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1. Introduction 

 

Various internal and external loads generate vibration in 

the mechanical devices. These vibrations also affect the 

plates performance and however the vibrations can need to 

be decreased. Vibrations may be decreased by improving 

the characteristics of plates by new technologies, such as 

the utilize of piezoelectric materials. In addition, plate can 

be reinforced by nanoparticles for increasing its stiffness.  

The vibration behavior of plates on elastic foundations 

has attracted considerable attention in recent years. Lam et 

al. (2000) used the Green's functions to obtain canonical 

exact solutions of elastic bending, buckling and vibration 

for Levy plates resting on two -parameter elastic 

foundations. The free vibrations of simply supported 

rectangular plates, resting on two different models of soils, 

were considered by De Rosa and Lippiello (2009). Ferreira 

et al. (2010) used the radial basis function collocation 

method to study static deformation and free vibration of 

plates on Pasternak foundation. Kumar and Lal (2012) 

studied the vibration analysis of nonhomogeneous 

orthotropic rectangular plates with bilinear thickness 

variation resting on Winkler foundation. Bahmyari and 

khedmati (2013) considered the vibration analysis of 

nonhomogeneous moderately thick plates with point 

supports resting on Pasternak elastic foundation using 

element free Galerkin method. Vibrational analysis of 

advanced composite plates resting on elastic foundation was 

studied by Mantari et al. (2014). They derived the 

governing equations of a type of functionally graded plates  
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resting on elastic foundation by employing the Hamilton's 

principal. Uğurlu (2016) analyzed the vibration of elastic 

bottom plates of fluid storage tanks resting on Pasternak 

foundation based on boundary element method. Also, a 

dimensionless parametric study for forced vibrations of 

foundation-soil systems was done by Chen et al. (2016). A 

non-polynomial four variable refined plate theory for free 

vibration of functionally graded thick rectangular plates on 

elastic foundation was investigated by Meftah et al. (2017). 

The eigenfrequency responses of a nanoplate structure were 

evaluated numerically by Mehr et al. (2018) via a novel 

higher-order mathematical model and finite-element 

method including nonlocal elasticity theory. Microstructure-

dependent static stability analysis of inhomogeneous 

tapered micro-columns was performed by Akgöz (2019). 

Medani et al. (2019) studied static and dynamic behavior of 

Functionally Graded Carbon Nanotubes (FG-CNT)-

reinforced porous sandwich (PMPV) polymer plate. 

Thermal buckling temperature values of the graded carbon 

nanotube reinforced composite shell structure was explored 

by Mehar and panda (2019)  

using higher-order mid-plane kinematics and multiscale 

constituent modeling under two different thermal fields.  

None of the above researchers have considered piezo-

based nano-composite structures. Numerical analysis of 

large amplitude free vibration behaviour of laminated 

composite spherical shell panel embedded with the 

piezoelectric layer was presented by Singh and Panda 

(2015a). The nonlinear free vibration behaviour of 

laminated composite single/doubly curved shell panel 

embedded with the piezoelectric layer was investigated 

numerically by Singh and Panda (2015a). Singh and Panda 

(2016) investigated the geometrical nonlinear free vibration 

characteristic of cylindrical composite shell panel 

embedded with piezoelectric layers. Static Piezo-based 
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wireless sensor network for early-age concrete strength 

monitoring is planned by Chen et al. (2016). The 

geometrically nonlinear transient response of the smart 

laminated composite plate was investigated by Singh et al. 

(2016a) under the coupled electromechanical load. Singh et 

al. (2016b) studied geometrical nonlinear flexural 

behaviour of laminated composite shell panels integrated 

with the piezoelectric fibre reinforced composite (PFRC) 

layer. Sasmal et al. (2017) investigated electrical 

conductivity and piezo-resistive characteristics of CNT and 

CNF incorporated cementitious nanocomposites under 

static and dynamic loading. The flexural behaviour of the 

laminated composite plate embedded with two different 

smart materials (piezoelectric and magnetostrictive) and 

subsequent deflection suppression were investigated by 

Dutta et al. (2017). Static bending and strength behaviour of 

the laminated composite plate embedded with 

magnetostrictive (MS) material was computed numerically 

by Suman et al. (2017). Chahar and Kumar (2019) studied 

the effect of ply orientation and control gain on tip 

transverse displacement of functionally graded beam layer 

for both active constrained layer damping (ACLD) and 

passive constrained layer damping (PCLD) system. 

The purpose of this paper is to study the free vibration 

and smart control of plate reinforced by carbon nanotubes 

embedded in elastic medium. The structure is covered by a 

piezoelectric layer subjected to external voltage. In order to 

obtain the equivalent material properties of nanocomposite 

structure, the Mori-Tanaka model is used. Applying first 

order shear deformation theory, the motion equations are 

achieved based on Hamilton's principal. Navier method is 

applied for obtaining the frequency of the system. The 

effects of applied voltage, volume percent and 

agglomeration of carbon nanotubes, elastic medium and 

geometrical parameters of structure on the frequency of 

system are disused in detail. 

 

 

2. Mathematical model 
 

As shown in Fig. 1, a plate reinforced with Carbon 

nanotubes and covered by piezoelectric layer with length L, 

width b, thickness h and piezoelectric layer thickness hp is 

considered. 

Since, the structure of this paper is a flat plate, the FSDT 

is chosen. In addition, this theory, predicts the accurate 

results considering shear correction factor for flat plates 

 

 

 

Fig. 1 A schematic figure for plate with piezoelectric 

layers reinforced with Carbon nanotubes 

(Hosseini-Hashemi et al. 2010). Based on FSDT plate 

theory, the displacement field can be expressed as (Reddy 

2003) 
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where ( ( , , , ), ( , , , ), ( , , , )u x y z t v x y z t w x y z t ) 

denote the displacement components at an arbitrary point  

(x,y,z) in the plate, and ( ( , , ), ( , , ), ( , , )u x y t v x y t w x y t ) 

are the displacement of a material point at ( ,x y ) on the 

mid-plane (i.e., 0z ) of the plate along the x-, y -, and 

z-directions, respectively; x and y are the rotations of 

the normal to the mid-plane about x- and y - directions, 

respectively. Based on above relations, the strain-

displacement equations may be written as 
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where ( , )xx yy  are the normal strain components and 

( , , )yz xz xy   are the shear strain components. 

The constitutive equation for stresses σ  and strains ε  

matrix on the mechanical side, as well as flux density D  

and field strength E  matrix on the electrostatic side, may 

be arbitrarily combined as follows (Kolahchi et al. 2016) 
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where ij , ij , 
iiD  and 

iiE  are stress, strain, electric 

displacement and electric field, respectively. Also,
ijC , ije  

and 
ij  denote elastic, piezoelectric and dielectric 

coefficients, respectively. Noted that 
ijC  may be obtained 

using Mori-Tanaka model (Mori and Tanaka 1973). The 

electric field in terms of electric potential ( ) is expressed 

as 

,kE  
 

(5) 

where, the electric potential is assumed as the combination 

of a half-cosine and linear variation, which satisfies the 

Maxwell equation. It can be written as (Kolahchi et al. 

2016) 

02
( , , , ) cos( ) ( , , ) ,

V zz
x y z t x y t

h h


   

 
(6) 

where ),,( tx   is the time and spatial distribution of the 

electric potential which must satisfy the electric boundary 

conditions, 0V  is external electric voltage. However, using 

Eq. (1), the governing equations of piezoelectric material 

(i.e., Eqs. (3) and (4)) for FSDT may be written as 
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For the plate, with neglecting the piezoelectric properties 

we have 
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2.1 Mori-Tanaka Model and agglomeration effects 
 

In this section, the effective modulus of the plate 

reinforced by Carbon nanotubes is developed. Different 

methods are available to obtain the average properties of a 

composite. Due to its simplicity and accuracy even at high 

volume fractions of the inclusions, the Mori-Tanaka method 

is employed in this section. The matrix is assumed to be 

isotropic and elastic, with the Young’s modulus mE  and 

the Poisson’s ratio m . The constitutive relations for a layer 

of the composite with the principal axes parallel to the x-, y- 

and z directions are (Mori and Tanaka 1973) 
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where plnmkijijij ,,,,,,,  are the stress components, 

the strain components and the stiffness coefficients 

respectively. According to the Mori-Tanaka method the 

stiffness coefficients are given by 
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(21) 

where the subscripts m  and r  stand for matrix and 

reinforcement respectively. mC   and rC  are the volume 

fractions of the matrix and the nanoparticles respectively 

and kr، lr، nr، pr، mr are the Hills elastic modulus for the 

nanoparticles (Mori and Tanaka 1973). The experimental 

results show that the assumption of uniform dispersion for 

nanoparticles in the matrix is not correct and the most of 

nanoparticles are bent and centralized in one area of the 

matrix. These regions with concentrated nanoparticles are 

assumed to have spherical shapes, and are considered as 

‘‘inclusions’’ with different elastic properties from the 

surrounding material. The total volume rV  of 
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nanoparticles can be divided into the following two parts 

(Shi and Feng 2004) 
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(22) 

where 
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rV  are the volumes of 

nanoparticles dispersed in the spherical inclusions and in 

the matrix, respectively. Introduce two parameters   and 

  describe the agglomeration of nanoparticles 
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However, the average volume fraction rc  of nanoparticles 

in the composite is 
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completely random. Hence, the effective bulk modulus (K) 
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where, Km and Gm are the bulk and shear moduli of the 

matrix which can be written as 
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Furthermore, ,  can be obtained from 
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Finally, the elastic modulus (E) and poison’s ratio (υ) can be 

calculated as 
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2.2 Energy method 
 

The potential energy can be written as 
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(43) 

Combining of Eqs. (1), (7)-(14) and (43) yields 
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(44) 

where the stress resultant-displacement relations can be 

written as 
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In which k is shear correction coefficient. Substituting 

Eqs. (1) and (7)-(14) into Eqs. (45)-(47), the stress 

resultant-displacement relations can be obtained as follow 
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The kinetic energy of system may be written as 
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in which the density of nanocomposite plate based on Mori-

Tanak model can be obtained from (1 c )c
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where r and 
m  are density of nanoparticles and plate, 

respectively. Defining the moments of inertia as below 
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the kinetic energy may be written as 
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The external work due to elastic medium can be written 

as (Bowles 1988) 
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where wK  is Winkler’s spring modulus. In addition, the 

in-plane forces may be written as 
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The governing equations can be derived by Hamilton's 

principal as follows 
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Substituting Eqs. (42), (67), (68) and (71) into Eq. (72) 

yields the following governing equations 
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Substituting Eqs. (48) to (55) into Eqs. (73) to (78), the 

governing equations can be written as follow 
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3. Solution procedure 
 

Steady state solutions to the governing equations of the 

system motion and the electric potential distribution which 

relate to the simply supported boundary conditions and zero 

electric potential along the edges of the surface electrodes 
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can be assumed as 
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L b

 
 

 
(90) 

0( , , ) sin( )cos( ) ,i t

y y

n x m y
x y t e

L b

 
 

 
(91) 

0( , , ) sin( )cos( ) ,i tn x m y
x y t e

L b

 
 

 
(92) 

where n and m are axial and lateral mode numbers, 

respectively;   is the structure frequency. Substituting 

Eqs. (87)-(92) into Eqs. (79)-(84) yields 

011 12 13 14 15 16

021 22 23 24 25 26

031 32 33 34 35 36

041 42 43 44 45 46

051 52 53 54 55 56

61 62 63 64 65 66 0

0,
x

y

uK K K K K K

vK K K K K K

wK K K K K K

K K K K K K

K K K K K K

K K K K K K







  
  
  
  

  
  
  
  
      

(93) 

Finally, for calculating the frequency of the system ( ), 

the determinant of matrix in Eq. (93) should be equal to 

zero. 

 

 
4. Numerical results and discussion 
 

A computer program is prepared for the vibration smart 

control solution of plate reinforced with Carbon nanotubes 

and piezoelectric layer. Here, poly vinilidene fluride 

(PVDF) is selected for the piezoelectric layer with the 

material properties of Table 1 (Kolahchi et al. 2016). 

 

 

 

Table 1 Material properties of PVDF 

Properties PVDF 

C11 238.24       (GPa) 

C12 3.98           (GPa) 

C22 23.6           (GPa) 

e11 -0.135        (C/m2) 

e12 -0.145        (C/m2) 

ϵ11 1.1e-8        (C2/Nm2) 

ρP 5300          (kg/m2) 

 

 

 

Table 2 Hill’s constants and density 

Parameter Unit Value 

kr GPa 30 

lr GPa 10 

mr GPa 1 

nr GPa 450 

pr GPa 1 

r  Kg/m3 2300 

m  Kg/m3 2500 

 

 

 In addition, polymer plate has Young's modulus of 

70mE GPa  and Poisson's ratio of 0.3r   which is 

reinforced by nanotube with density and Hill’s constants 

shown in Table 2. In addition, shear correction factor is 

chosen 5/6 (Kolahchi et al. 2016). 

 

4.1 Validation 
 
In this paper, to validate the results, the frequency of the 

structure is obtained by assuming the absence of elastic 

medium ( 0wK  ). Therefore, all the mechanical 

properties and type of loading are the same as Whitney 

(1987). So the non-dimensional frequency is considered as 

2 4

0

h L

D

 
  in which 

3

0 1 12 21/ (12(1 ))D E h    . The 

results are compared with five references which have used 

different solution method. The exact solution is used by 

Whitney (1987) while discrete singular convolution 

approach is applied by Secgin and Sarigul (2008). The 

numerical solution method of Dai et al. (2004), Chen et al. 

(2003), Chow et al. (1992) are mesh-free, finite element and 

Ritz, respectively. As it is observed in Table 2, the results of 

present work are in accordance with the mentioned 

references. 

 

 
4.2 Effects of different parameters 
 
Fig. 2 illustrates the effect of the Carbon nanotubes 

volume fraction on the dimensionless frequency of structure 

( /m mL E   ) for length to thickness ratio (L/h) of 5,  

 

Table 3 Validation of present work with the other references 

Method Mode 

number 

   

 1 2 3 4 

Whitney (1987) 15.171 33.248 44.387 60.682 

Secgin and Sarigul 

(2008) 

15.171 33.248 44.387 60.682 

Dai et al. (2004) 15.17 33.32 44.51 60.78 

Chen et al. (2003) 15.18 33.34 44.51 60.78 

Chow et al. (1992) 15.19 33.31 44.52 60.79 

Present  15.169 33.241 44.382 60.674 
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length to width ratio (L/b) of 1 and piezoelectric thickness 

(hp) of 0.04 m. It can be seen that with increasing the values 

of Carbon nanotubes volume fraction, the frequency of the 

system is increased. This is due to the fact that the increase 

of Carbon nanotubes leads to a harder structure. However, it 

may be concluded that using nanotechnology for reinforce 

of plates has an important role in improving the vibration 

behavior of system. 

Fig. 3 shows the effect of Carbon nanotubes 

agglomeration on the dimensionless frequency of structure 

versus external applied voltage for cr=1%, L/h= 5, L/b=1 

and hp=0.04 m. As can be seen, considering agglomeration 

of Carbon nanotubes leads to lower frequency. It is due to 

this point that the agglomeration of Carbon nanotubes 

decreases the stability and homogeneity of the structure. 

The dimensionless frequency of the nano-composite plate is 

demonstrated in Fig. 4 for different elastic mediums for 

cr=1%, L/h= 5, L/b=1, hp=0.04 m and Winkler constant of 

Kw=100 GPa. As can be seen, considering elastic medium 

increases the frequency of the structure.  

 

 

 

Fig. 2 Effects of Carbon nanotubes volume percent on the 

dimensionless frequency versus dimension applied 

voltage external 

 

 

Fig. 3 Effects of Carbon nanotubes agglomeration on the 

dimensionless frequency versus dimension external 

applied voltage 

 

 

Fig. 4 Effects of elastic medium on the dimension 

frequency versus dimension external applied voltage 

 

 

 

Fig. 5 Effects of length to thickness ratio of plate on the 

dimensionless frequency versus dimension external 

applied voltage 

 

 

 

It is due to the fact that considering elastic medium leads to 

stiffer structure. 

Furthermore, the frequency of the dense sand medium is 

higher than other cases since the spring constant of this 

medium is maximum. 

The effect of the length to thickness ratio of plate on the 

dimensionless frequency of the system is depicted in Fig. 5 

for cr=0.05%, L/b=1 and hp=0.04 m. As can be seen, the 

frequency of the structure decreases with increasing the 

length to thickness ratio. It is because increasing the length 

to thickness ratio leads to softer structure. 

Fig. 6 shows the dimensionless frequency of the structure 

for different length to width ratio of the plate for cr=1%, 

L/h= 5, and hp=0.04 m. It can be also found that the 

frequency of the structure decrease with increasing the 

length to width ratio which is due to the higher stiffness of 

system with lower length to width ratio. 
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The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates 

 

Fig. 6 Effects of length to width ratio of plate on the 

dimensionless frequency versus dimension external applied 

voltage 

 

 

 

Fig. 7 Effects of piezoelectric layer thickness on the 

dimensionless frequency versus dimension external applied 

voltage 

 

 

The effect of piezoelectric layer thickness on the 

dimensionless frequency is shown in Fig. 7 for cr=1%, L/h= 5 

and L/b=1. It can be found that with increasing the 

piezoelectric layer thickness, the frequency of the structure is 

increased. It is because with increasing the piezoelectric layer 

thickness, the stiffness of the structure will be improved. 

 

 

4. Conclusions 
 

Vibration smart control of embedded plates reinforced 

with Carbon nanotubes and covered with a piezoelectric 

layer subjected to external voltage was the main 

contribution of the present paper. Mori-Tanaka model is 

used for obtaining the effective material properties of the 

structure considering agglomeration effects. The elastic 

medium was simulated by Winkler foundation. Based on 

orthotropic FSDT, the motion equations were derived using 

energy method and Hamilton's principle. Exact solution is 

applied for obtaining the frequency of system so that the 

effects of the applied voltage, volume percent and 

agglomeration of Carbon nanotubes, elastic medium and 

geometrical parameters of plate were considered. It can be 

seen that with increasing the values of Carbon nanotubes 

volume fraction, the frequency of the system was increased. 

Considering agglomeration of Carbon nanotubes leads to 

lower frequency. It can be seen that considering elastic 

medium increases the frequency of the structure. In 

addition, the frequency of the structure decreases with 

increasing the length to thickness ratio and length to width 

ratio of the plate. It can be found that with increasing the 

piezoelectric layer thickness, the frequency of the structure 

was increased. Present results are in good agreement with 

those reported by the other references. Finally, it is hoped 

that the results presented in this paper would be helpful for 

control and design of plates. 
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