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1. Introduction 

 

The thin-walled plates make part of the structures and, 

therefore, are the subject of the contemporary studies. 

Timoshenko and Woinowsky-Krieger (1959) and Ventsel 

and Krauthammer (2001) presented detailed grounds of the 

theory, analysis and applications of thin plates and shells, 

taking into account the papers and monographs of the 20th 

century. Zingoni (2002) studied the problem of two conical 

shells intersecting each other. The results verified by finite 

element analysis, were useful for evaluation of the stresses 

and deformations in double-cone pressure vessels. 

Magnucki et al. (2002) dealt with stress concentration in a 

cylindrical pressure vessel with ellipsoidal heads subjected 

to internal pressure. It was shown that the stress 

concentration scale depends on the ratio of thicknesses of 

both adjacent parts of the shells and on relative convexity of 

the ellipsoidal head. Zingoni (2002) investigated stress 

distribution in the egg-shaped sludge digesters composed of 

two joined paraboloidal shells. A single governing 

parameter was formulated that simplifies designing the 

concrete sludge-digester shells. Krivoshapko (2007) 

delivered a review of the achievements in the design and 

construction of thin-walled axisymmetric ellipsoidal shells. 

The author analyzed many references presenting the results 

of experimental investigations of the stress-strain state, 

buckling, and natural and forced vibrations of these 

structures. Zingoni et al. (2015) considered bending of an  
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elliptic toroidal shell. An approximate solution was 

formulated that enables accurate simulation of the edge 

effects arising due to the loads and geometric 

discontinuities in the equatorial plane of elliptic toroids. 

Zingoni et al. (2018) presented a linear-elastic theoretical 

formulation allowing to determine the state of stress in large 

thin-walled vessels composed of multi-segmented spherical 

shells. The results of finite element computation confirmed 

accurateness and effectiveness of the method. Sowiński and 

Magnucki (2008) examined possible reduction of the edge 

effect in three nonstandard dished heads of a cylindrical 

pressure vessel. The authors considered several shapes of 

the head meridian. The problem was solved analytically and 

positively verified by numerical (FEM) approach. 

The works devoted to non-homogeneous structures have 

been initiated in the mid of the 20th century. These 

structures are permanently improved and complemented by 

the concept of functionally graded materials until to-day. 

Ferreira et al. (2003) dealt with the composite laminated 

plates using the third-order Reddy’s theory. The authors 

developed a new meshless method in order to discretize the 

structure. It enabled to predict the plate behaviour with high 

accuracy. Zenkour (2006) presented the problem of a 

rectangular plate under the transverse uniform load, using 

the author’s own earlier developed generalized shear 

deformation theory. The functionally graded properties of 

the plate material have been adopted. The effects of 

transversal shear deformation, geometric ratios and volume 

distribution on the plate behaviour have been investigated. 

Magnucka-Blandzi (2008) focused on buckling and 

deflection of a circular porous plate loaded with radial 

uniform compression and pressure. Properties of the plate 

material varied in thickness direction. The principle of 

stationarity of the total potential energy allowed to derive a 

system of differential equations governing the plate 

 
 
 

Axisymmetric bending of a circular plate with symmetrically varying 
mechanical properties under a concentrated force 

 

Krzysztof Magnucki, Wlodzimierz Staweckia and Jerzy Lewinskib 
 

Łukasiewicz Research Network - Institute of Rail Vehicles TABOR, 
ul. Warszawska 181, 61-055 Poznan, Poland 

 
 

(Received October 17, 2019, Revised February 14, 2020, Accepted February 17, 2020) 

 
Abstract.  The subject of the paper is a circular plate with symmetrically thickness-wise varying mechanical properties. The 

plate is simply supported and carries a concentrated force located in its centre. The axisymmetric bending problem of the plate 

with consideration of the shear effect is analytically and numerically studied. A nonlinear function of deformation of the straight 

line normal to the plate neutral surface is assumed. Two differential equations of equilibrium based on the principle of stationary 

potential energy are obtained. The system of equations is analytically solved and the maximum deflections and shear coefficients 

for example plates are derived. Moreover, the maximum deflections of the plates are calculated numerically (FEM), for 

comparison with the analytical results. 
 

Keywords:  circular plate; bending; functionally graded materials; shear effect; nonlinear theory 

 

https://doi.org/10.12989/scs.2020.34.6.795
mailto:krzysztof.magnucki@tabor.com.pl
https://www.sciencedirect.com/topics/engineering/pressure-vessels
https://www.sciencedirect.com/science/article/pii/S1359836803000830#!
https://www.sciencedirect.com/topics/engineering/porous-plates
https://www.sciencedirect.com/topics/engineering/stationarity
https://www.sciencedirect.com/topics/engineering/potential-energy


 

Krzysztof Magnucki, Wlodzimierz Stawecki and Jerzy Lewinski 

stability. Its solution enabled to determine the plate critical 

load and deflection. Saidi et al. (2009) used the third-order 

shear deformation plate theory to study bending and 

buckling of functionally graded circular plates. The results 

of maximum displacement and critical buckling load 

achieved in this approach for various ceramic-metal ratios 

were compared to those obtained with the use of other plate 

theories. Sahraee and Saidi (2009) studied axisymmetric 

bending of functionally graded  circular plates under 

uniform transverse load. The analytical model was 

formulated using fourth-order shear deformation plate 

theory. Maximum deflection and shear stress were 

calculated. Shen (2009) analyzed the plates and shells made 

of functionally graded materials. The problems of 

modelling of these structures was presented. The higher 

order shear deformation theory of the plates was used in 

order to derive the nonlinear equations governing the plate 

behaviour. The author considered bending, nonlinear 

vibration and postbuckling behaviour  of shear deformable 

plates. Reddy (2010) used the constitutive relations of 

Eringen and the idea of von Kármán nonlinear strains with a 

view to formulate anew the classical and shear deformation 

beam and plate theories. The equilibrium equations and a 

finite element model was developed, allowing for assessing 

the effect of the geometric nonlinearity and the constitutive 

relations on bending response of the considered structures. 

Yun et al. (2010) investigated the problem of axisymmetric 

bending of transversely isotropic and functionally graded 

circular plates under a transverse load, expanded in the 

Fourier–Bessel series. The direct displacement method was 

used for the purpose. In some cases the analytical solutions 

were workable. The numerical examples verified the 

proposed method. Gunes and Aydin (2010) studied the 

impact bending of functionally graded circular plates 

composed of ceramic and metal layers. The influence of the 

layer number,  the through-thickness variation gradient of 

the mechanical properties, the impactor velocity and plate 

radius on the circular plate response was investigated. The 

failure strains were determined with a view to locate the 

damage regions of the layers. Debowski et al. (2010) dealt 

with a rectangular plate made of isotropic metal foam the 

mechanical properties of which varied in the thickness 

direction. The Hamilton’s principle allowed to derive a 

system of partial differential equations of the plate motion. 

Solution of the equations was compared to FEM numerical 

results. Reddy and Berry (2012) formulated an original 

theory of axisymmetric bending of circular plates, based on 

microstructure of the material and the classical and first-

order shear deformation theories. Mechanical properties of 

the material varied according to power-law. The effect of 

the nonlinearity, power-law index, and microstructural 

relationships on the response of axisymmetric analysis of 

circular plates was assessed. Jha et al. (2013) delivered a 

review of the research dedicated to functionally graded 

plates, with consideration of the publications dated after 

1997. The authors dealt with the works devoted to 

deformation, stress, vibration and stability problems of 

these structures. The review was aimed at presentation of 

the studies and applications in the field of functionally 

graded plates. Maturi et al. (2014) analyzed the static and 

dynamic (free vibration) behaviour of sandwich plates, the 

facing and core materials of which differ one from the 

other. A new layerwise theory was developed, using the 

radial basis functions, that enabled precise calculation of the 

transverse normal and shear deformations as well as the 

stresses. Several examples of the composite sandwich plates 

were tested and elaborated. Jabbari et al. (2014) studied 

buckling of a circular plate made of porous material, the 

mechanical properties of which vary across the thickness. 

The Love-Kirchhoff hypothesis was applied with a view to 

consider geometrical nonlinearities of the plate. The 

prebuckling and critical forces were calculated. The results 

were compared to those of homogeneous circular plates. 

Mojahedin et al. (2016) used the higher order shear 

deformation theory with a view to analyze buckling of 

circular plates made of saturated porous materials. The plate 

was considered as geometrically perfect, with its 

mechanical properties varying in thickness direction. The 

equations governing the plate behaviour were derived based 

on the Sanders non-linear strain–displacement relationship. 

The results, i.e. the prebuckling and critical forces, were 

compared to the ones reported in the literature. Wu and Liu 

(2016) used the Reissner mixed variational theorem in order 

to develop a method of analysis of the circular plates made 

of functionally graded material. The quality of this method 

was assessed by comparing the solutions with the accurate 

ones available in the literature. Feyzi and Khorshidvand 

(2017) studied axisymmetric post-buckling behavior of a 

circular plate made of porous material saturated with fluid, 

subjected to uniformly distributed radial compression. The 

authors investigated the effect of the size and distribution of 

the pores, fluid compressibility, thickness variations and 

boundary conditions on the plate post-buckling behaviour. 

The results were compared to those obtained by other 

researchers. Beni and Dehkordi (2018) used the Carrera 

unified formulation converted to the polar coordinates in 

order to analyze the behaviour of a circular sandwich plate. 

The functionally graded material, the core of the plate was 

made of, was considered as a mixture of ceramics and 

metal. Its mechanical properties varied according to a 

power law in the direction of thickness. The results were 

compared to those available in the literature  as well as the 

ones obtained with the generalized zig-zag theory, showing 

a proof of high accuracy of the new approach. Wu and Yu 

(2018) analyzed two-directional functionally graded 

circular plates using the Reissner's mixed variational 

theorem. The solutions were perfectly compatible with 

those obtained using the 3D analytical approach and two-

dimensional plate theories presented in the literature. 

Magnucka-Blandzi et al. (2018) dealt with a thin-walled 

three-layer circular plate, composed of two facings and a 

metal foam core of varying mechanical properties. A 

mathematical model considering the shear effect was 

developed, that was aimed at solving the plate global 

buckling problem. The principle of stationary total potential 

energy enabled to derive the equations of equilibrium. 

Numerical verification with finite element method indicated 

correctness of the method. Magnucki (2018) delivered an 

analytical study of buckling of a cylindrical panel. The 

mechanical properties of the panel varied in the thickness  
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Fig. 1 Scheme of the circular plate with the load  

 

 

direction. Based on the principle of stationary total potential 

energy the equations governing the panel behaviour were 

derived. Assumption of a nonlinear hypothesis of 

deformation of a straight line perpendicular to the panel 

neutral surface during buckling led to the analytical 

solutions providing the critical loads. Magnucki et al. 

(2019) considered a rectangular plate with its mechanical 

properties varying symmetrically in the thickness direction. 

A nonlinear hypothesis of deformation of the straight line 

normal to neutral surface of the plate was adopted which 

allowed to determine the field of the displacements. The 

Hamilton’s principle served as a basis for derivation of the 

equations of motion. Their solution allowed to calculate the 

critical loads and natural frequencies of several exemplary 

plates. The results were verified with finite element method. 

The subject of the studies is a simply supported circular 

plate of radius R1 and thickness h with a rigid central part of 

radius R0. The plate is subjected to a concentrated force F 

(Fig. 1). The problem is studied in linear-elastic range. 

The concentrated force applied directly to a thin-walled 

structure would easily damage it. Therefore, the force must 

be spread over a certain area that must be reinforced in 

order to transfer the force. Hence, the considered plate is 

provided with a rigid central part to which the force is 

applied, that complies with practice. 

 

 

2. Analytical model of the plate  
 

The symmetrical thickness-wise variation of mechanical 

properties of the circular plate is similar to the case 

presented by Magnucki (2018) and Magnucki et al. (2019). 

In these papers the variation of Young’s modulus is 

presented by trigonometric functions. Taking into account 

the paper Magnucki and Lewiński (2019) the Young’s 

modulus of the circular plate is assumed to vary according 

to the following power function 

    efEE 1  (1) 

where the dimensionless function 

     ek

e eef 62
00 3261    (2) 

and: ζ=z/h – dimensionless coordinate, e0=E0/E1 – 

dimensionless parameter, E0, E1 – Young’s moduli for ζ=0 

and ζ=±1/2, ke – exponent - real positive number (1≤ke).  

The nonlinear theory-hypothesis of deformation of a 

straight line normal to middle surface of the plate is 

assumed. The graphical illustration of the hypothesis is  

 
Fig. 2 The scheme of the straight normal line deformation 

after bending  

 

 

shown in Fig. 2. The straight normal line before bending 

transforms into a curve after bending. This curve is 

perpendicular to the upper and lower surfaces of the plate 

and, in consequence, the shear stresses at these surfaces are 

zero. This hypothesis takes into consideration the shear 

effect in the circular plate.  

The longitudinal displacement in accordance with Fig. 2 is 

as follows 

     







 rf
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hru d ,  (3) 

where:  rw  - deflection,     hrur 1  - dimensionless 

displacement function.  

The nonlinear hypothesis formulated by Magnucki 

(2018) and Magnucki and Lewiński (2019) is generalized to 

a new original function taking the following form 
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where: j  - dimensionless coefficients (j=1, 3, 5).  

The first derivative of the function is as follows 
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The strains 
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where r, φ - the polar coordinates.  

The transverse shear strain   ,rrz  along the 

thickness is a convex function (Magnucki (2018)), hence 
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from which the condition for dimensionless coefficients 

values of the function (5) is in the following form 
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The stresses in accordance with the Hooke’s law 
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Taking into account the paper (Magnucki 2018) a constant 

value of the Poisson’s ratio for the material of the plate is 

assumed ( 1  ).  

The bending moments are as follows 
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where 
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The equation of equilibrium of the circular plate sector, 

based on the monograph Timoshenko and Woinowsky-

Krieger (1959), is in the following form 

      rrQrMrrM
dr

d
r    (12) 

where the transverse force of the circular plate subjected to 

concentrated load (Fig. 1) is as follows 
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Therefore, the equation of equilibrium (12) with 

consideration of the expressions (10), (11) and (13) and 

after simple transformation takes the following form 
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The elastic strain energy of the plate 
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The work of the load 
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Consequently, based on the principle of stationary total 

potential energy   0WU , the system of two 

differential equations of equilibrium of the circular plate is 

obtained in the following form 
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It may be easily noticed, that the Eq. (14) is equivalent 

to the Eq. (17). Therefore, the system of Eqs. (14) and (18) 

is a basis for analysis of the axisymmetric bending problem 

of the circular plate with consideration of the shear effect. 
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3. Bending of the circular plate – analytical studies 
 

The plate is subjected to the concentrated force F (Fig. 

1). Integrating the Eq. (14) one obtains 
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where: C1, C2 – integration constants.  

The radial displacements for r=R0 are zero, therefore 
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The form of the right-hand side of the Eq. (19) allows to 

adopt the following assumptions 

3
1

1

1111

1

1

2

1

2

ln
2

1
2

4

1

hE

FR

R

r

R

r

R

r

R

r
C

rR

C

R

w

dr

dw

a




















 (21) 

 

3
1

1

1111

1

1

2
2

ln
2

1
2

4

1

hE

FR

R

r

R

r

R

r

R

r
C

rR

C

r

a 






















 

(22) 

where: wa, ψa coefficients of the deflection w(r) and 

displacement ψ(r) functions.  

The radial bending moment (10) for the simply 

supported edge is zero (Mr(R1)=0), from which  
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where: α0=R0/R1 – parameter. 

In result the expression (20) is as follows 
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Taking into account the expressions (21) and (22) based on 

the Eq. (19) one obtains the algebraic equation 
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Substituting the expressions (21) and (22) into the Eq. (18) 

and making use of the Galerkin method one obtains the 

algebraic equation 
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The solution of the algebraic Eqs. (25) and (26) gives two 

unknown coefficients 
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and the dimensionless shear coefficient  
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Integrating the expression (21) and taking into account the 

condition w(R1)=0 (the hinged edge), one obtains the 

maximum deflection of the circular plate in the following 

form 
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After simple transformation of this expression, one obtains 
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where:  23
11 112  hED  – flexural rigidity of the 

plate, and dimensionless maximum deflection 
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Moreover, for particular case of the structure - the 

homogeneous plate (e0=1, ke=1, Cww=1/12) and R00, the 

dimensionless maximum deflection (31) with omission of 

the shear effect (Csc=0) is 
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. This 

value is consistent with the one presented in the literature, 

e.g., Timoshenko and Woinowsky-Krieger (1959) and 

Ventsel and Krauthammer (2001).  
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(a) 0 0.25, 1.0ee k   (b) 0 0.25, 2.5ee k   

  
(c) 0 0.05, 2.5ee k   (d) 0 0.05, 25ee k   

Fig. 3 The graphical illustration of symmetrically varying 

Young’s modulus 

 

 

Table 1 The results of the calculation of the four exemplary 

circular plates 

0e   

ek   

0.25 

1.0 

0.25 

2.5 

0.05 

2.5 

0.05 

25 

1  1.4079 1.1156 1.5009 0.8841 

3  -0.6494 0.01337 -0.2459 -0.3041 

5  0.3208 -0.05984 -0.6210 1.0873 

scC  0.004672 0.004807 0.014988 0.009021 

 
max

Analyt
w  0.05954 0.07094 0.08159 0.19082 

1 3 53 2     3.246<3.5 3.314<3.5 3.390<3.5 3.131<3.5 

 

 

The detailed calculations are carried out for the 

exemplary circular plates. The graphical illustration of the 

assumed four examples (a, b, c, d) of symmetrically varying 

mechanical properties is shown in Fig. 3. 

The data of the four example plates are as follows: 

thickness h=25 mm, radiuses R0=30 mm, R1=600 mm, 

Poisson’s ratio ν=0.3. The results of the calculations are 

specified in Table 1. 

It may be noticed that the above four examples of the 

circular plate are arranged with regard to decreasing rigidity 

and, in consequence, the values of the maximum deflections 
 
max

Analyt
w  grow. The last variant of the plate (Fig. 3(d)) 

approaches the sandwich structure. 

 

 

4. Bending of the plate – numerical FEM studies  

 

Numerical computations of the circular plate examples 

are carried out with the SolidWorks software package. 

Symmetry of the plate allows to consider the model 

including only its sector. In this case a quarter of the plate is 

adopted (Fig. 4), as a sector of the angle smaller than 90 

would result in generation of highly deformed finite 

elements. 

The plate models are divided into 3D tetrahedral finite 

elements with 4 Jacobian points. Example of the mesh is 

shown in Fig. 5. 

The FEM model is computed in linear range, in 

accordance with the above analytical approach. Several 

examples of the FEM mesh with various element sizes have 

shown that the mesh finally adopted is sufficiently fine. 

The plate is located in a cylindrical coordinate system. 

Its origin is placed in the middle of the plate, the 

longitudinal axis z is perpendicular to the plate and 

downward directed. 

 

 

 
 

Fig. 4 Exemplary model of the circular plate used for FEM 

computation 

 

 

 
 

Fig. 5 A part of a FEM mesh (the area marked in Fig. 4 with 

the dotted circle) 

800



 

Axisymmetric bending of a circular plate with symmetrically varying mechanical properties under a concentrated force 

 

Table 2 The results of numerical FEM calculation of 

dimensionless deflection in four exemplary cases of the 

circular plates 
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FEM
w   0.06002 0.07123 0.08363 0.18983 

   

 
max max

max

FEM Analyt

FEM

w w

w


 0.8 % 0.4 % 2.5 % 0.5 % 

 

 

The plate models are composed of several layers of various 

thicknesses and various Young’s moduli, with a view to 

approximate the Young’s modulus patterns shown in Fig. 3.  

The following boundary conditions imposed at the surfaces 

of the plate ensure its proper behaviour:  

 the plate is simply supported at its edge being a 

circular circumference of the plate, where the z 

displacements are zero (the edge is invisible in Fig. 

4).  

 displacements perpendicular to both vertical cross 

sections of the plate, being the boundaries of the 

plate sector, are zeroed due to symmetry of the 

structure.  

The numerical FEM calculation was carried out for the 

plates of the dimension R0=30 mm and R1=600 mm, loaded 

with the force F=20 kN. The deflections have been 

converted to their dimensionless values in order to compare 

the results with those obtained analytically.  

Table 2 includes maximum dimensionless deflections so 

calculated.  

Comparison of the above deflection values to those 

obtained analytically and specified in Table 1 shows 

excellent convergence of both series of the results. 

 

 

5. Conclusions 
 

The analytical model of the considered plate takes into 

account the following:  

• the original hypothesis – theory of deformation of 

the straight line normal to middle surface of the 

plate (Fig. 2);  

• variability of the mechanical properties in the 

plate thickness direction, expressed by (1) allows 

to adjust the structures from the homogeneous to 

sandwich ones. 

It allows to describe satisfactorily the shear effect 

arising in the plate subjected to concentrated load imposed 

in its centre. In consequence, the deflections are calculated 

analytically with consideration of the shear effect 

(demonstrated by the shear coefficient Csc (28)). The 

numerical model is formulated with the use of 3D 

tetrahedral finite elements that also take the shear effect into 

account. Comparison of the analytical and numerical results 

indicates that the assumed hypothesis – theory efficiently 

describes the conditions arising in a real circular plate 

subjected to the above mentioned load.  
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