2𝑞66)𝑠
2𝑐2 + 𝑞66(𝑠

4 + 𝑐4) 

𝑄44 = 𝑞55𝑠
2 + 𝑞44𝑐

2 

𝑄45 = 𝑞55𝑐𝑠 − 𝑞44𝑐𝑠 

𝑄55 = 𝑞55𝑐
2 + 𝑞44𝑠

2 

(10) 

where c and s denote cosθ, and sinθ, respectively. θ is the 

fiber angle. The strain energy stored in a structure can be 

expressed as 

𝑈 =
1

2
∫𝜎𝜀𝑑𝑣
𝑉

 (11) 

If Eqs. (4)-(8) are substituted into Eq. (10), the strain 

energy equation for laminated plates become as 
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𝑈 =
1

2
∫({𝜀0}

𝑇[𝑨]{𝜀0} − {𝜀0}
𝑇[𝑩]{𝜀1}−{𝜀1}

𝑇[𝑩]{𝜀0}
𝐴

+ {𝜀1}
𝑇[𝑪]{𝜀1}) 𝑑𝐴 

+
1

2
∫𝑝∗

𝐴

{𝛾0}
𝑇[𝑨𝒔]{𝛾0} 

(12) 

where [A]3x3, [B]3x3, [C]3x3, and [As]2x2, which are given in 

Eq. (13) represents longitudinal, bending-longitudinal 

coupled, bending and shear effects respectively. 

According to FSDT, shear stress is constant through 

thickness. However, it is known that in three-dimensional 

analysis, such variation should be at least quadratic. In 

order to satisfy that, a shear correction factor (p*) is 

introduced. While there is a method to calculate that factor, 

it is generally taken as 5/6 or π2/12. 

[𝑨] = ∑[𝑸𝒃𝒎]𝑘(𝑧𝑘+1 − 𝑧𝑘)

𝑁𝐿

𝑘=1

 

[𝑩] =
1

2
∑[𝑸𝒃𝒎]𝑘(𝑧𝑘+1

2 − 𝑧𝑘
2)

𝑁𝐿

𝑘=1

 

[𝑪] =
1

3
∑[𝑸𝒃𝒎]𝑘(𝑧𝑘+1

3 − 𝑧𝑘
3)

𝑁𝐿

𝑘=1

 

[𝑨𝒔] = ∑[𝑸𝒔]
𝑘(𝑧𝑘+1 − 𝑧𝑘)

𝑁𝐿

𝑘=1

 

(13) 

where zk is the kth layer of laminated plate and NL is the 

number of layers. [𝑸𝒃𝒎] and [𝑸𝒔] are 

[𝑸𝒃𝒎]𝑘 = [

𝑄11 𝑄12 𝑄16

𝑄12 𝑄22 𝑄26

𝑄16 𝑄26 𝑄66

]

𝑘

 

[𝑸𝒔]
𝑘 = [

𝑄44 0
0 𝑄55

]
𝑘

 

(14) 

The element stiffness matrix is obtained by using strain 

energy equation as 

[𝒌𝒆] =
1

2
∫[𝑩𝒔]

𝑻[𝑫][𝑩𝒔]𝒅𝑨
𝐴

 (15) 

where 

[𝑫] = [

[𝑨] [𝑩] 0

[𝑩] [𝑪] 0
0 0 𝑝∗[𝑨𝒔]

] (16) 

The kinetic energy equation can be written as 

𝑇 =
1

2
∫𝜌𝑘(
𝐴

𝑢2 + 𝑣2 + 𝑤2)𝑑𝐴 (17) 

Substituting Eq. (1) into Eq. (17) gives 

𝑇 =
1

2
∫(𝐼𝑢̇0

2 + 𝐼𝑣̇0
2

𝐴

+ 𝐼𝑤̇0
2 + 𝑃𝜃̇𝑦

2 + 𝑃𝜃̇𝑥
2 + 𝑉𝜃̇𝑦

2

+ 𝑉𝜃̇𝑥
2)𝑑𝐴 

(18) 

where 

𝐼 = 𝜌 ∫ 𝑑𝑧

ℎ/2

−ℎ/2

 

𝑃 = 𝜌 ∫ 𝑧𝑑𝑧

ℎ/2

−ℎ/2

 

(19) 

𝑉 = 𝜌 ∫ 𝑧2𝑑𝑧

ℎ/2

−ℎ/2

 

The element mass matrix can be obtained from the 

kinetic energy equation as 

[𝒎𝒆] =
1

2
∫[𝑵]𝑇[𝑰𝑷𝑸][𝑵]
𝐴

𝑑𝐴 (20) 

where [N] is the shape function matrix for each node which 

is given as 

[𝑵] = ∑

[
 
 
 
 
𝑁𝑖 0 0 0 0
0 𝑁𝑖 0 0 0
0 0 𝑁𝑖 0 0
0 0 0 𝑁𝑖 0
0 0 0 0 𝑁𝑖]

 
 
 
 4

𝑖=1

 (21) 

and [IPV] is the inertia matrix which is introduced as 

[𝑰𝑷𝑽] = ∑

[
 
 
 
 
𝐼 0 0 𝑃 0
0 𝐼 0 0 𝑃
0 0 𝐼 0 0
𝑃 0 0 𝑉 0
0 𝑃 0 0 𝑉]

 
 
 
 4

𝑖=1

 (22) 

Free vibration analysis of such a flat laminated 

composite plate is performed by solving eigenvalue 

problems via the finite element method in which global 

stiffness and mass matrices. Similarly, the same equations 

and techniques are applied to perform free vibration 

analysis for a curved laminated composite plate. However, 

there is a difference for curved plates (Qatu 2002) in terms 

of strain components which is given as 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
−

𝑤

𝑅𝑥𝑥
− 𝑧

𝜕𝜃𝑦

𝜕𝑥
 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
=

𝜕𝑣0

𝜕𝑦
−

𝑤

𝑅𝑦𝑦
+ 𝑧

𝜕𝜃𝑥

𝜕𝑦
 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
=

𝜕𝑣0

𝜕𝑥
+

𝜕𝑢0

𝜕𝑦
−

2𝑤

𝑅𝑥𝑦
+ 𝑧 (

𝜕𝜃𝑥

𝜕𝑥
−

𝜕𝜃𝑦

𝜕𝑦
) 

𝛾𝜀𝑥𝑧 = −𝜃𝑦 +
𝜕𝑤

𝜕𝑥
 

𝛾𝑦𝑧 = 𝜃𝑥 +
𝜕𝑤

𝜕𝑦
 

(23) 

Implementing Eq. (23) in the same way in laminated flat 

plates enables one to find element stiffness matrix and 

element mass matrix. Since the structure that is investigated 

in this study comprises singly curved plate, additional terms 

w/Ryy and 2w/Rxy are neglected. Thus, the [Bs] matrix 

becomes 

[𝑩𝒔𝒄] =

[
 
 
 
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

𝛾𝑥𝑧

𝛾𝑦𝑧 ]
 
 
 
 

= ∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥
0 −

𝑤

𝑅𝑥𝑥
0 0

0
𝜕𝑁𝑖

𝜕𝑦
−

𝑤

𝑅𝑦𝑦
0 0

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑥
0 0 0

0 0 0 0 −
𝜕𝑁𝑖

𝜕𝑥

0 0 0
𝜕𝑁𝑖

𝜕𝑦
0

0 0 0
𝜕𝑁𝑖

𝜕𝑥
−

𝜕𝑁𝑖

𝜕𝑦

0 0
𝜕𝑁𝑖

𝜕𝑥
0 −𝑁𝑖

0 0
𝜕𝑁𝑖

𝜕𝑦
𝑁𝑖 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑢𝑖

𝑣𝑖

𝑤𝑖

𝜃𝑥𝑖

𝜃𝑦𝑖]
 
 
 
 4

𝑖=1

 (24) 
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Fig. 5 Transformation of local coordinates 

 

 

Replacing [Bs] to [Bsc] in Eq. (15) gives element 

stiffness matrix for a singly curved plate. The element mass 

matrix equation is the same as Eq. (20). 

FSDT is an effective theory for free vibration analysis of 

laminated composite plates individually. Drilling effect is 

neglected in vibration analysis of laminated composite 

flat/curved plates when FSDT is used. However, in order to 

perform free vibration analysis of structures (i.e., frames), 

the addition of the drilling effect (θz) is necessary to satisfy 

all DOF. Therefore, it is needed to expand the dimensions 

of the element stiffness matrix and element mass matrix 

from 20x20 to 24x24. To perform such a process, the off-

diagonal terms that correspond to the θz are taken as zero. 

On the other hand, the corresponding diagonal terms are 

considered a quite small positive number, which is 1000 

times smaller than the smallest diagonal term of the 

corresponding element matrix. 

Following the implementation of the drilling effect, 

displacement terms are rotated by using Eq. (25) in order to 

model the LCPTPF structure.  The rotation process is 

completed by rotating the original plate 90 and 270 degrees 

around its y-axis, as it is shown in Fig. 5. 

{𝑢′} = [𝑻]{𝑢} (25) 

 

 

where [T] is the transformation matrix. The transformation 

matrix is given in Appendix A. {u’} is the vector of the 

rotated displacement terms and {u} is the displacement 

vector of the original displacement terms. 

After considering the transformation matrix for each 

node, the element stiffness and element mass matrix of 

rotated plate is derived from 

[𝑲𝒆] = [𝑻]𝑇[𝒌𝒆][𝑻] 

[𝑴𝒆] = [𝑻]𝑇[𝒎𝒆][𝑻] 
(26) 

The dynamic response of LCPTPF for a conservative 

system can be formulated by means of Lagrange’s equation  

of motion in the matrix form as 

([𝑲𝒈𝒍𝒐𝒃𝒂𝒍] − 𝜔2[𝑴𝒈𝒍𝒐𝒃𝒂𝒍])𝑞 = 0 (27) 

 

 

3. Numerical results 
 

In this study free vibration analysis of the LCPTPF, as 

shown in Fig. 1, is investigated in terms of the effect of 

radii of curvature, aspect ratio, boundary conditions and 

multi – bay case. Stacking sequences are set as [00/00/00/00], 

[00/900/900/00], [900/00/00/900], [0/450/-450/00] and [00/600/-

600/00] for all cases. These stacking sequences are denoted 

as P1, P2, P3, P4 and P5 in order to simplify. Material 

properties are given in Appendix A (Reddy 2003). Natural 

frequency values are obtained in hertz (Hz) for each case 

mentioned below. 

 

3.1 The effect of radii of curvature 
 

Four different radii of curvature parameter, which is 

depended on thickness (h), is introduced. Radii of curvature 

(Rxx) are ranged gradually from 500h to 10h. Other structure 

dimensions are set as a=ac=b=0.8 m, and b/h=10 and is 

fixed from both ends. Finite element analysis is performed 

with a mesh size of 30x30. For comparison of the accuracy, 

the same structure is also modeled using ANSYS. The 

natural frequencies obtained from analysis of the structure 

are given in Tables 1-5. 

Table 1 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P1 

Freq. 

No 

𝑅𝑥𝑥 = 500ℎ 𝑅𝑥𝑥 = 250ℎ 𝑅𝑥𝑥 = 100ℎ 𝑅𝑥𝑥 = 10ℎ 

Ansys  

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 

1 78.88 75.13 4.75 78.953 75.13 4.84 78.84 75.14 4.69 77.01 75.79 1.58 

2 135.48 135.79 0.23 135.49 135.79 0.22 135.39 135.78 0.29 131.42 134.65 2.46 

3 148.13 154.96 4.61 148.27 154.96 4.51 148.07 154.96 4.65 145.53 155.09 6.57 

4 270.98 276.70 2.11 271.41 276.67 1.94 269.21 276.43 2.68 243.97 259.02 6.17 

5 276.17 278.66 0.90 276.47 278.63 0.78 274.26 278.41 1.51 245.24 261.15 6.49 

6 309.09 314.12 1.63 309.87 314.14 1.38 308.97 314.25 1.71 304.76 314.72 3.27 

7 311.79 323.76 3.84 312.25 323.80 3.70 310.34 324.04 4.41 305.18 320.68 5.08 

8 339.15 326.28 3.79 340.14 325.87 4.20 338.97 324.62 4.23 335.42 341.28 1.75 

9 345.98 327.28 5.40 347.96 327.72 5.82 349.42 329.14 5.80 351.82 347.09 1.34 

10 347.96 354.15 1.78 349.83 354.09 1.22 351.36 353.69 0.66 369.63 350.46 5.19 
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Table 1 shows the first ten natural frequencies for P1 in 

accordance with the change of radii of curvature. It has 

been seen from Table 1 that as Rxx decreases, low frequency 

values decrease while high frequency values increase. 

The First ten natural frequency values of P2 are given in 

Table 2. The first six natural frequency values decrease 

when Rxx decreases. On the other hand, other natural 

frequency values increase as the radii of curvature 

decreases. 

Table 3 presents the first ten natural frequency values of P3. 

Similarly, to the natural frequency results of P1, which is 

given in Table 1, low frequency values decrease as Rxx 

decreases. 

On the other hand, high frequency values increase as Rxx 

decreases. 

According to Tables 4 and 5, natural frequency values of 

P4 and P5 trend is the same as P2. Outcomes of the present 

study are in good agreement with ANSYS results. It is seen 

from the results given in this section, the first five natural 

frequencies of all structures, regardless of their stacking 

sequence, decrease as Rxx decreases. Other natural  

 

 

frequency values behave differently with respect to the 

stacking sequence. The last five natural frequency values 

increase for P2, P4, and P5 when Rxx decreases. The ninth  

and tenth natural frequency values of P1 increase as Rxx 

decreases. Other natural frequency values of P1 behaves in 

the opposite way. The eighth and ninth natural frequency 

values of P3 increases when Rxx decrease. Other natural 

frequency values of P3 decrease as Rxx decreases. Although 

there are some differences between ANSYS results, the 

present work shows in a good agreement with ANSYS 

results, especially when Rxx increases. This is because the 

representation ability of the selected finite element for the 

curved part of the structure is very good for slightly curved 

structures. The stacking sequence has also affected the 

increment and the values of natural frequencies. 

In addition, it is concluded that the representation of the 

present study changes with respect to the fiber angle of each 

layer. Furthermore, it is observed that the fiber angle of the 

first and the last layer is more effective than those of the 

middle layer on the ability of representation of this study. 

Table 2 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P2 

Freq. 

No 

𝑅𝑥𝑥 = 500ℎ 𝑅𝑥𝑥 = 250ℎ 𝑅𝑥𝑥 = 100ℎ 𝑅𝑥𝑥 = 10ℎ 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 

1 74.42 70.87 4.76 74.60 70.87 4.99 74.37 70.88 4.69 72.61 71.28 1.83 

2 131.75 132.18 0.33 131.83 132.17 0.26 131.62 132.16 0.41 127.30 130.96 2.88 

3 143.88 152.83 6.22 144.30 152.83 5.91 143.81 152.83 6.27 141.09 152.95 8.41 

4 254.75 260.30 2.18 256.52 260.26 1.46 253.17 259.99 2.69 230.05 239.24 3.99 

5 260.28 264.12 1.48 261.70 264.08 0.91 258.60 263.83 2.02 232.47 244.23 5.06 

6 299.10 307.29 2.74 301.17 307.32 2.04 298.95 307.55 2.88 294.90 304.52 3.26 

7 326.39 311.04 4.70 330.00 310.98 5.76 329.47 310.62 5.72 333.41 323.32 3.03 

8 328.66 316.26 3.77 331.94 316.35 4.70 331.75 316.88 4.48 353.20 334.13 5.40 

9 343.05 364.31 6.20 346.26 364.31 5.21 342.62 364.31 6.33 364.38 364.53 0.04 

10 370.33 379.79 2.55 373.08 379.83 1.81 369.67 380.17 2.84 377.75 394.53 4.44 

Table 3 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P3 

Freq.No 

𝑅𝑥𝑥 = 500ℎ 𝑅𝑥𝑥 = 250ℎ 𝑅𝑥𝑥 = 100ℎ 𝑅𝑥𝑥 = 10ℎ 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 

1 36.54 34.34 6.02 36.53 34.34 5.99 36.51 34.35 5.90 35.43 35.52 0.27 

2 131.63 132.14 0.39 131.56 132.14 0.44 131.29 132.09 0.61 118.72 128.38 8.14 

3 133.81 144.92 8.30 133.79 144.92 8.32 133.73 144.92 8.37 122.30 144.93 18.50 

4 135.70 150.33 10.78 135.50 150.33 10.94 134.88 150.30 11.43 131.32 148.05 12.74 

5 152.57 168.37 10.36 152.36 168.37 10.51 151.77 168.37 10.94 145.22 168.65 16.13 

6 201.80 202.94 0.56 201.24 202.95 0.85 201.34 203.04 0.84 193.20 211.50 9.47 

7 204.03 215.61 5.68 204.52 215.62 5.43 204.01 215.70 5.73 198.34 222.60 12.23 

8 204.31 247.47 21.12 204.52 247.47 21.00 205.99 247.47 20.14 225.62 248.78 10.27 

9 213.33 254.46 19.28 213.86 254.46 18.98 215.44 254.46 18.11 234.82 254.47 8.37 

10 384.35 403.82 5.07 384.31 403.82 5.08 384.14 403.81 5.12 369.12 403.29 9.26 

49



 

Oguzhan Das, Hasan Ozturk and Can Gonenli 

 

 

 

3.2 The effect of aspect ratio 
 
The effect of aspect ratio on the dynamic response of 

LCPTPF is investigated in this section. Four different 

aspect ratio which only changes with respect to the structure 

height (a) is taken into account and the structure is fixed 

from two sides. Structure dimensions are set as a=0.8 m to 

1.6 m with 0.4 m increment, ac=b=0.8 m, Rxx/h=10 and 

b/h=10. For comparison, the same structure is modeled via 

ANSYS. The natural frequency results for this case are 

given in Tables 6-10. 

According to results given in Table 6, the natural 

frequency values of P1 change significantly with respect to 

aspect ratio. As aspect ratio rises, all natural frequencies 

declines. 

As it is expected, the error values decrease when the 

aspect ratio has smaller values. 

Table 7 shows the first ten natural frequency values of 

P2. It can be concluded that the interpretation of P1 can also 

be made for P2 since the natural frequency values of P2 are  

changing in the same way as P1’s. 

 

 

 

As can be seen from the results which are given in Table 

8, the aspect ratio has the same effect on P3 as other 

structures,  

The natural frequency values of P2 are greater due to the 

stacking sequence when compared with P1. Again, the same 

trend as P1 in terms of error rate can be seen for P2. 

P1 and P2. The natural frequency values are smaller 

than P1’s and diminishing with respect to declining in the 

aspect ratio. The error rates are relatively higher than those 

of P1 and P2. 

The first ten natural frequency values of P4 and P5 are 

given in Tables 9-10. It is seen that the fundamental 

frequencies of P4 and P5 for all aspect ratios are almost 

equal. The aspect ratio has the same effect as the other 

structures with different stacking sequences. The natural 

frequency values of P4 and P5 decreases as the aspect ratio 

increases. The error rates of the present study decrease 

when the value of the aspect ratio also decreases. For all 

structures with different stacking sequences, it can be 

concluded from the results given in this section that the 

increment of the aspect ratio affects the natural frequency  

 

Table 4 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P4 

Freq. 

No 

𝑅𝑥𝑥 = 500ℎ 𝑅𝑥𝑥 = 250ℎ 𝑅𝑥𝑥 = 100ℎ 𝑅𝑥𝑥 = 10ℎ 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Ansys 

(Hz) 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

1 74.67 71.60 4.10 74.86 71.60 4.35 74.62 71.61 4.03 72.85 72.10 1.02 

2 255.59 264.13 3.34 257.37 264.10 2.61 254.02 263.84 3.87 218.02 241.90 10.95 

3 258.09 273.47 5.96 258.60 273.38 5.72 255.29 272.80 6.86 230.76 244.28 5.86 

4 271.88 281.83 3.66 273.00 281.78 3.22 271.42 281.51 3.72 263.86 279.81 6.04 

5 294.71 289.15 1.89 295.45 289.24 2.10 294.88 289.79 1.73 290.22 297.70 2.58 

6 305.31 312.68 2.41 306.64 312.71 1.98 306.22 312.94 2.19 328.07 328.95 0.27 

7 327.18 321.10 1.86 330.80 321.12 2.93 330.30 321.30 2.72 333.86 341.06 2.16 

8 332.93 328.91 1.21 336.14 329.12 2.09 336.18 330.55 1.67 343.56 359.85 4.74 

9 343.43 371.03 8.04 346.62 371.04 7.05 343.06 371.04 8.16 363.61 371.47 2.16 

10 354.23 375.7 6.06 356.91 375.75 5.28 355.41 376.13 5.83 365.61 384.74 5.23 

 

Table 5 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P5 

Freq. 

No 

𝑅𝑥𝑥 = 500ℎ 𝑅𝑥𝑥 = 250ℎ 𝑅𝑥𝑥 = 100ℎ 𝑅𝑥𝑥 = 10ℎ 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Ansys 

(Hz) 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

1 74.85 71.17 4.92 75.04 71.17 5.15 74.80 71.18 4.84 73.02 71.61 1.93 

2 245.86 258.76 5.25 245.65 258.67 5.30 243.41 258.11 6.04 210.04 231.28 10.11 

3 249.35 260.31 4.40 250.14 260.31 4.07 248.96 260.32 4.56 231.74 241.18 4.07 

4 256.53 262.04 2.15 258.33 262.01 1.42 254.95 261.75 2.67 241.79 260.42 7.71 

5 269.35 270.46 0.41 270.65 270.50 0.06 269.72 270.77 0.39 266.87 275.70 3.31 

6 300.11 309.85 3.25 301.19 309.88 2.89 301.04 310.11 3.01 324.24 325.95 0.53 

7 329.61 316.93 3.85 333.29 316.95 4.90 332.72 317.11 4.69 336.27 332.54 1.11 

8 333.07 329.75 1.00 336.24 329.95 1.87 336.12 331.32 1.43 342.48 356.71 4.15 

9 345.06 367.51 6.51 347.62 367.51 5.72 345.62 367.52 6.34 351.50 367.78 4.63 

10 346.01 369.46 6.78 349.23 369.54 5.82 346.04 370.10 6.95 367.88 392.19 6.61 
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Table 6 The first ten natural frequencies of fixed LCPTPF structure with different aspect ratios for P1 

Freq. 

No 

𝑎

𝑏
= 0.5 

𝑎

𝑏
= 1 

𝑎

𝑏
= 1.5 

𝑎

𝑏
= 2 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 

1 163.27 163.39 0.07 77.01 75.79 1.58 44.54 43.93 1.37 28.89 28.75 0.46 

2 202.68 196.81 2.90 131.42 134.65 2.46 96.30 98.27 2.05 73.77 76.06 3.10 

3 261.62 251.93 3.70 145.53 155.09 6.57 99.53 110.10 10.62 74.69 85.39 14.33 

4 305.22 314.27 2.97 243.97 259.02 6.17 161.99 180.23 11.26 109.12 121.65 11.48 

5 315.27 321.39 1.94 245.24 261.15 6.49 166.03 181.38 9.25 113.90 124.95 9.70 

6 374.37 382.38 2.14 304.76 314.72 3.27 190.97 194.92 2.07 130.35 132.28 1.48 

7 494.60 480.02 2.95 305.18 320.68 5.08 212.71 210.03 1.26 142.69 142.84 0.11 

8 516.39 518.44 0.40 335.42 341.28 1.75 217.21 225.06 3.61 171.54 176.44 2.86 

9 561.38 540.67 3.69 351.82 347.09 1.34 224.82 231.38 2.92 174.92 179.24 2.47 

10 595.49 594.04 0.24 369.63 350.46 5.19 276.37 275.55 0.30 223.17 231.70 3.82 

 

Table 7 The first ten natural frequencies of fixed LCPTPF structure with different aspect ratios for P2 

Freq. 

No 

𝑎

𝑏
= 0.5 

𝑎

𝑏
= 1 

𝑎

𝑏
= 1.5 

𝑎

𝑏
= 2 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 

1 154.70 154.32 0.25 72.61 71.28 1.83 41.89 41.22 1.60 27.13 26.96 0.61 

2 193.35 199.10 2.97 127.30 130.96 2.88 91.55 93.91 2.59 68.92 71.20 3.32 

3 246.65 256.71 4.08 141.09 152.95 8.41 94.88 108.88 14.76 69.50 85.01 22.33 

4 296.40 282.98 4.53 230.05 239.24 3.99 152.81 169.34 10.82 102.81 114.63 11.50 

5 306.10 297.97 2.66 232.47 244.23 5.06 157.27 171.86 9.28 107.93 118.65 9.93 

6 460.76 456.86 0.85 294.90 304.52 3.26 182.51 186.19 2.02 124.29 126.39 1.69 

7 482.07 496.09 2.91 333.41 323.32 3.03 201.05 198.16 1.44 134.54 134.60 0.04 

8 599.91 627.32 4.57 353.20 334.13 5.40 262.65 260.10 0.97 211.14 220.57 4.47 

9 601.96 648.52 7.73 364.38 364.53 0.04 284.68 274.40 3.61 222.52 233.92 5.12 

10 608.08 656.85 8.02 377.75 394.53 4.44 295.93 306.83 3.68 230.94 237.98 3.05 

Table 8 The first ten natural frequencies of fixed LCPTPF structure with different aspect ratios for P3 

Freq. 

No 

𝑎

𝑏
= 0.5 

𝑎

𝑏
= 1 

𝑎

𝑏
= 1.5 

𝑎

𝑏
= 2 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 

1 86.94 88.85 2.19 35.43 35.52 0.27 19.20 19.78 3.02 12.03 12.98 7.91 

2 163.19 174.39 6.86 118.72 128.38 8.14 75.45 93.22 23.55 48.17 64.74 34.40 

3 174.77 189.76 8.58 122.30 144.93 18.50 85.29 97.90 14.79 59.38 69.43 16.93 

4 225.79 228.08 1.01 131.32 148.05 12.74 86.01 99.01 15.12 61.46 71.23 15.90 

5 226.46 250.28 10.52 145.22 168.65 16.13 94.83 113.72 19.92 66.37 73.43 10.64 

6 374.57 467.65 24.85 193.20 211.50 9.47 105.85 113.91 7.61 69.73 77.27 10.82 

7 388.56 472.17 21.52 198.34 222.60 12.23 118.65 127.96 7.85 83.15 93.89 12.92 

8 459.97 504.85 9.76 225.62 248.78 10.27 160.11 180.89 12.98 119.81 150.60 25.70 

9 494.71 578.41 16.92 234.82 254.47 8.37 171.22 192.44 12.39 135.04 166.59 23.36 

10 502.96 600.43 19.38 369.12 403.29 9.26 241.93 279.05 15.34 156.73 186.78 19.17 
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values. As the aspect ratio increases, the natural frequency 

values of those structures decrease. This is because when 

the aspect ratio increase, the stiffness matrix of the structure 

decrease. 

 

 

 

 

 

3.3 The effect of boundary conditions 

 

In this section, LCPTPF structure with two sides fixed  

 

Table 9 The first ten natural frequencies of fixed LCPTPF structure with different aspect ratios for P4 

Freq. 

No 

𝑎

𝑏
= 0.5 

𝑎

𝑏
= 1 

𝑎

𝑏
= 1.5 

𝑎

𝑏
= 2 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 

1 155.09 156.75 1.07 72.85 72.10 1.02 42.05 41.61 1.02 27.24 27.20 0.14 

2 278.78 282.44 1.31 218.02 241.90 10.95 153.26 166.14 8.40 100.88 112.25 11.27 

3 297.35 289.40 2.67 230.76 244.28 5.86 154.09 172.05 11.66 103.14 116.19 12.65 

4 516.80 514.18 0.51 263.86 279.81 6.04 154.29 174.28 12.96 109.18 119.92 9.84 

5 529.04 562.27 6.28 290.22 297.70 2.58 174.81 182.49 4.39 117.28 125.00 6.58 

6 552.15 579.23 4.90 328.07 328.95 0.27 201.52 201.01 0.25 134.92 136.26 0.99 

7 601.54 664.27 10.43 333.86 341.06 2.16 211.82 214.08 1.07 146.68 150.58 2.66 

8 609.99 675.02 10.66 343.56 359.85 4.74 234.26 255.46 9.05 186.10 205.29 10.31 

Table 10 The first ten natural frequencies of fixed LCPTPF structure with different aspect ratios for P5 

Freq. 

No 

𝑎

𝑏
= 0.5 

𝑎

𝑏
= 1 

𝑎

𝑏
= 1.5 

𝑎

𝑏
= 2 

Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 
Ansys 

(Hz) 

Present 

Work 

(Hz) 

Err. % 

1 156.02 155.41 0.39 73.01 71.61 1.92 42.06 41.36 1.65 27.20 27.04 0.56 

2 275.69 276.03 0.12 210.04 231.28 10.11 144.13 157.79 9.48 95.35 108.19 13.47 

3 299.04 285.57 4.50 231.72 241.18 4.08 146.46 159.19 8.69 103.28 110.39 6.88 

4 465.57 492.50 5.78 241.79 260.42 7.71 153.70 170.50 10.93 103.73 115.31 11.16 

5 471.47 516.02 9.45 266.87 275.70 3.31 164.79 178.59 8.37 111.40 122.70 10.14 

6 513.22 539.00 5.02 324.24 325.95 0.53 202.48 199.40 1.52 135.31 135.29 0.01 

7 605.83 655.00 8.12 336.27 332.54 1.11 203.44 205.44 0.98 140.06 144.22 2.97 

8 610.40 661.13 8.31 342.48 356.71 4.15 233.86 266.05 13.76 186.94 222.69 19.12 

9 647.09 701.92 8.47 351.50 367.78 4.63 237.07 276.6 16.67 187.68 226.61 20.74 

10 661.34 713.22 7.84 367.88 392.19 6.61 286.95 279.00 2.77 232.47 239.81 3.16 

Table 11 The first ten natural frequencies of P1 with fixed and simply supported boundary conditions 

Freq. No 

SS CC 

Ansys (Hz) 
Present Work 

(Hz) 
Err. % Ansys (Hz) 

Present Work 

(Hz) 
Err. % 

1 39.76 37.13 6.59 77.01 75.797 1.58 

2 131.26 134.61 2.55 131.42 134.65 2.46 

3 135.38 145.79 7.69 145.53 155.09 6.57 

4 213.65 235.46 10.21 243.97 259.02 6.17 

5 218.47 238.83 9.32 245.24 261.15 6.49 

6 272.26 279.81 2.77 304.76 314.72 3.27 

7 277.37 291.74 5.18 305.18 320.68 5.08 

8 298.51 302.17 1.23 335.42 341.28 1.75 

9 312.94 309.42 1.12 351.82 347.09 1.34 

10 349.86 326.99 6.54 369.63 350.46 5.19 
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Table 12 The first ten natural frequencies of P2 with fixed and simply supported boundary conditions 

Freq. No 

SS CC 

Ansys (Hz) Present Work 

(Hz) 

Err. % Ansys (Hz) Present Work 

(Hz) 

Err. % 

1 37.36 34.61 7.34 72.61 71.28 1.83 

2 127.11 130.93 3.01 127.30 130.96 2.88 

3 131.25 144.33 9.97 141.09 152.95 8.41 

4 201.14 218.18 8.47 230.05 239.24 3.99 

5 206.81 223.99 8.31 232.47 244.23 5.06 

6 261.86 268.96 2.71 294.90 304.52 3.26 

7 295.55 284.62 3.70 333.41 323.32 3.03 

8 332.40 310.35 6.63 353.20 334.13 5.40 

9 341.96 335.57 1.87 364.38 364.53 0.04 

10 353.17 368.75 4.41 377.75 394.53 4.44 

Table 13 The first ten natural frequencies of P3 with fixed and simply supported boundary conditions 

Freq. No 

SS CC 

Ansys (Hz) 
Present Work 

(Hz) 
Err. % Ansys (Hz) 

Present Work 

(Hz) 
Err. % 

1 16.95 15.76 7.02 35.43 35.52 0.27 

2 97.45 124.87 28.14 118.72 128.38 8.14 

3 109.26 125.69 15.04 122.3 144.93 18.50 

4 119.79 132.88 10.93 131.32 148.05 12.74 

5 133.18 151.36 13.65 145.22 168.65 16.13 

6 153.90 159.56 3.68 193.20 211.50 9.47 

7 171.13 179.20 4.72 198.34 222.60 12.23 

8 199.93 217.37 8.72 225.62 248.78 10.27 

9 212.36 223.37 5.18 234.82 254.47 8.37 

10 357.55 389.04 8.81 369.12 403.29 9.26 

Table 14 The first ten natural frequencies of P4 with fixed and simply supported boundary conditions 

Freq. No 

SS CC 

Ansys (Hz) Present Work 

(Hz) 

Err. % Ansys (Hz) Present Work 

(Hz) 

Err. % 

1 37.50 34.93 6.85 72.85 72.10 1.02 

2 199.68 221.89 11.12 218.02 241.9 10.95 

3 201.64 228.14 13.14 230.76 244.28 5.86 

4 230.39 250.09 8.55 263.86 279.81 6.04 

5 265.63 277.11 4.32 290.22 297.70 2.58 

6 291.81 288.71 1.06 328.07 328.95 0.27 

7 295.69 312.08 5.54 333.86 341.06 2.16 

8 310.49 328.34 5.75 343.56 359.85 4.74 

9 341.68 341.55 0.04 363.61 371.47 2.16 

10 347.76 361.83 4.05 365.61 384.74 5.23 
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Table 15 The first ten natural frequencies of P5 with fixed and simply supported boundary conditions 

Freq. No 

SS CC 

Ansys (Hz) Present Work 

(Hz) 

Err. % Ansys (Hz) Present Work 

(Hz) 

Err. % 

1 37.50 34.71 7.44 73.02 71.61 1.93 

2 194.55 219.49 12.82 210.04 231.28 10.11 

3 202.14 220.88 9.27 231.74 241.18 4.07 

4 213.73 235.12 10.01 241.79 260.42 7.71 

5 241.53 257.19 6.48 266.87 275.70 3.31 

6 284.97 286.31 0.47 324.24 325.95 0.53 

7 297.23 299.78 0.86 336.27 332.54 1.11 

8 306.49 327.81 6.96 342.48 356.71 4.15 

9 326.22 338.24 3.68 351.50 367.78 4.63 

10 344.97 367.22 6.45 367.88 392.19 6.61 

Table 16 Mode shapes of fixed from two ends LCPTPF  

Mode P1 P2 P3 P4 P5 

1 Bn/Ln Bn/Ln Bn/Ln Bn/Ln Bn/Ln 

2 Bn/Ln Bn/Ln Tr/Bn Tr/Bn Tr/Bn 

3 Tr/Bn Tr/Bn Bn Bn Bn 

4 Bn Bn Tr/Bn Tr/Bn Tr/Bn 

5 Tr/Bn Tr/Bn Tr/Bn Tr/Bn Tr/Bn 

6 Bn Tr Bn Bn Bn 

7 Tr Bn Tr Bn Bn 

8 Bn Tr/Bn Bn Bn Bn 

9 Bn Bn Tr/Bn Bn Bn 

10 Tr/Bn Bn Bn Bn Bn 

*Bn: Bending; *Ln:Longitudinal; *Tr:Torsion 

 

Fig. 6 The error rates of LCPTPF with all stacking orders for fixed and simply supported boundary conditions. 
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(CC) and simply supported (SS) boundary conditions are 

investigated for P1, P2, P3, P4, and P5 stacking sequences. 

Structure dimensions are set as a=ac=b=0.8 m, Rxx/h=10 

and b/h=10. 

All mode shapes have been defined according to general 

deflection tendencies to form (i.e., Bn: Bending; Ln: 

Longitudinal; Tr: Torsion). 

Tables 11 and 12 show the first ten natural frequency 

values of P1 and P2 for simply supported and fixed from 

two ends boundary conditions. It is seen that natural 

frequency values are greater for that of fixed boundary 

conditions. 

Free vibration analysis results for P3 are given in Table 13. 

The natural frequency values are higher for that of fixed 

boundary conditions. A similar interpretation can be made 

for this stacking sequence. The error rates of the present 

study are relatively higher than those of P1 and P2. 

The first ten natural frequency values for simply 

supported and two sides fixed boundary conditions for P4 

and P5 are given in Tables 14-15, respectively. 

As seen from Tables 14-15, changes in natural frequency 

for P5 and P4 are similar to P1, P2, and P3. Error rates 

change with respect to the mode of the structure for relevant 

boundary conditions, as seen in Fig. 6. Mode shapes for 

both boundary conditions are given in Tables 16 and 17. 

For fixed from two sides boundary conditions, it can be 

seen from Table 16 that for all stacking orders, the first 

mode is the coupling of bending and longitudinal vibration. 

Two different vibration mode is observed for the second 

mode. P1 and P2 have the same vibration mode, which is 

the coupling of bending and longitudinal vibration. On the 

other hand, P3, P4, and P5 vibrate in torsional and bending 

coupled mode. For the third mode, while P1 and P2 vibrate 

in the torsional vibration mode, P3, P4, and P5 vibrate in 

the bending mode. The fourth mode is the symmetry of the 

third mode. P1 and P2 vibrate in the bending mode, whereas 

P3, P4, and P5 vibrate in the torsional mode. For the fifth 

mode, P1, P2, P3, P4, and P5 vibrate in the coupling of 

bending and torsional modes.  

The sixth and the seventh and the eighth mode are the 

same for P1 and P3, which is the bending, torsional, and  

 

 

 

bending vibration, respectively. P2 behaves differently from 

all other stacking sequences after the fifth mode. P4 and P5 

behave the same for all modes. This is because even they 

have different fiber angles, they have the same angle 

pattern. 

It is seen from Table 17 that for simply supported boundary 

conditions, the same mode of the fixed boundary condition 

is present for all stacking sequences. For the second mode, 

there are three different vibration modes. P1 and P2 vibrate 

in the coupling of bending and longitudinal mode, whereas 

P4 and P5 vibrate in the coupling of torsion and bending 

mode. P3 is in the pure bending vibration in this mode. For 

the third mode, P1 and P2 are in the torsional vibration 

mode. P4 and P5 are in the bending mode. P3 vibrates in the 

coupling of torsional and bending mode. The fourth and the 

fifth modes have the same behaviour as of the fixed 

boundary condition for all stacking orders.  

Different bending modes occur at the sixth modes for each 

stacking sequence. Except for P4 and P5, all stacking orders 

have different mode shapes for the seventh, eighth, ninth, 

and tenth modes. 

It is concluded that no matter which boundary condition 

is applied, the first mode is the coupling of bending and 

longitudinal vibration regardless of the stacking order. For 

the other modes, the angle and the angle pattern change the 

vibration mode of the structure. In addition, except for the 

first and the sixth modes, the boundary condition also 

changes the mode of the structure as expected. 
 

3.3 Multi-bay structure 
 
Multi-Bay structure of LCPTPF, which is shown in   

Fig. 7, is investigated by using FSDT. The clamped 

boundary condition is selected for free vibration analysis. 

The natural frequency results are given in Tables 18-22. 

Free vibration analysis results of multi-bay structure with 

P1 and P2 stacking orders are given in Tables 18-19, 

respectively. It is seen that the natural frequency values of 

the multi-bay structure for P1 and P2 are greater than the 

natural frequency values of P1 and P2 with single-bay (see 

Table 1 and Table 2). For the most modes, the present study 

is in good agreement with ANSYS results. 

Table 17 Mode shapes of simply supported LCPTPF 

Mode P1 P2 P3 P4 P5 

1 Bn/Ln Bn/Ln Bn/Ln Bn/Ln Bn/Ln 

2 Bn/Ln Bn/Ln Bn Tr/Bn Tr/Bn 

3 Tr Tr Tr/Bn Bn Bn 

4 Bn Bn Tr/Bn Tr/Bn Tr/Bn 

5 Tr/Bn Tr/Bn Tr/Bn Tr/Bn Tr/Bn 

6 Bn Bn Bn Bn Bn 

7 Bn Bn Tr/Bn Bn Bn 

8 Bn Tr/Bn Bn Bn Bn 

9 Bn Bn Tr/Bn Bn Bn 

10 Tr/Bn Bn Bn Bn Bn 

*Bn: Bending; *Ln:Longitudinal; *Tr:Torsion 
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Table 18 The first ten natural frequencies of multi – bay P1 

with fixed boundary conditions 

Freq. No Ansys (Hz) 
Present Work 

(Hz) 
Err. % 

1 71.53 73.34 2.54 

2 118.49 122.88 3.70 

3 138.64 145.76 5.14 

4 221.64 239.08 7.87 

5 240.55 263.72 9.63 

6 241.46 276.89 14.67 

7 247.44 298.93 20.81 

8 299.93 316.50 5.52 

9 302.96 328.01 8.27 

10 312.52 335.09 7.22 

 
 
 
Table 19 The first ten natural frequencies of multi – bay P2 

with fixed boundary conditions 

Freq. No Ansys (Hz) 
Present Work 

(Hz) 
Err. % 

1 67.49 69.10 2.40 

2 114.59 119.77 4.52 

3 134.38 142.49 6.04 

4 212.19 224.42 5.76 

5 227.26 237.85 4.66 

6 228.57 255.96 11.98 

7 233.58 266.27 14.00 

8 291.16 305.96 5.08 

9 292.53 313.62 7.21 

10 335.24 322.91 3.68 

 
 
 
Table 20 The first ten natural frequencies of multi – bay P3 

with fixed conditions 

Freq. No Ansys (Hz) 
Present Work 

(Hz) 
Err. % 

1 32.96 37.90 15.01 

2 108.95 118.60 8.86 

3 122.93 139.01 13.08 

4 124.46 168.06 35.03 

5 129.38 181.46 40.25 

6 140.6 191.93 36.51 

7 149.43 198.02 32.52 

8 196.83 228.18 15.93 

9 197.34 233.71 18.43 

10 219.84 242.45 10.28 

 
 

 

 

Fig. 7 Multi-Bay Structure of LCPTPF 
 
 
Table 21 The first ten natural frequencies of multi – bay P4 

with fixed boundary conditions 

Freq. No Ansys (Hz) 
Present Work 

(Hz) 
Err. % 

1 67.71 70.03 3.43 

2 208.56 244.37 17.17 

3 226.66 251.32 10.88 

4 228.05 274.68 20.45 

5 234.26 276.39 17.98 

6 276.91 292.05 5.47 

7 283.62 298.14 5.12 

8 328.11 328.79 0.21 

9 335.49 337.81 0.69 

10 337.6 350.17 3.72 

 
 
Table 22 The first ten natural frequencies of multi – bay P5 

with fixed boundary conditions 

Freq. No Ansys (Hz) 
Present Work 

(Hz) 
Err. % 

1 67.87 69.49 2.40 

2 193.52 229.42 18.55 

3 220.49 240.19 8.93 

4 229.19 257.51 12.36 

5 235.24 269.14 14.41 

6 256.43 276.86 7.97 

7 265.39 283.38 6.78 

8 323.34 325.66 0.72 

9 334.73 333.13 0.48 

10 338.39 340.80 0.71 

 
 

Table 20 shows the first ten natural frequency values of 

fixed multi-bay structure with P3 stacking sequence. A 

similar interpretation of the natural frequency results of the 

multi-bay structure with P1 and P2 stacking sequence can 

also be made for this structure. 
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Tables 21 and 22 give the first ten natural frequency results 

for fixed multi-bay P4 and P5, respectively. Comparative 

results show that outcomes of the free vibration analysis of 

multi-bay structure with P4 and P5 stacking orders are 

similar to P1, P2, and P3. 

 
 
4. Conclusions 
 

In this study, finite element free vibration analysis of 

LCPTPF structure is investigated by using FSDT for 

various stacking orders. Parameters such as radii of 

curvature, aspect ratio, boundary conditions are taken into 

account in order to find out the ability of the representation 

of the present study. Additionally, free vibration analysis is 

also performed for the multi-bay structure of LCPTPF. 

Based on these analyses results, the following conclusions 

can be drawn as: 

• It is concluded that the natural frequency values of 

such a structure depend on not only the stacking sequence 

but also the radii of curvature, aspect ratio, and boundary 

conditions. However, the stacking order and the aspect ratio 

have the most impact on the natural frequency values for 

the LCPTPF structure. 

• In terms of stacking order, for all cases, fiber angles of 

the first and the last layer effects on the natural frequency 

values significantly. 

• The radius of curvature has a slight effect on the 

natural frequency values of LCPTPF structure 

• Regardless of stacking order, for all LCPTPF 

structures, the natural frequency values decrease 

considerably as the aspect ratio increases. 

• The natural frequency values decrease as the boundary 

condition of the structure is set as simply supported. It is 

also concluded that the boundary condition is affected all 

structures similar regardless of their stacking sequence. 

• According to results for multi-bay structure, the 

natural frequency values are higher when compared with 

single-bay structures. 

• Except for P3, in general, the present study is in good 

agreement with ANSYS results. This is because the first and 

the last layer of the laminated composite structure affects 

the shear characteristics of the structure. Considering the 

representation of FSDT depends strongly on the shear 

correction factor, the natural frequency results of the present 

study for LCPTPF with P3 stacking order shows a moderate 

agreement with ANSYS results as it is expected. 

Nevertheless, the use of FSDT for free vibration analysis of 

the LCPTPF structure gives accurate results. 

• The error rates decrease when Rxx increases.  

• The error rates decrease when the aspect ratio gets 

higher values. 

• According to the free vibration analysis results, the 

error rates change with respect to boundary conditions 

because mode shapes are different for each boundary 

condition and stacking order  

• For multi-bay LCPTPF structures, the natural 

frequency results indicate that this study is in good 

agreement with ANSYS results for most natural frequency 

values. The error rates are relatively high when compared 

with the natural frequency results of one – bay LCPTPF 

structures. 

• Although the error rates increase for some natural 

frequency values, the present study is in good agreement 

with ANSYS results for most natural frequency values. 

• Mode shapes of this structure are depended on not only 

boundary conditions, but also the stacking order. In 

addition, the angle pattern affects the vibration mode 

considerably. 

• Considering the mean errors of natural frequency 

results of LCPTPF, it is concluded that the combination of 

4-node quadrilateral element and 4-node cylindrical shell 

element represents this structure in general. 

• It can be concluded that using the novel approach, 

which is the combination of 4 – node quadrilateral element 

and 4 – node cylindrical shell element, for modeling 

LCPTPF in order to perform free vibration analysis of 

LCPTPF structure using finite element analysis is effective. 

• The mathematical model of laminated composite 

parabolic thick plate frames, which is essential for future 

analyses (i.e., dynamic stability analysis) that could not be 

performed via computer-aided design programs such as 

ANSYS, is evaluated. 
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Finite element vibration analysis of laminated composite parabolic thick plate frames 

 

Nomenclature 
 

a The length of flat plates 

ac The length of curved plate 

b 
The width of both flat plates and 

curved plate 

E1 
Modulus of elasticity in x-

direction 

E2 
Modulus of elasticity in y-

direction 

G12 
Shear modulus with respect to x- 

and y- direction 

G13 
Shear modulus with respect to x- 

and z- direction 

G23 
Shear modulus with respect to y- 

and z- direction 

h The thickness of the structure 

k Number of lamina 

Ni 
Shape function of ith node of 

relevant finite element 

p* Shear correction factor 

Qij 
Stiffness components in global 

coordinates 

qij 
Stiffness components in local 

coordinates 

Rxx,Ryy,Rxy 
Radii of curvatures of curved 

plate 

u,v,w 

Displacement components with 

respect to x-, y- and z- axis of 

the plates 

x,y,z Global coordinates 

x’,y’,z’ Rotated coordinates 

z Parametric thickness 

[A] Longitudinal stiffness matrix 

[As] Shear stiffness matrix 

[B] 
Longitudinal-bending coupled 

stiffness matrix 

[Bs] Strain matrix of flat plate 

[Bsc] Strain matrix of curved plate 

[C] Bending stiffness matrix 

[D] Stiffness matrix 

[IPV] Matrix of inertias 

[ke] 
Element elastic stiffness matrix 

for un-rotated plates 

[Ke] 
Element elastic stiffness matrix 

for rotated plates 

[Kglobal] Global elastic stiffness matrix  

[me] 
Element mass matrix for un-

rotated plates 

[Me] 
Element mass matrix for rotated 

plates 

[Mglobal] 
Global mass matrix  

[N] Shape function matrix 

[Qbm] 

Membrane-bending stiffness 

component matrix of global 

stiffness matrix 

[Qs] 
Shear stiffness component 

matrix of global stiffness matrix 

[T] Transformation matrix 

{u} Displacement vector 

{u’} Rotated displacement vector 

θ Fiber angle 

θx, θy 
Rotations with respect to x- and 

y- axis 

φ Rotation angle 

νij Strain in the i- direction because 

of the unit strain in j- direction 

(i=x,y ; j=x,y) 

ρ Density 

σ1, σ2 Local stress components  

σxx, σyy Global stress components 

τ12, τ13, τ23 Local shear components 

τxy, τxz, τyz Global shear components 

ω Natural frequency 
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