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Abstract.

In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element

method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory
(FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The
frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply
orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In
addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame
structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.
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1. Introduction

Plate frame structures are utilized in various
applications of engineering, like the marine industry,
aircraft, and many other structures. Advancements in
composite materials, on the other hand, enables to lighten
and strengthen these structures. Mechanical properties of
such a structure can be varied by changing lamination
material, lamination angle, stacking sequence. Although
numerous studies about laminated composite frame
structures are reported in the literature, it has been seen that
there has not been any published paper about laminated
composite parabolic thick plate frames. There are several
similar studies about composite folded plates (Wittrick and
Horsington 1984, Liu and Huang 1992, Peng 2015), which
are dealt with flat folded plates with different methods and
theories.

Vibration analysis of structures like beams, plates,
frames, etc. has been a popular field of interest for a long
time. Since mentioning about all studies is not possible,
some publications are discussed as follows briefly. Marbur
and Kant (1996) carried out a study that was aimed to
conduct free vibration analysis of fiber-reinforced
composite beams by utilizing the Higher-Order Shear
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Deformation Theory (HSDT). They also investigated the
dynamical behavior of sandwich composite beams in that
work. Atlihan er al. (2009) utilized the Differential
Quadrature Method (DQM) to perform free vibration
analysis of a laminated composite beam. Ramtekkar (2009)
used a 2-D plane stress mixed finite element model in order
to perform a free vibration analysis of laminated beams
with delaminations. Jun and Hongxing (1996) investigated
the free vibration behavior of axially loaded laminated
composite beams by using Higher Order Shear Deformation
Theory. They introduced the dynamic stiffness matrix
method to solve both free vibration and buckling problems.
In addition, several boundary conditions. Ozturk (2012)
investigated the vibration analysis of a pre-stress laminated
composite curved beam. In that study, a curved beam was
modeled by utilizing the Finite Element Method with a
straight beam element. In addition, to obtain the curved
shape, the Reversion Method was used to obtain a non-
linear deflection curve. Narita and Leissa (1992) presented
an analytical approach to investigate the free vibration of
cantilevered and symmetrically laminated rectangular plates
by using the Ritz method. Afshari and Widera (2000)
developed a series of the plate by considering the modified
complementary energy principle formulations for free
vibration analysis of composite plates. Pandit et al. (2007)
investigated the free vibration analysis of composite
rectangular plates by using a nine node isoparametric
bending element with an effective mass lumping scheme.
Besides simple rectangular plates, they also obtained natural
frequency results not only for plates that have cutouts but
also for plates on which distributed mass exists. Ngo-Cong
et al. (2011) presented an effective Radial Basis Function
for free vibration analysis of laminated composite plates via
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the First-Order Shear Deformation Theory (FSDT). Ganesh
et al. (2016) studied the free vibration analysis of laminated
composite plates by using the finite element method and by
considering several boundary conditions. Helloty (2016)
examined parameters that affect the free vibration analysis
of stiffened laminated composite plates. Belarbi er al.
(2017) developed a higher-order layerwise finite element
model for the free vibration analysis of multilayer sandwich
plates. Fallah and Delzendeh (2018) utilized a Meshless
Finite Volume (MFV) method for free vibration analysis of
laminated composite plates. They tested MFV for different
parameters such as plate thickness, stacking sequences,
boundary conditions, and plate shapes. Cantin and Glough
(1968) developed a curved cylindrical shell finite element
for curved shells and proceeded a finite element analysis to
find the displacement of a curved shell. Petyt and Deb Nath
(1971) conducted a free vibration analysis for singly curved
rectangular plates. Yas and Chakravorty et al. (1996)
presented a finite element analysis for free vibration
analysis of doubly curved shells by using First-Order Shear
Deformation Theory. Garmsiri (2010) investigated three-
dimensional free vibration analysis of fiber-reinforced
functionally graded cylindrical shells by using differential
quadrature method (DQM). Ye ef al. (2013) studied on free
vibration analysis of laminated composite shallow shells
with general elastic boundaries by using Rayleigh—Ritz
procedure. Javed et al. (2016) studied on free vibration
analysis of composite shells that have non-uniform
thickness walls by using first-order shear deformation
theory. Javed et al. (2016) utilized higher-order shear
deformation theory to perform vibration analysis of
antisymmetric angle-ply laminated plates for simply
supported boundary conditions. Civalek (2017) investigated
the vibration behavior of laminated composite truncated
conical panels and annular sector panels with functionally
graded materials (FGM) by using Love’s shell theory and
First Order Shear Deformation Theory. Governing
differential equations of this study were solved via
Differential Quadrature (DQ) and Discrete Singular
Convolution (DSC) method. Chaubey and Kumar (2017)
conducted a free vibration finite element analysis of
laminated composite cylindrical, spherical, hypar, saddle,
and elliptical shells with cutouts and concentrated mass by
using Third Order Shear Deformation Theory (TSDT).
Javed et al. (2018) used higher-order shear deformation
theory to evaluate the natural frequency values of the cross-
ply laminated plates depending on the aspect ratio, side-to-
thickness ratio, number of laminae, ply orientations, and
stacking sequence. Hafizah and Viswanathan (2018) studied
on the vibration of antisymmetric angle-ply composite
annular plates by using first-order shear deformation theory
and considering linear, exponential, and sinusoidal
thickness variations. Guha Niyogi ef al. (1993) modeled
laminated composite folded structures and performed free
and forced finite element vibration analysis by using First-
Order Shear Deformation Theory. Haldar and Sheikh (2005)
presented a flexible shear element to conduct free vibration
analysis of both isotropic and laminated composite plates.
Thinh et al. (2012) studied finite element bending and
vibration analysis of multi-folding laminated composite

plates by using First-Order Shear Deformation Theory.

This paper presents the free vibration finite element
analysis of laminated parabolic thick plate frames
(LCPTPF), which includes two square flat plates and one
singly curved plate which is perpendicular to those flat
plates. Governing equations are obtained by using First-
Order Shear Deformation Theory (FSDT). In order to
perform finite element analysis, 4-node quadrilateral plate
element and similarly, 4-node cylindrical shell element is
utilized. Although both elements are used widely, it has
been seen that there has not been any study about the
combination of those elements in order to model a frame
structure. This study proves that these two elements are in
good agreement when integrated with each other. The
natural frequency results of free vibration analysis of
LCPTPF are obtained for several parameters such as
curvature, aspect ratio, boundary conditions, stacking
orders, and multi-bay structure. For comparison, the same
structure is modeled and simulated via ANSYS. It is seen
that finite element analysis results show good agreement
with simulation results.

2. Mathematical formulation

In order to proceed free vibration analysis of LCPTPF,
which is shown in Fig. 1, it is necessary to select an
appropriate finite element and plate theory for both flat and
curved plates. For flat plates, the four-node quadrilateral
plate element that is shown in Fig. 2 is used. For the curved
plate, on the other hand, the four-node cylindrical shell
element, which is shown in Fig. 3, is utilized. The First
Order Shear Deformation (FSDT) theory is selected as the
plate theory for free vibration analysis of LCPTPF.

Although there are numerous methods for analyzing
composite structures, First Order Shear Deformation
Theory (FSDT), an equivalent single-layer theory, is
utilized to perform finite element free vibration analysis of
LCPTPF. For an orthotropic laminated composite plate with
n-layers, which is shown in Fig. 4, displacement
components can be written as in Eq. (1).

Fig. 1 Laminated Parabolic Thick Plate Frame
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Fig. 3 Four-node cylindrical shell element

Fig. 4 Laminated Composite Plate
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u(x’y’z) = uo(x,Y) + Zey(x,}’)
v(x,¥,2) = vo(x,y) + 26, (x,y) (1)
w(x,y,z) = wo(x,y)

Strain relations in accordance with displacements can be
written as
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In order to perform finite element analysis, a four-node
quadrilateral plate element with five degrees of freedom at
each node is considered. Displacement representation for
each node is given as

“

Substituting Eq. (3) into Eq. (2) and writing in matrix
form gives the strain matrix, which can be defined as
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The constitutive relations of a layer of a laminated plate
can be written with respect to the fiber-matrix axis as

[01" [%1 qiz O 0 0 51
[2] [912 922 O 0

Ti2|=| 0 0 g O V12 (6)
T13 0 0 0  qua Y13
qss
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where
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Gaq = G13
gss = Ga3
E10;1 = Ezd1,

Since the stress and strain relations are given in local
coordinates (along fibers), it is needed to transform these
relations into the global coordinate axis (x,y,z). The
stress and strain relations of the kth lamina in global axis
can be expressed as

[o]* = [Q]*{e} (®)

or

[O'XX]k [@i1 CQiz Qe O 0 ]k [Exx]
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Txy Q16 Q26 Q66 0 0 VXY (9)
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Qi1 = qu1¢* + 2(q12 + 2qe6)s%c? + qap5*
—4qe6)s%c? + qi2(s* + ¢*)
Q22 = q115* + 2(q12 + 2q66)s%c? + qapc*

Qiz =(q11 + g2

Q16 = (q11 — q12 — 2q66)5C® + (q12 — G2z + 2q46)s3c
Q26 = (@11 — @12 — 2q66)s3c + (q12 — 22 + 2966)sC3 (10)
Qo6 = (q11 + G2z —

Qaa = G555 + qaac?
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Qa5 = q55€S — qaaCS
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where ¢ and s denote cos6, and sin6, respectively. 6 is the
fiber angle. The strain energy stored in a structure can be
expressed as

1
U=—fasdv (11)
2)y

If Eqgs. (4)-(8) are substituted into Eq. (10), the strain
energy equation for laminated plates become as



Finite element vibration analysis of laminated composite parabolic thick plate frames 47
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where [A]s, [B]sx3, [Clsxs, and [As]2x2, which are given in
Eq. (13) represents longitudinal, bending-longitudinal
coupled, bending and shear effects respectively.

According to FSDT, shear stress is constant through
thickness. However, it is known that in three-dimensional
analysis, such variation should be at least quadratic. In
order to satisfy that, a shear correction factor (p*) is
introduced. While there is a method to calculate that factor,
it is generally taken as 5/6 or n2/12.

NL

[4] = ) [@um]* s = 2)
k=1
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where z; is the kth layer of laminated plate and NL is the
number of layers. [@pn] and [Qg] are
Qll QIZ Q16 .
[Qbm]k = [le Q22 Qze]
Qi Q26 Uss
(0.1* [044 0 ]"
Qss
The element stiffness matrix is obtained by using strain
energy equation as

(14)
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The kinetic energy equation can be written as
1
Tzzfpk(u2+v2+w2)dA a7
A

Substituting Eq. (1) into Eq. (17) gives
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The element mass matrix can be obtained from the
kinetic energy equation as

fme) =5 | NI PQIN) 4 0)

where [N] is the shape function matrix for each node which
is given as

[Nl- 0 0 O 0]
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lo o o o wl

and [IPV] is the inertia matrix which is introduced as
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Free vibration analysis of such a flat laminated
composite plate is performed by solving eigenvalue
problems via the finite element method in which global
stiffness and mass matrices. Similarly, the same equations
and techniques are applied to perform free vibration
analysis for a curved laminated composite plate. However,
there is a difference for curved plates (Qatu 2002) in terms

of strain components which is given as
ou Jduy, w a6,

Exx = 3= ____Z_
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Implementing Eq. (23) in the same way in laminated flat
plates enables one to find element stiffness matrix and
element mass matrix. Since the structure that is investigated
in this study comprises singly curved plate, additional terms
w/R,, and 2w/R,, are neglected. Thus, the [Bs] matrix
becomes
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Table 1 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P1

R, = 500h Ryx = 250h Ry = 100 Ry = 10h
Freq.
Ngl ’?Esgs Pé?ifl? t Err. % ’?ESZ};S P\r;;flil t Err. % ‘?Infz%s P\I;Zflr(lt Err. % ‘?IH{SZ%S P\;?Sflr(lt Err. %
(Hz) (Hz) (Hz) (Hz)

1 78.88 7513 475 78953  75.13  4.84 7884  75.14 469 7701 7579 1.8
2 13548 13579 023 13549 13579 022 13539 13578 029 13142 134.65  2.46
3 148.13 15496 461 14827 15496 451  148.07 15496 4.65 14553 155.09  6.57
4 270.98 27670  2.11 27141 27667 194 26921 27643 2.68 24397 259.02  6.17
5 276.17  278.66  0.90 27647 278.63  0.78 27426 27841 151 24524 261.15 649
6 309.09 31412 1.63  309.87 31414 138 30897 31425 171 30476 31472 327
7 311.79 32376 3.84 31225 32380 3.70  310.34 32404 441 30518 32068  5.08
8 339.15 32628  3.79  340.14 32587 420 33897 32462 423 33542 34128 1.75
9 34598 32728 540 34796 32772 582 34942 329.14 580 351.82 347.09 1.34
10 347.96  354.15 178  349.83 354.09 122 35136 353.69 0.66 369.63 35046  5.19

\j

Fig. 5 Transformation of local coordinates

Replacing [Bs] to [Bs] in Eq. (15) gives element
stiffness matrix for a singly curved plate. The element mass
matrix equation is the same as Eq. (20).

FSDT is an effective theory for free vibration analysis of
laminated composite plates individually. Drilling effect is
neglected in vibration analysis of laminated composite
flat/curved plates when FSDT is used. However, in order to
perform free vibration analysis of structures (i.e., frames),
the addition of the drilling effect (6.) is necessary to satisfy
all DOF. Therefore, it is needed to expand the dimensions
of the element stiffness matrix and element mass matrix
from 20x20 to 24x24. To perform such a process, the off-
diagonal terms that correspond to the 6. are taken as zero.
On the other hand, the corresponding diagonal terms are
considered a quite small positive number, which is 1000
times smaller than the smallest diagonal term of the
corresponding element matrix.

Following the implementation of the drilling effect,
displacement terms are rotated by using Eq. (25) in order to
model the LCPTPF structure. The rotation process is
completed by rotating the original plate 90 and 270 degrees
around its y-axis, as it is shown in Fig. 5.

W'} = [T} (25)

where [T] is the transformation matrix. The transformation
matrix is given in Appendix A. {u’} is the vector of the
rotated displacement terms and {u} is the displacement
vector of the original displacement terms.

After considering the transformation matrix for each
node, the element stiffness and element mass matrix of
rotated plate is derived from

(K] = [T]"[k][T]
[M,] = [T]"[m,][T]

The dynamic response of LCPTPF for a conservative
system can be formulated by means of Lagrange’s equation
of motion in the matrix form as

([Kglobal] - wz[Mglobal])q =0

(26)

27

3. Numerical results

In this study free vibration analysis of the LCPTPF, as
shown in Fig. 1, is investigated in terms of the effect of
radii of curvature, aspect ratio, boundary conditions and
multi — bay case. Stacking sequences are set as [0%/0%0%0°],
[0%/90°/90°/0°], [90°/0°%/0°/90°], [0/45%/-45%/0°] and [0%/60%/-
60°/0°] for all cases. These stacking sequences are denoted
as P1, P2, P3, P4 and P5 in order to simplify. Material
properties are given in Appendix A (Reddy 2003). Natural
frequency values are obtained in hertz (Hz) for each case
mentioned below.

3.1 The effect of radii of curvature

Four different radii of curvature parameter, which is
depended on thickness (%), is introduced. Radii of curvature
(Ry) are ranged gradually from 500h to 10h. Other structure
dimensions are set as a=ac=b=0.8 m, and b/h=10 and is
fixed from both ends. Finite element analysis is performed
with a mesh size of 30x30. For comparison of the accuracy,
the same structure is also modeled using ANSYS. The
natural frequencies obtained from analysis of the structure
are given in Tables 1-5.
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Table 2 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P2

Ry, = 500h Ry = 250h Ry, = 100h Ry = 10h
FI{?CI- Ansys Present Ansys Present Ansys Present Ansys Present
0 (Hz) Work  Err. % (Hz) Work  Err. % (Hz) Work  Err. % (Hz) Work  Err. %
(Hz) (Hz) (Hz) (Hz)
1 74.42 70.87 4.76 74.60 70.87 4.99 74.37 70.88 4.69 72.61 71.28 1.83
2 131.75 132.18 0.33 131.83 132.17 0.26 131.62 132.16 0.41 127.30 130.96 2.88
3 143.88 152.83 6.22 14430  152.83 5.91 143.81 152.83 6.27 141.09 152.95 8.41
4 254.75 260.30 2.18 256.52  260.26 1.46 253.17  259.99 2.69 230.05  239.24 3.99
5 260.28  264.12 1.48 261.70  264.08 0.91 258.60  263.83 2.02 23247 24423 5.06
6 299.10  307.29 2.74 301.17  307.32 2.04 298.95  307.55 2.88 29490  304.52 3.26
7 32639  311.04 4.70 330.00  310.98 5.76 32947  310.62 5.72 333.41 323.32 3.03
8 328.66  316.26 3.77 331.94  316.35 4.70 331.75  316.88 4.48 353.20  334.13 5.40
9 343.05 364.31 6.20 346.26  364.31 5.21 342.62  364.31 6.33 36438  364.53 0.04
10 370.33 379.79 2.55 373.08  379.83 1.81 369.67  380.17 2.84 377.75  394.53 4.44
Table 3 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P3
Ry, = 500h Ry, = 250h Ry, = 100h Ry, = 10h
reatoamys O pme A W prag Ams R pna Ams D gy
(Hz) (Hz) (Hz) (Hz)
1 36.54 34.34 6.02 36.53 34.34 5.99 36.51 34.35 5.90 35.43 35.52 0.27
2 131.63 132.14 0.39 131.56  132.14 0.44 131.29  132.09 0.61 118.72  128.38 8.14
3 133.81 144.92 8.30 133.79  144.92 8.32 133.73  144.92 8.37 122.30 14493  18.50
4 135.70  150.33 10.78 13550 15033 1094 13488 150.30 1143 13132 148.05 12.74
5 152.57 16837 1036 15236 16837 10.51 151.77 16837 1094 14522 168.65 16.13
6 201.80  202.94 0.56 201.24  202.95 0.85 201.34  203.04 0.84 193.20  211.50 9.47
7 204.03  215.61 5.68 204.52  215.62 543 204.01  215.70 5.73 198.34 222,60 12.23
8 20431  247.47  21.12 20452 24747 21.00 20599 247.47 20.14 22562 248.78 10.27
9 21333 25446 1928 213.86 25446 1898 21544 25446 18.11 23482 25447 8.37
10 38435  403.82 5.07 38431  403.82 5.08 384.14  403.81 5.12 369.12  403.29 9.26

Table 1 shows the first ten natural frequencies for P1 in
accordance with the change of radii of curvature. It has
been seen from Table 1 that as R, decreases, low frequency
values decrease while high frequency values increase.

The First ten natural frequency values of P2 are given in
Table 2. The first six natural frequency values decrease
when R,. decreases. On the other hand, other natural
frequency values increase as the radii of curvature
decreases.

Table 3 presents the first ten natural frequency values of P3.
Similarly, to the natural frequency results of P1, which is
given in Table 1, low frequency values decrease as R
decreases.
On the other hand, high frequency values increase as R,
decreases.

According to Tables 4 and 5, natural frequency values of
P4 and P5 trend is the same as P2. Outcomes of the present
study are in good agreement with ANSY'S results. It is seen
from the results given in this section, the first five natural
frequencies of all structures, regardless of their stacking
sequence, decrease as R, decreases. Other natural

frequency values behave differently with respect to the
stacking sequence. The last five natural frequency values
increase for P2, P4, and P5 when R,, decreases. The ninth
and tenth natural frequency values of P1 increase as Ri.
decreases. Other natural frequency values of P1 behaves in
the opposite way. The eighth and ninth natural frequency
values of P3 increases when R, decrease. Other natural
frequency values of P3 decrease as R, decreases. Although
there are some differences between ANSYS results, the
present work shows in a good agreement with ANSYS
results, especially when R.. increases. This is because the
representation ability of the selected finite element for the
curved part of the structure is very good for slightly curved
structures. The stacking sequence has also affected the
increment and the values of natural frequencies.

In addition, it is concluded that the representation of the
present study changes with respect to the fiber angle of each
layer. Furthermore, it is observed that the fiber angle of the
first and the last layer is more effective than those of the
middle layer on the ability of representation of this study.
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Table 4 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P4

Ry, = 500h Ry = 250h Ry = 100h Ry = 10h

(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
1 74.67 71.60 4.10 74.86 71.60 4.35 74.62 71.61 4.03 72.85 72.10 1.02
2 255.59  264.13 3.34 25737  264.10 2.61 254.02  263.84 3.87 218.02  241.90 10.95
3 258.09  273.47 5.96 258.60  273.38 5.72 25529  272.80 6.86 230.76  244.28 5.86
4 271.88  281.83 3.66 273.00  281.78 3.22 27142 281.51 3.72 263.86  279.81 6.04
5 294.71  289.15 1.89 29545  289.24 2.10 294.88  289.79 1.73 290.22  297.70 2.58
6 30531  312.68 241 306.64 312.71 1.98 306.22  312.94 2.19 328.07 32895 0.27
7 327.18  321.10 1.86 330.80  321.12 2.93 33030 321.30 2.72 333.86  341.06 2.16
8 33293 328091 1.21 336.14  329.12 2.09 336.18  330.55 1.67 343.56  359.85 4.74
9 34343  371.03 8.04 346.62 371.04 7.05 343.06 371.04 8.16 363.61 37147 2.16
10 354.23 375.7 6.06 356.91  375.75 5.28 35541  376.13 5.83 365.61  384.74 5.23

Table 5 The first ten natural frequencies for fixed LCPTPF structure for different radii of curvature for P5
Ry = 500 Ry = 250h R, = 100k Ry = 10h
o s T e T s T e S s T

(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
1 74.85 71.17 4.92 75.04 71.17 5.15 74.80 71.18 4.84 73.02 71.61 1.93
2 24586  258.76 5.25 245.65  258.67 5.30 243.41  258.11 6.04 210.04  231.28 10.11
3 24935  260.31 4.40 250.14  260.31 4.07 24896  260.32 4.56 231.74  241.18 4.07
4 256.53  262.04 2.15 258.33  262.01 1.42 25495  261.75 2.67 241.79  260.42 7.71
5 269.35  270.46 0.41 270.65  270.50 0.06 269.72  270.77 0.39 266.87  275.70 3.31
6 300.11  309.85 3.25 301.19  309.88 2.89 301.04 310.11 3.01 32424 325095 0.53
7 329.61  316.93 3.85 333.29  316.95 4.90 33272 317.11 4.69 336.27  332.54 1.11
8 333.07  329.75 1.00 336.24 32995 1.87 336.12  331.32 1.43 34248  356.71 4.15
9 345.06  367.51 6.51 347.62  367.51 5.72 345.62  367.52 6.34 351.50  367.78 4.63
10 346.01  369.46 6.78 349.23  369.54 5.82 346.04 370.10 6.95 367.88  392.19 6.61

3.2 The effect of aspect ratio

The effect of aspect ratio on the dynamic response of
LCPTPF is investigated in this section. Four different
aspect ratio which only changes with respect to the structure
height (a) is taken into account and the structure is fixed
from two sides. Structure dimensions are set as a=0.8 m to
1.6 m with 0.4 m increment, ac=b=0.8 m, R,x/h=10 and
b/h=10. For comparison, the same structure is modeled via
ANSYS. The natural frequency results for this case are
given in Tables 6-10.

According to results given in Table 6, the natural
frequency values of P1 change significantly with respect to
aspect ratio. As aspect ratio rises, all natural frequencies
declines.

As it is expected, the error values decrease when the
aspect ratio has smaller values.

Table 7 shows the first ten natural frequency values of
P2. It can be concluded that the interpretation of P1 can also
be made for P2 since the natural frequency values of P2 are
changing in the same way as P1’s.

As can be seen from the results which are given in Table
8, the aspect ratio has the same effect on P3 as other
structures,

The natural frequency values of P2 are greater due to the
stacking sequence when compared with P1. Again, the same
trend as P1 in terms of error rate can be seen for P2.

P1 and P2. The natural frequency values are smaller
than P1’s and diminishing with respect to declining in the
aspect ratio. The error rates are relatively higher than those
of P1 and P2.

The first ten natural frequency values of P4 and P5 are
given in Tables 9-10. It is seen that the fundamental
frequencies of P4 and PS5 for all aspect ratios are almost
equal. The aspect ratio has the same effect as the other
structures with different stacking sequences. The natural
frequency values of P4 and P5 decreases as the aspect ratio
increases. The error rates of the present study decrease
when the value of the aspect ratio also decreases. For all
structures with different stacking sequences, it can be
concluded from the results given in this section that the
increment of the aspect ratio affects the natural frequency
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a a a a
Freq EP= 0.5 3= 1 5= 1.5 7=
No Ansys resent Ansys Present Ansys Present Ansys Present
(Hz) Work  Err. % (Hz) Work  Err. % (Hz) Work  Err. % (Hz) Work Err. %
(Hz) (Hz) (Hz) (Hz)
1 163.27  163.39  0.07 77.01 75.79 1.58 44.54 43.93 1.37 28.89 28.75 0.46
2 202.68  196.81 2.90 13142 134.65 2.46 96.30 98.27 2.05 73.77 76.06 3.10
3 261.62  251.93 3.70 145.53  155.09 6.57 99.53 110.10  10.62  74.69 85.39 14.33
4 30522 31427 297 24397 259.02 6.17 161.99 180.23  11.26  109.12 121.65 11.48
5 31527  321.39 1.94 24524 261.15 6.49 166.03  181.38 9.25 113.90 12495 9.70
6 37437 38238  2.14 30476 314.72 3.27 190.97 19492  2.07 130.35  132.28 1.48
7 494.60 480.02 295  305.18 320.68 508 21271  210.03 1.26 142.69  142.84 0.11
8 51639 51844 040 33542 341.28 .75 217.21  225.06 3.61 171.54  176.44 2.86
9 561.38  540.67 3.69  351.82 347.09 1.34 22482 231.38 2.92 17492  179.24 2.47
10 59549 594.04 024  369.63 35046 519 27637 275.55 030  223.17 231.70 3.82
Table 7 The first ten natural frequencies of fixed LCPTPF structure with different aspect ratios for P2
a a a a
Freq EP: 0.5 7= 1 5= 1.5 7= 2
No Ansys resent Ansys Present Ansys Present Ansys Present
(Hz) Work  Err. % (Hz) Work  Ermr. % (Hz) Work  Err. % (Hz) Work Err. %
(Hz) (Hz) (Hz) (Hz)
1 15470 15432  0.25 72.61 71.28 1.83 41.89 41.22 1.60 27.13 26.96 0.61
2 193.35  199.10 297 127.30 13096  2.88 91.55 93.91 2.59 68.92 71.20 3.32
3 246.65  256.71 4.08 141.09 15295 8.41 94.38 108.88 1476  69.50 85.01 22.33
4 29640 28298 453  230.05 239.24 3.99 152.81 169.34 10.82 102.81 114.63  11.50
5 306.10 29797  2.66 23247 24423 5.06 157.27  171.86 9.28 107.93  118.65 9.93
6 460.76 45686  0.85 29490 304.52 3.26 182.51 186.19  2.02 12429  126.39 1.69
7 482.07 496.09 291 33341 32332 3.03 201.05 198.16 1.44 134.54  134.60 0.04
8 59991 62732 457 35320 334.13 540  262.65 260.10 0.97  211.14 22057 4.47
9 601.96  648.52 773 36438  364.53 0.04  284.68 274.40 3.61 222.52  233.92 5.12
10 608.08  656.85 8.02  377.75 39453 444 29593  306.83 3.68 23094 23798 3.05
Table 8 The first ten natural frequencies of fixed LCPTPF structure with different aspect ratios for P3
a a a a
Freq EP= 0.5 7= 1 7= 1.5 7= 2
No Ansys resent Ansys Present Ansys Present Ansys Present
(Hz) Work  Err. % (Hz) Work  Ermr. % (Hz) Work  Ermr. % (Hz) Work Err. %
(Hz) (Hz) (Hz) (Hz)
1 86.94 88.85 2.19 35.43 35.52 0.27 19.20 19.78 3.02 12.03 12.98 791
2 163.19  174.39 6.86 118.72  128.38 8.14 75.45 9322 2355  48.17 64.74 34.40
3 174.77  189.76 8.58 122.30 14493 1850  85.29 97.90 1479  59.38 69.43 16.93
4 225.79  228.08 1.01 131.32  148.05 1274  86.01 99.01 15.12  61.46 71.23 15.90
5 22646  250.28 10.52 145.22 168.65 16.13 94.83 113.72 19.92 66.37 73.43 10.64
6 374.57 467.65 24.85 193.20  211.50 9.47 105.85 113.91 7.61 69.73 77.27 10.82
7 388.56  472.17  21.52 198.34  222.60 12.23 118.65 127.96 7.85 83.15 93.89 12.92
8 459.97  504.85 9.76 225.62  248.78 10.27 160.11 180.89 12.98 119.81 150.60 25.70
9 494.71 578.41 16.92 23482 25447 8.37 171.22 192.44 12.39 135.04 166.59 23.36
10 502.96  600.43 19.38  369.12  403.29 9.26 24193  279.05 15.34 156.73 186.78 19.17
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Table 9 The first ten natural frequencies of fixed LCPTPF structure with different aspect ratios for P4

a a a

a
—=0.5 —=1 -=1.5 —=2
Fre b b b b
N q- Ansvs Present Ansvs Present Ansvs Present Ansvs Present
o (Hz}; Work Err. % (Hz}; Work Err. % (Hz}; Work Err. % (Hz}; Work Err. %
(Hz) (Hz) (Hz) (Hz)
1 155.09 156.75 1.07 72.85 72.10 1.02 42.05 41.61 1.02 27.24 27.20 0.14
2 278.78  282.44 1.31 218.02  241.90 10.95 153.26 166.14 8.40 100.88 112.25 11.27
3 297.35 289.40 2.67 230.76  244.28 5.86 154.09 172.05 11.66 103.14 116.19 12.65
4 516.80 514.18 0.51 263.86  279.81 6.04 154.29 174.28 12.96 109.18 119.92 9.84
5 529.04  562.27 6.28 290.22  297.70 2.58 174.81 182.49 4.39 117.28 125.00 6.58
6 552.15 579.23 4.90 328.07 32895 0.27 201.52  201.01 0.25 134.92 136.26 0.99
7 601.54  664.27 1043  333.86 341.06 2.16 211.82  214.08 1.07 146.68 150.58 2.66
8 609.99  675.02 10.66  343.56  359.85 4.74 23426  255.46 9.05 186.10  205.29 10.31

Table 10 The first ten natural frequencies of fixed LCPTPF structure with different aspect ratios for P5
a a a

a
e 5—0.5 E—l 5—1.5 E—Z
N 4 Ansvs Present Ansvs Present Ansvs Present Ansvs Present
° (Hz}; Work Err. % (Hz}; ‘Work Err. % (Hz}; Work Err. % (Hz}; Work Err. %
(Hz) (Hz) (Hz) (Hz)
1 156.02 155.41 0.39 73.01 71.61 1.92 42.06 41.36 1.65 27.20 27.04 0.56
2 275.69  276.03 0.12 210.04 231.28 10.11 144.13 157.79 9.48 95.35 108.19 13.47
3 299.04  285.57 4.50 231.72  241.18 4.08 146.46  159.19 8.69 103.28 110.39 6.88
4 465.57  492.50 5.78 24179  260.42 7.71 153.70  170.50 10.93 103.73 115.31 11.16
5 47147  516.02 9.45 266.87 275.70 3.31 164.79  178.59 8.37 111.40 122.70 10.14
6 513.22  539.00 5.02 32424 32595 0.53 202.48 199.40 1.52 135.31 135.29 0.01
7 605.83  655.00 8.12 336.27 332.54 1.11 203.44  205.44 0.98 140.06  144.22 2.97
8 61040 661.13 8.31 34248  356.71 4.15 233.86  266.05 13.76  186.94  222.69 19.12
9 647.09  701.92 8.47 351.50 367.78 4.63 237.07 276.6 16.67 187.68 226.61 20.74
10 661.34  713.22 7.84 367.88  392.19 6.61 286.95  279.00 2.77 232.47  239.81 3.16

Table 11 The first ten natural frequencies of P1 with fixed and simply supported boundary conditions

SS CC
Freq. No Ansys (Hz) pres?gtz;’v"rk Err. % Ansys (Hz) Pres‘(’gz;’vork Err. %

1 39.76 37.13 6.59 77.01 75.797 1.58
2 131.26 134.61 2.55 131.42 134.65 2.46
3 135.38 145.79 7.69 145.53 155.09 6.57
4 213.65 235.46 10.21 243.97 259.02 6.17
5 218.47 238.83 9.32 245.24 261.15 6.49
6 272.26 279.81 2.77 304.76 314.72 3.27
7 277.37 291.74 5.18 305.18 320.68 5.08
8 298.51 302.17 1.23 335.42 341.28 1.75
9 312.94 309.42 1.12 351.82 347.09 1.34
10 349.86 326.99 6.54 369.63 350.46 5.19

values. As the aspect ratio increases, the natural frequency 3.3 The effect of boundary conditions

values of those structures decrease. This is because when

the aspect ratio increase, the stiffness matrix of the structure In this section, LCPTPF structure with two sides fixed

decrease.
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Table 12 The first ten natural frequencies of P2 with fixed and simply supported boundary conditions

SS cC
Freq. No Ansys (Hz) Present Work Err. % Ansys (Hz) Present Work Err. %
(Hz) (Hz)
1 37.36 34.61 7.34 72.61 71.28 1.83
2 127.11 130.93 3.01 127.30 130.96 2.88
3 131.25 144.33 9.97 141.09 152.95 8.41
4 201.14 218.18 8.47 230.05 239.24 3.99
5 206.81 223.99 8.31 232.47 244.23 5.06
6 261.86 268.96 2.71 294.90 304.52 3.26
7 295.55 284.62 3.70 333.41 323.32 3.03
8 332.40 310.35 6.63 353.20 334.13 5.40
9 341.96 335.57 1.87 364.38 364.53 0.04
10 353.17 368.75 4.41 377.75 394.53 4.44

Table 13 The first ten natural frequencies of P3 with fixed and simply supported boundary conditions

SS cC

Freq. No Ansys (Hz) Pres?ll}ItZ;Vork Err. % Ansys (Hz) Prese(:lt_lltngork Err. %
1 16.95 15.76 7.02 3543 35.52 0.27
2 97.45 124.87 28.14 118.72 128.38 8.14
3 109.26 125.69 15.04 1223 144.93 18.50
4 119.79 132.88 10.93 131.32 148.05 12.74
5 133.18 151.36 13.65 145.22 168.65 16.13
6 153.90 159.56 3.68 193.20 211.50 9.47
7 171.13 179.20 4.72 198.34 222.60 12.23
8 199.93 217.37 8.72 225.62 248.78 10.27
9 212.36 223.37 5.18 234.82 254.47 8.37
10 357.55 389.04 8.81 369.12 403.29 9.26

Table 14 The first ten natural frequencies of P4 with fixed and simply supported boundary conditions

SS CcC
Freq. No Ansys (Hz) Present Work Err. % Ansys (Hz) Present Work Err. %
(Hz) (Hz)
1 37.50 34.93 6.85 72.85 72.10 1.02
2 199.68 221.89 11.12 218.02 241.9 10.95
3 201.64 228.14 13.14 230.76 244.28 5.86
4 230.39 250.09 8.55 263.86 279.81 6.04
5 265.63 277.11 432 290.22 297.70 2.58
6 291.81 288.71 1.06 328.07 328.95 0.27
7 295.69 312.08 5.54 333.86 341.06 2.16
8 310.49 328.34 5.75 343.56 359.85 4.74
9 341.68 341.55 0.04 363.61 371.47 2.16
10 347.76 361.83 4.05 365.61 384.74 5.23
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Table 15 The first ten natural frequencies of P5 with fixed and simply supported boundary conditions
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SS cC
Freq. No Ansys (Hz) Present Work Err. % Ansys (Hz) Present Work Err. %
(Hz) (Hz)
1 37.50 34.71 7.44 73.02 71.61 1.93
2 194.55 219.49 12.82 210.04 231.28 10.11
3 202.14 220.88 9.27 231.74 241.18 4.07
4 213.73 235.12 10.01 241.79 260.42 7.71
5 241.53 257.19 6.48 266.87 275.70 3.31
6 284.97 286.31 0.47 324.24 325.95 0.53
7 297.23 299.78 0.86 336.27 332.54 1.11
8 306.49 327.81 6.96 342.48 356.71 4.15
9 326.22 338.24 3.68 351.50 367.78 4.63
10 344.97 367.22 6.45 367.88 392.19 6.61
Table 16 Mode shapes of fixed from two ends LCPTPF
Mode Pl P2 P3 P4 P5
1 Bn/Ln Bn/Ln Bn/Ln Bn/Ln Bn/Ln
2 Bn/Ln Bn/Ln Tr/Bn Tr/Bn Tr/Bn
3 Tr/Bn Tr/Bn Bn Bn Bn
4 Bn Bn Tr/Bn Tr/Bn Tr/Bn
5 Tr/Bn Tr/Bn Tr/Bn Tr/Bn Tr/Bn
6 Bn Tr Bn Bn Bn
7 Tr Bn Tr Bn Bn
8 Bn Tr/Bn Bn Bn Bn
9 Bn Bn Tr/Bn Bn Bn
10 Tr/Bn Bn Bn Bn Bn
*Bn: Bending; *Ln:Longitudinal; *Tr:Torsion
CC - Fixed Boundary Condition
S8 - Simply Supported Boundary Condition
T —a—P1-CC
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Fig. 6 The error rates of LCPTPF with all stacking orders for fixed and simply supported boundary conditions.
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Table 17 Mode shapes of simply supported LCPTPF

Mode Pl p2 P3 P4 P5
1 Bn/Ln Bn/Ln Bn/Ln Bn/Ln Bn/Ln
2 Bn/Ln Bn/Ln Bn Tr/Bn Tr/Bn
3 Tr Tr Tr/Bn Bn Bn
4 Bn Bn Tr/Bn Tr/Bn Tr/Bn
5 Tr/Bn Tr/Bn Tr/Bn Tr/Bn Tr/Bn
6 Bn Bn Bn Bn Bn
7 Bn Bn Tr/Bn Bn Bn
8 Bn Tr/Bn Bn Bn Bn
9 Bn Bn Tr/Bn Bn Bn
10 Tr/Bn Bn Bn Bn Bn

*Bn: Bending; *Ln:Longitudinal; *Tr:Torsion

(CC) and simply supported (SS) boundary conditions are
investigated for P1, P2, P3, P4, and P5 stacking sequences.
Structure dimensions are set as a=ac=b=0.8 m, Ryx/h=10
and b/h=10.

All mode shapes have been defined according to general
deflection tendencies to form (i.e., Bn: Bending; Ln:
Longitudinal; Tr: Torsion).

Tables 11 and 12 show the first ten natural frequency

values of P1 and P2 for simply supported and fixed from
two ends boundary conditions. It is seen that natural
frequency values are greater for that of fixed boundary
conditions.
Free vibration analysis results for P3 are given in Table 13.
The natural frequency values are higher for that of fixed
boundary conditions. A similar interpretation can be made
for this stacking sequence. The error rates of the present
study are relatively higher than those of P1 and P2.

The first ten natural frequency values for simply

supported and two sides fixed boundary conditions for P4
and P5 are given in Tables 14-15, respectively.
As seen from Tables 14-15, changes in natural frequency
for P5 and P4 are similar to P1, P2, and P3. Error rates
change with respect to the mode of the structure for relevant
boundary conditions, as seen in Fig. 6. Mode shapes for
both boundary conditions are given in Tables 16 and 17.

For fixed from two sides boundary conditions, it can be
seen from Table 16 that for all stacking orders, the first
mode is the coupling of bending and longitudinal vibration.
Two different vibration mode is observed for the second
mode. P1 and P2 have the same vibration mode, which is
the coupling of bending and longitudinal vibration. On the
other hand, P3, P4, and P5 vibrate in torsional and bending
coupled mode. For the third mode, while P1 and P2 vibrate
in the torsional vibration mode, P3, P4, and P5 vibrate in
the bending mode. The fourth mode is the symmetry of the
third mode. P1 and P2 vibrate in the bending mode, whereas
P3, P4, and PS5 vibrate in the torsional mode. For the fifth
mode, P1, P2, P3, P4, and PS5 vibrate in the coupling of
bending and torsional modes.

The sixth and the seventh and the eighth mode are the
same for P1 and P3, which is the bending, torsional, and

bending vibration, respectively. P2 behaves differently from
all other stacking sequences after the fifth mode. P4 and P5
behave the same for all modes. This is because even they
have different fiber angles, they have the same angle
pattern.

It is seen from Table 17 that for simply supported boundary
conditions, the same mode of the fixed boundary condition
is present for all stacking sequences. For the second mode,
there are three different vibration modes. P1 and P2 vibrate
in the coupling of bending and longitudinal mode, whereas
P4 and PS5 vibrate in the coupling of torsion and bending
mode. P3 is in the pure bending vibration in this mode. For
the third mode, P1 and P2 are in the torsional vibration
mode. P4 and P5 are in the bending mode. P3 vibrates in the
coupling of torsional and bending mode. The fourth and the
fifth modes have the same behaviour as of the fixed
boundary condition for all stacking orders.

Different bending modes occur at the sixth modes for each
stacking sequence. Except for P4 and PS5, all stacking orders
have different mode shapes for the seventh, eighth, ninth,
and tenth modes.

It is concluded that no matter which boundary condition
is applied, the first mode is the coupling of bending and
longitudinal vibration regardless of the stacking order. For
the other modes, the angle and the angle pattern change the
vibration mode of the structure. In addition, except for the
first and the sixth modes, the boundary condition also
changes the mode of the structure as expected.

3.3 Multi-bay structure

Multi-Bay structure of LCPTPF, which is shown in
Fig. 7, is investigated by using FSDT. The clamped
boundary condition is selected for free vibration analysis.
The natural frequency results are given in Tables 18-22.
Free vibration analysis results of multi-bay structure with
P1 and P2 stacking orders are given in Tables 18-19,
respectively. It is seen that the natural frequency values of
the multi-bay structure for P1 and P2 are greater than the
natural frequency values of P1 and P2 with single-bay (see
Table 1 and Table 2). For the most modes, the present study
is in good agreement with ANSY'S results.
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Table 18 The first ten natural frequencies of multi — bay P1

with fixed boundary conditions
Freq. No Ansys (Hz) Pres?lrjltngork Err. %
1 71.53 73.34 2.54
2 118.49 122.88 3.70
3 138.64 145.76 5.14
4 221.64 239.08 7.87
5 240.55 263.72 9.63
6 241.46 276.89 14.67
7 247.44 298.93 20.81 Fig. 7 Multi-Bay Structure of LCPTPF
8 299.93 316.50 5.52
? 302.96 32801 8.27 Table 21 The first ten natural frequencies of multi — bay P4
10 312.52 335.09 722 with fixed boundary conditions
Freq. No Ansys (Hz) Presz:llzltZ;Vork Err. %
. . 1 67.71 70.03 3.43
Table 19 The first ten natural frequencies of multi — bay P2
with fixed boundary conditions 2 208.56 244.37 17.17
3 226.66 251.32 10.88
Freq. No Ansys (Hz) Present Work Err. %
(Hz) 4 228.05 274.68 2045
1 67.49 69.10 2.40 5 234.26 276.39 17.98
2 114.59 119.77 4.52 6 276.91 292.05 5.47
3 134.38 142.49 6.04 7 283.62 298.14 5.12
4 212.19 224.42 5.76 8 328.11 328.79 0.21
5 227.26 237.85 4.66 9 335.49 337.81 0.69
6 228.57 255.96 11.98 10 337.6 350.17 3.72
7 233.58 266.27 14.00
8 291.16 305.96 5.08 , ,
o mmm o me xR ol ity 3
10 335.24 32291 3.68 Prosent Work
Freq. No Ansys (Hz) (Hz) Err. %
1 67.87 69.49 2.40
Table 20 The first ten natural frequencies of multi — bay P3 2 193.52 22942 18.55
with fixed conditions 3 220.49 240.19 8.93
o At PEEIR e
1 32.96 37.90 15.01 6 256.43 276.86 7.97
2 108.95 118.60 8.86 7 265.39 283.38 6.78
3 122.93 139.01 13.08 8 323.34 325.66 0.72
4 124.46 168.06 35.03 9 334.73 333.13 0.48
5 129.38 181.46 40.25 10 338.39 340.80 0.71
6 140.6 191.93 36.51
7 149.43 198.02 32.52
T mE o mm e e
190 197.34 233.71 1843 similar interpre}‘;ation of the natural frequenc%r res?llts of the

219.84 242.45 10.28 multi-bay structure with P1 and P2 stacking sequence can
also be made for this structure.
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Tables 21 and 22 give the first ten natural frequency results
for fixed multi-bay P4 and PS5, respectively. Comparative
results show that outcomes of the free vibration analysis of
multi-bay structure with P4 and PS5 stacking orders are
similar to P1, P2, and P3.

4. Conclusions

In this study, finite element free vibration analysis of
LCPTPF structure is investigated by using FSDT for
various stacking orders. Parameters such as radii of
curvature, aspect ratio, boundary conditions are taken into
account in order to find out the ability of the representation
of the present study. Additionally, free vibration analysis is
also performed for the multi-bay structure of LCPTPF.
Based on these analyses results, the following conclusions
can be drawn as:

It is concluded that the natural frequency values of
such a structure depend on not only the stacking sequence
but also the radii of curvature, aspect ratio, and boundary
conditions. However, the stacking order and the aspect ratio
have the most impact on the natural frequency values for
the LCPTPF structure.

* In terms of stacking order, for all cases, fiber angles of
the first and the last layer effects on the natural frequency
values significantly.

* The radius of curvature has a slight effect on the
natural frequency values of LCPTPF structure

* Regardless of stacking order, for all LCPTPF
structures, the natural frequency values decrease
considerably as the aspect ratio increases.

* The natural frequency values decrease as the boundary
condition of the structure is set as simply supported. It is
also concluded that the boundary condition is affected all
structures similar regardless of their stacking sequence.

* According to results for multi-bay structure, the
natural frequency values are higher when compared with
single-bay structures.

» Except for P3, in general, the present study is in good
agreement with ANSY'S results. This is because the first and
the last layer of the laminated composite structure affects
the shear characteristics of the structure. Considering the
representation of FSDT depends strongly on the shear
correction factor, the natural frequency results of the present
study for LCPTPF with P3 stacking order shows a moderate
agreement with ANSYS results as it is expected.
Nevertheless, the use of FSDT for free vibration analysis of
the LCPTPF structure gives accurate results.

* The error rates decrease when Rxx increases.

* The error rates decrease when the aspect ratio gets
higher values.

» According to the free vibration analysis results, the
error rates change with respect to boundary conditions
because mode shapes are different for each boundary
condition and stacking order

e For multi-bay LCPTPF structures, the natural
frequency results indicate that this study is in good
agreement with ANSYS results for most natural frequency
values. The error rates are relatively high when compared

with the natural frequency results of one — bay LCPTPF
structures.

+ Although the error rates increase for some natural
frequency values, the present study is in good agreement
with ANSY'S results for most natural frequency values.

* Mode shapes of this structure are depended on not only
boundary conditions, but also the stacking order. In
addition, the angle pattern affects the vibration mode
considerably.

* Considering the mean errors of natural frequency
results of LCPTPF, it is concluded that the combination of
4-node quadrilateral element and 4-node cylindrical shell
element represents this structure in general.

+ It can be concluded that using the novel approach,
which is the combination of 4 — node quadrilateral element
and 4 — node cylindrical shell element, for modeling
LCPTPF in order to perform free vibration analysis of
LCPTPF structure using finite element analysis is effective.

e The mathematical model of laminated composite
parabolic thick plate frames, which is essential for future
analyses (i.e., dynamic stability analysis) that could not be
performed via computer-aided design programs such as
ANSYS, is evaluated.
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dc

Ex
G2

Gi3

u,v,w

X,Y,Z
xy’,z’
z
[A]
[As]

[B]

[Bs]
[Bsc]

€]

[D]
[IPV]

[ke]
[Ke]
[Kglobal]

[me]

[Me]

[Mglobal]
[N]

[Qom]

[Qi]

[T]

{u}

{u’}
0

ex, ey
¢

Vij

The length of flat plates

The length of curved plate

The width of both flat plates and
curved plate

Modulus of elasticity in x-
direction

Modulus of elasticity in y-
direction

Shear modulus with respect to x-
and y- direction

Shear modulus with respect to x-
and z- direction

Shear modulus with respect to y-
and z- direction

The thickness of the structure
Number of lamina

Shape function of ith node of
relevant finite element

Shear correction factor

Stiffness components in global
coordinates

Stiffness components in local
coordinates

Radii of curvatures of curved
plate

Displacement components with
respect to x-, y- and z- axis of
the plates

Global coordinates

Rotated coordinates

Parametric thickness
Longitudinal stiffness matrix
Shear stiffness matrix
Longitudinal-bending  coupled
stiffness matrix

Strain matrix of flat plate

Strain matrix of curved plate
Bending stiffness matrix
Stiffness matrix

Matrix of inertias

Element elastic stiffness matrix
for un-rotated plates

Element elastic stiffness matrix
for rotated plates

Global elastic stiffness matrix
Element mass matrix for un-
rotated plates

Element mass matrix for rotated
plates

Global mass matrix

Shape function matrix
Membrane-bending stiffness
component matrix of global
stiffness matrix

Shear  stiffness  component
matrix of global stiffness matrix
Transformation matrix
Displacement vector

Rotated displacement vector
Fiber angle

Rotations with respect to x- and
y- axis

Rotation angle

Strain in the i- direction because

p
1, 62
Oxx, Oyy
T12, T13, T23
Txy, Txz, Tyz
(O]
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of the unit strain in j- direction
=%,y ; j=x,y)

Density

Local stress components

Global stress components

Local shear components

Global shear components
Natural frequency






