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1. Introduction 

 

Nowadays, hardened steel materials ranging from 42-68 

HRC have great demand for manufacturing of precision 

components to attain high mechanical performance in 

different engineering applications. Moreover, these 

materials are extensively used for manufacturing of 

automotive parts, bearings, dies and moulds, and machine 

tool components requiring specific characteristics (excellent 

indentation resistance, relatively low ductility, high value of 

hardness- to-elast ic  modulus rat io,  and superior 

abrasiveness), which makes hard-to-machine (Astakhov 

2008, Suresh et al. 2013) Traditionally, the most common 

method for machining the hardened steels is associated with 

a long technological chain of time-consuming and 

expensive operations, as illustrated in Figure 1a. In recent 

past, hard turning has become a well-developed innovative 

machining approach that offers potential benefits over 

conventional cylindrical grinding that includes; (i) excellent  
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process flexibility, (ii) faster manufacturing cycle times, 

(iii) reduced setup times, (iv) eco-friendly production 

without use of hazardous cutting fluid, (v) higher material 

removal rate, and (vi) considerable savings in carbon 

footprints via. reduced energy consumption (Grzesik 2008, 

Anand et al. 2019) (refer, Fig. 1(b)). 

Since, hardened steel materials are extremely difficult-

to-cut, machinability improvement is of prime importance, 

which is a challenging task due to the following critical 

issues; excessive tool wear, high heat generation, higher 

power consumption, large cutting force, and undesirable 

surface quality with difficulty in chip carrying management. 

Consequently, due to complex-dynamic behavior of hard 

turning process and its close connection with various 

parameters, the achievement of high responsiveness of 

production is very essential from techno-economical and 

ecological aspects. Moreover, for successful 

implementation of hard turning technology in substitute of 

traditional cylindrical grinding in machining of different 

hardened steels can be improved in terms of cutting 

efficiency, quality, cost, and productivity by considering the 

most appropriate and optimal process parameters. Under 

such circumstances, the effective utilization of 
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Abstract.  The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting 

force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade 

die steel D3 with PVD-TiN coated (Al2O3–TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi’s 

L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by 

considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The 

models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique 

(response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) 

have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) 

optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for 

estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life 

estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in 

FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by 

employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) 

contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting 

conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional 

cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes 

considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) 

provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable 

machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable 

manufacturing in both research field and industrial practice. 
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experimental, modeling, and optimization methodology 

make possible a greater improvement in decision-making 

with new technological solution that can simultaneously 

satisfy and control the several distinctive as well as 

contradictory objectives (multi-response) in order to make 

the hard turning process as an excellent choice for 

machining of hardened steel materials. Several statistical 

and computational approaches such as MRA (Bartarya et al. 

2013, Bensouilah et al. 2016, Khellaf et al. 2016), RSM 

(Hessainia et al. 2013; Tang et al. 2014, Bouzid et al. 2014, 

Fnides et al. 2015), ANN (Quiza et al. 2008, Gaitonde et al. 

2010, Asiltürk 2012, Nouioua et al. 2017, Zerti et al. 2018) 

have been applied for predictive modelling and Taguchi 

method (Günay and Yücel 2013, Xiao et al. 2016, Zerti et 

al. 2016), GRA (Sahoo and Sahoo 2013, Bouacha et al. 

2014, Panda et al. 2016), desirability function approach of 

RSM (Meddour et al. 2014, Shihab et al. 2014, Sanjeev 

Kumar et al. 2016, Benlahmidi et al. 2016), GA (Laouissi et 

al. 2018; Meddour et al. 2018, Das et al. 2018), PSO 

(Bouacha and Terrab 2016, Panda et al. 2017, Xie et al. 

2018) have been employed for parametric as well as process 

optimization in hard turning. Extensive studies have been 

reported by employing various experimental designs, 

modelling techniques and optimization approaches in order 

to assess or investigate the machinability (Davim and 

Figueira et al. 2007, Gaitonde et al. 2009a, Suresh et al. 

2012, Chinchanikar et al. 2013, Aouici et al. 2014, Nayak 

and Sehgal 2015, Das et al. 2015, Kumar and Chauhan, 

2015, Das et al., 2016; Mondal and Das, 2017; Ramanuj 

Kumar et al. 2018), to predict the various machinability 

parameters, and to control the process parameters in finish 

dry hard turning of different workpiece materials 

(42CrMo4, X210Cr12, EN-24, EN-32, AISI 1045, 1040, 

420, 4340, 4140, 52100, D2, D3, D6, H11). 

 

 

 

Fig. 1 (a) Technological series of traditional 

manufacturing processes, and (b) hard turning production 

As par with existing literature till due, systematic 

analysis on machinability under dry cutting environment is 

quite inadequate. In particular, very limited research works 

have been reported concerning FDHT of AISI D3 steel. 

Comparatively, now yet almost no investigator has 

conducted experiment analysis combining both the 

geometrical and cutting parameters while hard turning of 

AISI D3 steel using PVD-TiN coated Al2O3+TiCN mixed 

ceramic tool. The literature divulges a series of published 

research applying any one technique (statistical or 

computational) rather than considering both techniques to 

solve multi-response problem, which plays a very important 

role for enhancement of machining performance as well as 

improvement of machinability. Literature review highlights 

that the realistic approach to justify the use of PVD-TiN 

coated Al2O3+TiCN mixed ceramic tool as profitably 

substituting costly CBN and PCBN tool materials in hard 

turning process is less outlined, which finds the scope for 

researchers. Moreover, the investigation deals with energy 

savings and sustainability assessment in hard turning 

typically, in today’s manufacturing society that ensures 

green development towards safer environment is still 

unexplored, which finds an ideal worthy of investigation in 

the present paper. In view of such contribution, the current 

study aims to analyze the accomplishment of cutting 

performance for PVD-TiN coated Al2O3+TiCN mixed 

ceramic tool, and to investigate the machinability of 

hardened steel (AISI D3 - 61HRC) concerning cutting force, 

tool wear, surface roughness, and chip morphology by 

considering geometrical parameters (approach angle, nose 

radius) and machining parameters (speed, feed rate, depth of 

cut). Taguchi’s L18 orthogonal array (OA), multiple 

regression analysis (MRA), and statistical technique (RSM) 

followed by computational approach (GA, PSO) are 

subsequently employed for experimental investigation, 

predictive modelling, and multi-response optimization. 

Subsequently, the best optimal solution is used respectively, 

for economic analysis and energy saving carbon footprint 

analysis in order to rationalize the usefulness of PVD-TiN 

coated Al2O3+TiCN mixed ceramic tool in hard turning 

applications, and the reduction in energy consumption as 

well as greenhouse gas emissions with an intension to raise 

the awareness of green manufacturing and clean production 

in the manufacturing industry. Lastly, the Pugh matrix 

environmental approach has been proposed for 

sustainability assessment of finish dry hard turning process. 
This experimental observation relates to process 

improvement in industrial applications quite helpful and 

efficient from economic point of view. 

 

 

2. Experimental setup and procedure 
 

In the present experimental investigation, high carbon-

high chromium AISI D3 steel of cylindrical bar having 

dimensions 𝟇45×200 mm (diameter and length, 

respectively) is considered as workpiece material due to 

excellent wear resistance and its widely application in 

mould and die making industries. Table 1 shows the 

chemical composition of AISI D3 steel and confirms the  

682



 

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool 

 

 

 

 

 

elemental composition of workpiece material after 

performing the test through stationary metal analyzer 

(SpectroMax). Prior to machining, (i) specimen materials 

were heat treated by quenching followed by tempering at 

9000C and 4200C respectively, (ii) oxide layers were 

removed from the exterior surface, and (iii) specimens were 

mounted on tailstock. With the courtesy of the heat 

treatment process, there was an enhancement of hardness to 

61 HRC due to formation of different microstructures 

(martensite and ferrite). Commercially available grade 

AB2010 (make: Taegutec) PVD-TiN coated Al2O3-TiCN  

 

 

 

 

 

 

 

mixed ceramic of coating layer thickness 1μm (Fig. 2(a)) 

has been chosen as cutting tool. The elemental constituents 

and thickness of the coating were identified (refer, Fig. 2) in 

a scanning electron microscope (SEM) with an embedded 

energy dispersive X-ray (EDS) analyzer. Cutting inserts 

with three different nose radius (ISO designation: CNGA 

120404, CNGA 1204108, CNGA 120412) are clamped 

rigidly on the ISO designated two different tool holders of 

PCBNL 2525M12 and PCLNL 2525M12 which resulted the 

following cutting geometry: clearance angle of 00, approach 

angles of 750 and 950, back and side rake angle of -60, point 

angle of 800. 

 

Table 1 Chemical composition of AISI D3 steel 

Elements C Cr Mn Si Ni V Mo P S Fe 

Weight 

percentage 

1.973 11.463 0.354 0.32 0.265 0.047 0.02 0.016 0.009 Remainder 

Table 2 Cutting and geometrical parameters associated with their levels 

Parameters Levels 

1 2 3 

Approach angle, Kr (0) 75 95 - 

Nose radius, r (mm) 0.4 0.8 1.2 

Cutting speed, V (m/min) 110 180 250 

Feed, f (mm/rev) 0.06 0.11 0.16 

Depth of cut, a (mm) 0.1 0.2 0.3 

Table 3 Experimental plan layout and results 

Test 

no. 

Coded values Actual settings Machinability parameters 

Kr r V f a  Kr (0) r (mm) V (m/min) f (mm/rev) a 

(mm) 

Flank wear, VB 

(mm) 

Cutting force, Fc 

(N) 

Roughness, Ra (µm) 

1 1 1 1 1 1 75 0.4 110 0.06 0.1 0.114 62.73 0.551 

2 1 1 2 2 2 75 0.4 180 0.11 0.2 0.151 113.15 1.164 

3 1 1 3 3 3 75 0.4 250 0.16 0.3 0.178 220.98 1.988 

4 1 2 1 1 2 75 0.8 110 0.06 0.2 0.137 91.47 0.295 

5 1 2 2 2 3 75 0.8 180 0.11 0.3 0.186 166.14 0.745 

6 1 2 3 3 1 75 0.8 250 0.16 0.1 0.215 122.79 1.510 

7 1 3 1 2 1 75 1.2 110 0.11 0.1 0.142 80.29 0.395 

8 1 3 2 3 2 75 1.2 180 0.16 0.2 0.216 134.87 0.850 

9 1 3 3 1 3 75 1.2 250 0.06 0.3 0.258 212.50 0.230 

10 2 1 1 3 3 95 0.4 110 0.16 0.3 0.149 92.36 1.484 

11 2 1 2 1 1 95 0.4 180 0.06 0.1 0.173 68.13 0.291 

12 2 1 3 2 2 95 0.4 250 0.11 0.2 0.193 118.29 0.926 

13 2 2 1 2 3 95 0.8 110 0.11 0.3 0.176 146.46 0.707 

14 2 2 2 3 1 95 0.8 180 0.16 0.1 0.201 70.25 1.274 

15 2 2 3 1 2 95 0.8 250 0.06 0.2 0.235 110.74 0.292 

16 2 3 1 3 2 95 1.2 110 0.16 0.2 0.185 159.71 0.981 

17 2 3 2 1 3 95 1.2 180 0.06 0.3 0.221 101.82 0.395 

18 2 3 3 2 1 95 1.2 250 0.11 0.1 0.267 80.35 0.786 
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Fig. 2(a) SEM micrograph and (b) EDX analysis of coated layer 

 

Fig. 3 Layout of experimental setup including methodology proposed 
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For performing the straight cylindrical turning under dry 

environment condition, a heavy-duty high accuracy CNC 

lathe (make: Batliboi, model: SPRINT 16TC) has been 

utilized with spindle power capacity and maximum spindle 

speed of 7.5 kW and 5000 rpm, respectively. During FDHT 

of AISI D3 steel, a piezoelectric dynamometer (make: 

Kistler, model: 9257B) is used to measure the principal 

cutting force (FC). Measurement of surface finish of the 

machined part in terms of arithmetical mean roughness 

value (Ra) is measured with the help of Surftest SJ-210 

Mitutoyo roughness tester. After every successive 

experimental trial, the flank wear of the cutting tool is 

measured by using high resolution imaging digital 

microscope (make: Celestron, model: 44308-DS). For better 

understanding of hard turning process and machinability 

improvement, a comprehensive investigation is performed 

on work–tool interface temperature (cutting temperature), 

tool vibration, and morphological study of chips by 

employing thermal imaging camera (make: FLIR, model: 

T540) followed by digital vibration meter equipped with 

piezoelectric accelerometer (make: Mextech, model: 

VM6360), and last by scanning electron microscope (make: 

JEOL, model: JSM-6480LV). A simplified layout of the 

experimental setup including methodology proposed in this 

work, is presented in Fig. 3. 

In this paper, five machining parameters (approach 

angle, machining speed, feed rate, depth of cut and, tool 

nose radius) and three major machinability parameters 

(surface roughness, cutting force and tool wear) are 

considered as input factors and output responses, 

respectively for machinability investigation, predictive 

modelling and process optimization. The selection of 

different levels of machining parameters are considered 

with reference to published research works and 

recommendation of cutting tool manufacturer. Table 2 

illustrates the detailed input factors with their corresponding 

levels for the experiment in actual as well as coded values 

setting. The proposed experimental design involves the 

variation of four factors (r, v, f, a) at three levels (34) and the 

factor (Kr) at two levels (21) conducted machining trials are 

completely based on design of experiments employing 

Taguchi’s L18 orthogonal array associated with eighteen 

numbers of trial runs. The experimental design layout and 

results of machining trials are reported in Table 3. 

 

 

3. Results and discussion 
 

3.1 Development of predictive model using 
regression analysis 

 

Based on the results of response characteristics obtained 

in accordance of Taguchi’s L18 OA design of experiments 

were analysed in Mintab17 through multiple regression 

analysis and developed the best of empirical model to 

correlate between three machinability characteristics 

(surface finish of the machined component Ra, cutting force 

in FDHT process FC, and flank wear of PVD-TiN coated 

Al2O3+TiCN mixed ceramic tool VB) with the given input 

machining parameters (Kr, V, f, a, r). Regression equations 

for each response are presented by 

Fc = -439.9 + 6.90Kr + 7.6r + 5.182V - 5672f + 447a -

 0.192Kr*r - 0.06608Kr*V + 35.07Kr*f + 5.60 Kr*a -

 0.247r*V + 2509r*f - 1047r*a + 3.865V*f + 3.525V*a 

- 2335f*a 

R2 = 99.9%, R2(adj) = 99.12% 

(1) 

Ra = 2.665 - 0.0359Kr - 2.516r + 0.00438V + 9.45f -

 5.83a + 0.03632Kr*r - 0.000032Kr*V + 0.0480Kr*f 

+ 0.0199Kr*a - 0.00078r*V - 11.79r*f + 2.46r*a 

+ 0.01145V*f - 0.00459V*a + 22.3f*a                       

R2 = 99.93%, R2(adj) = 99.42% 

(2) 

VB = -0.2707 + 0.004857Kr - 0.0456r + 0.000691V 

+ 0.152f + 0.655a - 0.000505Kr*r - 0.000010Kr*V -

 0.00579Kr*f - 0.002513Kr*a + 0.000608r*V 

+ 0.773r*f - 0.2509r*a + 0.000647V*f + 0.000566V*a 

- 2.253f*a             

R2 = 99.98%, R2(adj) = 99.8% 

(3) 

A comprehensive statistical analysis via. analysis of 

variance (ANOVA) is performed depending upon results of 

cutting force, flank wear, and surface roughness obtained 

through machining experimentation, which represents a 

table containing degrees of freedom, sum as well as mean 

of squares (SS and MS), Fishers and probability values (F 

and P) and it is used to check as well as to determine a 

validity with significance of developed regression models 

for machinability parameters (FC, Ra, and VB) and to 

evaluate the individual and interaction effects of different 

machining parameters on the corresponding response. 

Typically, the statistical significance is considered at 95% of 

confidence level, if the P-value is under 0.05 and the 

calculated F-value is above the standardized Fisher’s value. 

From the Table 4a, it is observed that the developed models 

for cutting force (FC) is significant along with the terms V, 

Kr*V, r*f, r*a, V*f, Kr are the influential parameters which 

has the pronounced nature on the response, FC as their P-

value and F-value justified the criterion of statistical 

significance. However, among all the considered machining 

variables, cutting speed presents the first position of 

influence (i.e., most significant) on cutting force. In the 

same context, the ANOVA result of surface roughness (Ra) 

model is presented in Table 4b, which shows the P-value is 

desirable (i.e., under 0.05), thereby resulting excellent 

significance of regression model. The factors, approach 

angle (Kr), nose radius (r), feed (f) along with two-way 

interaction terms (Kr*r, r*f) show the statistical significance 

to 5%. Besides, the interaction effect of nose radius-tool 

approach angle (Kr*r) along with individual effect of nose 

radius play the major roles associated with surface finish of 

the machined component. However, the factors such as 

cutting speed, depth of cut and interactions (Kr*V, Kr*f, 

Kr*a, r*V, r*a, V*f, V*a and f*a) reflect insignificant 

impact on Ra, as their contributions are very inconsiderable. 

Similarly, the ANOVA result of tool’s flank wear (VB) 

model is presented in Table 4c. Considering the criterion of 

significant level to 0.05, it is observed that the terms V, r, 

Kr, r*V, a, r*f, Kr*V, f*a are the dominant contributors on 

flank wear evaluation of PVD-TiN coated Al2O3+TiCN  
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Table 4 ANOVA results for machinability parameters 

(a) Cutting force (Fc) model 

Source DF Adj SS Adj MS F-Value P-Value Remarks 

Model 15 36985.2 2465.68 127.96 0.008 Significant 

Linear 5 12263.3 2452.67 127.96 0.008 Significant 

Approach angle, Kr 1 6.8 6.82 0.35 0.612  

Nose radius, r 1 61.1 61.07 3.17 0.217  

Cutting speed, V 1 4464.4 4464.38 231.69 0.004 Significant 

Feed, f 1 871.5 871.54 45.23 0.021 Significant 

Depth of cut, a 1 4433.2 4433.20 230.07 0.004 Significant 

2-way Interaction 10 8804.7 880.47 45.69 0.022 Significant 

Kr*r 1 4.1 4.15 0.22 0.688  

Kr*V 1 3466.5 3466.55 179.91 0.006 Significant 

Kr*f 1 900.2 900.20 46.72 0.021 Significant 

Kr*a 1 140.5 140.51 7.29 0.114  

r*V 1 65.8 65.82 3.42 0.206  

r*f 1 1275.5 1275.49 66.20 0.015 Significant 

r*a 1 678.8 678.80 35.23 0.027 Significant 

V*f 1 363.5 363.48 18.86 0.049 Significant 

V*a 1 495.8 495.83 25.73 0.037 Significant 

f*a 1 74.2 74.22 3.85 0.189  

Error 2 38.5 19.27    

Total 17 37023.8     

(b) Surface roughness (Ra) model 

Model 15 4.27573 0.285049 196.06 0.005 Significant 

Linear 5 1.26129 0.252258 137.51 0.006 Significant 

Approach angle, Kr  1 0.00266 0.002656 1.83 0.309  

Nose radius, r 1 0.05751 0.057507 39.55 0.024 Significant 

Cutting speed, V 1 0.02795 0.027951 19.23 0.048 Significant 

Feed, f 1 0.40434 0.404339 278.11 0.004 Significant 

Depth of cut, a 1 0.00671 0.006708 4.61 0.165  

2-way Interaction 10 0.39429 0.039429 27.12 0.036 Significant 

Kr*r 1 0.14889 0.148886 102.41 0.010 Significant 

Kr*V 1 0.00081 0.000810 0.56 0.533  

Kr*f 1 0.00168 0.001683 1.16 0.395  

Kr*a 1 0.00178 0.001785 1.23 0.383  

r*V 1 0.00066 0.000661 0.45 0.570  

r*f 1 0.02818 0.028177 19.38 0.048 Significant 

r*a 1 0.00375 0.003747 2.58 0.250  

V*f 1 0.00319 0.003188 2.19 0.277  

V*a 1 0.00084 0.000842 0.58 0.526  

f*a 1 0.00679 0.006787 4.67 0.163  

Error 2 0.00291 0.001454    

Total 17 4.27864     

(c) Flank wear (VB) model 

Model 15 0.029694 0.001980 553.94 0.002 Significant 

Linear 5 0.005023 0.001005 281.09 0.004 Significant 

Approach angle, Kr 1 0.000517 0.000517 144.75 0.007 Significant 

Nose radius, r 1 0.001074 0.001074 300.62 0.003 Significant 

Cutting speed, V 1 0.003628 0.003628 1015.08 0.001 Significant 

Feed, f 1 0.000009 0.000009 2.48 0.256  

Depth of cut, a 1 0.000203 0.000203 56.81 0.017 Significant 

2-way Interaction 10 0.001657 0.000166 46.35 0.021 Significant 

Kr*r 1 0.000029 0.000029 8.04 0.105  

Kr*V 1 0.000082 0.000082 22.96 0.041 Significant 

Kr*f 1 0.000025 0.000025 6.87 0.120  

Kr*d 1 0.000028 0.000028 7.93 0.106  

r*V 1 0.000397 0.000397 111.10 0.009 Significant 

r*f 1 0.000121 0.000121 33.92 0.028 Significant 

r*a 1 0.000039 0.000039 10.89 0.081  

V*f 1 0.000010 0.000010 2.85 0.233  

V*a 1 0.000013 0.000013 3.57 0.199  

f*a 1 0.000069 0.000069 19.33 0.048 Significant 

Error 2 0.000007 0.000004    

Total 17 0.029702     
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mixed ceramic tool which explain the lager calculated F- 

values (1015.08, 300.62, 144.75, 111.1, 56.81, 33.92, 22.96, 

19.33, respectively) than standardized F-distribution value 

(18.51). It however affirms significance of the model and 

satisfies the significant interaction effect of nose radius and 

cutting speed on VB. However, the error percentage of 

contribution is very small (0.1% to Fc, 0.07% to Ra, and 

0.02% in case of VB), means that no important factor has 

been missed or any large measurement error has been 

involved. 

With the objective to avoid the misleading conclusion, 

several diagnostic tests such as adequacy, effectiveness and 

fit-of-data (i.e., goodness-of-fit) were performed for 

proposed regression models (FC, Ra, VB). The calculated 

coefficient of determination, R2 values (0.999, 0.9993, and 

0.9998, respectively for Fc, Ra, VB) approaches to one 

better explained from the developed model using MRA for 

three machinability parameters (Fc, Ra, VB), which 

resembles goodness-of-fit for the model being statistically 

significant. Moreover, the predicted values are in good 

agreement with the experimental values which indicates the 

effectiveness of the model with greater predictability, as 

shown in Fig. 4. Finally, normal probability plot combined 

with Anderson-Darling test for FC, Ra and VB confirm the 

acceptance of null-hypothesis criterion as shown in the Fig. 

5. With lower AD-statistic (0.498 for FC, 0.433 for Ra, and 

0.158 in case of VB) as well as larger P-value (0.183 for FC, 

0.270 for Ra, and 0.941 in case of VB), concludes that the 

residuals are distributed falling on a straight line indicates  

 

 

the normal distributed populations, justifies that the terms 

associated with the model are significant. In conclusion, the 

predictive models proposed for various technological 

performance characteristics using multiple regression 

analysis are effective in terms of adequate, statistically 

significant and probabilistically validate due to their higher 

R2-value, P-value less than 0.05 and larger AD-test P-value. 

Therefore, the proposed regression model can be effectively 

used for selection of objective function in multi-response 

optimization via. genetic algorithm followed by particle 

swarm optimization. 

 

 

 

Fig. 5 Normal probability plot for machinability 

characteristics (VB, Fc, Ra) 

 

 

Fig. 4 Comparison between experimental and predicted values of machinability parameters: (a) cutting force, (b) surface 

roughness, and (c) flank wear 
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3.2 Parametric influence on machinability 
characteristics  
 

The effect of geometrical parameters (nose radius, 

approach angle) and cutting parameters (speed, feed, doc) 

on three major machinability parameters (Fc, Ra, VB) are 

graphically analyzed by three-dimensional (3D) surface 

plot. The typical 3D surface plot shown in Figure 6a 

illustrates the impact of two cutting variables (approach 

angle and nose radius) on principal cutting force (FC). It is 

evident from Fig. 6(a) that cutting force (FC) decreases with 

the increase in cutting tool approach angle. This possible 

outcome can be explained by the fact that, an approach 

angle of 900 or even higher, there is a tendency of higher 

shear angle and reduced chip thickness, leading to lower 

cutting force. Simultaneously, it conducts lower heat to the 

work and tool so that heat is concentrated at a reduced 

uncut chip width with a concentrated heat on smaller width 

of chip, and therefore a high temperature with low heat 

dissipation results thermal softening of workpiece material. 

Thus, cutting force (FC) decreases. According to surface 

plot (Fig. 6(b)), as the insert’s corner radius increases the 

cutting force increases. Zhao et al. (2017) reported the 

reason for this finding that increasing nose radius value 

reduces damping at elevated cutting speeds followed by the 

ploughing effect in the cutting zone that confirms the 

development of unreasonable cutting force. Fig. 6(c) 

predicts the increasing trend of cutting force value due to 

increase in feed and depth of cut. This effect is better 

explained due to the increase of tool-work contact area on 

the flank face and chip-tool contact area on the rake face of 

the cutting tool, which allows less contact time of 

machining for required material removal and for this 

reason, the amount of cutting force for chip deformation 

increases. This is in agreement with the findings of 

Gaitonde et al. (2009b). 

 

 

 

Fig. 6 Surface plots for illustration of machining 

parameters effect on cutting force 

 

3D surface plot (Fig. 7(a)) shows the effect of approach 

angle and nose radius on surface roughness (Ra). Approach 

angle (Kr) exhibits a considerable effect on Ra. In fact, 

increasing the approach angle of work-tool combination, 

reduces cutting force due to controlled manner of plastic 

deformation followed by thermal softening and thus, 

contributes to improvement in surface finish. In addition, 

Fig. 7(a) shows the improvement in surface finish with the 

increase of edge corner radius of cutting tool. This is 

because of increasing the nose radius, the active cutting 

length of edge increases thus promoting better heat 

dissipation between tool and work, reducing heat 

concentration at the radius of the tool (Aouici et al. 2017). 

Fig. 7(b) shows magnificent variation on surface roughness 

with the rise in cutting speed possibly due to BUE 

formation (Khamel et al. 2012), material side flow (severe 

plastic deformation of machined surface) (Kishawy and 

Elbestawi 2001), and possibility of chatter (violent vibration 

of machine tool during cutting) (Sharma et al. 2008), 

leading to poor surface quality as the effect of tool wear is 

neglected. Also, the surface roughness increases with the 

increase in feed, as shown in Fig. 7(b). This phenomenon 

can be attributed to: (i) the formation of broader and deeper 

helicoid furrows on the machined surface (left by insert’s 

nose-shape and the relative movement of workpiece-tool 

combination) by ploughing action (Keblouti et al. 2017), 

and (ii) well established relationship of geometrical 

arithmetic mean roughness with the cutting parameters, feed 

rate and corner radius of tool by the expression Ra = 

0.0321f2/r (Shaw 2005, Davim and Figueira 2007, Das et al. 

2015). Moreover, it is observed that, with increased feed rate 

under cutting condition (Kr = 750, r = 1.2 mm, V = 110 

m/min, a = 0.1 mm) enhances vibration and heat generation 

with an evolution of undesirable thrust forces thereby 

resulting degraded surface finish, presented in Fig. 8. Apart, 

effect of doc seems to be insignificant on surface finish of 

machined part clearly shown in Fig. 7(c). Therefore, it is 

advisable to keep depth of cut in smaller value during hard 

turning to prevent chatter due to vibration, as reported by 

Suresh et al. (2012). 

 

 

Fig. 7 Surface plots for illustration of machining 

parameters effect on surface roughness 
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Fig. 8 Effect of feed on tool vibration and machined 

surface finish (Kr = 750, r = 1.2 mm, V = 110 m/min, a = 

0.1 mm) 

 

 

 

Fig. 9 Surface plots for illustration of machining 

parameters effect on tool’s flank wear 

 

 

For all turning tests, the measured Ra values were in the 

range of 0.23–1.998 μm, showing that coated ceramic tool 

is effective to produce components with surface 

corresponding to those obtaining from grinding and other 

finishing operations. 

Tool wear variation with nose radius and approach angle 

is depicted in Figure 9. The response plot indicates that 

there is an increasing trend of flank wear (VB) with nose 

radius. It is obvious that larger nose radius is responsible for 

considerable deformation of the material under vicinity of 

the cutting edge, and provokes thermal as well as 

mechanical impacts due to friction and high interface 

temperature in the cutting zone thereby, increasing VB, as 

earlier reported by Liu et al. (2004). From the diagram, it is 

also observed that extension in approach angle increases the 

cutting temperature, thereby leading to increased tool’s 

flank wear, VB. According to surface plot (Fig. 9(b)), it has 

been found that increase in cutting speed tends to increase 

the flank wear nearly upto 0.3mm due to resulting higher 

cutting force, greater vibration, high temperature and heat 

generation at cutting zone, exceeds the thermal stability and 

yield strength of tool edge due to thermal  softening of tool 

material along with severe rubbing effect between tool’s 

flank side and machined surface contains hard constituents, 

and thus promote to intense tool wear (VB), as shown in 

Fig. 10. In the present study, the chips were generated in the 

region of tool nose (vicinity of cutting tool), as the range of 

cutting speed considered is less than nose radius of PVD-

TiN coated Al2O3+TiCN mixed ceramic tool. Increasing 

depth of cut extends the cutting edge angle, resulting 

increased arc length of machined region at work-tool 

interface. Under such condition, abrasion of ultra-hard 

carbide particles (Cr7C3, VC, Mo2C, Fe3C) existing in the 

workpiece material accelerates the tool wear. Such variation 

of depth of cut on flank wear is clearly noticed Fig. 9(c). 

Chips and its morphological aspects affect various 

machining attributes such as surface quality, tool life and 

machining temperature. Three types of chips are formed in 

hard machining; continuous type, segmented type and 

serrated type. In segmented type, prominent saw teeth are 

found without any shear band whereas in serrated chip, saw 

teeth with adiabatic shear band is observed. In the present 

experiment, both segmented chip and serrated chips were 

observed under dry cutting condition. Heat dissipation 

highly influenced the chip formation process in machining. 

Chips with better morphological characteristics formed with 

more heat dissipation. At higher cutting speeds temperature 

generation is more because of inadequate time for heat 

transfer. During FDHT, chips with prominent shear band 

(see, Fig. 11(a)), widely spaced saw tooth produced (refer, 

Fig. 11(b)) due to insufficient cooling. 

 

 

 

Fig. 10 Effect of cutting speed on cutting temperature and 

flank wear (Kr =750, r =1.2 mm, f =0.06 mm/rev, a =0.1 

mm) 
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Fig. 11 Chip morphology (a) with shear band, widely 

spaced saw tooth (b), and saw teeth interval and trail (c) 

 

 

 

Fig. 12 Chips produced with short ribbon type with lower 

curl radius 

 

 

And, chips with more teeth interval and trail is noticed, as 

shown in Fig. 11(c). Chip thickness, an important 

machining attribute, is highly influenced by tool life. More 

the tool wear, higher is chip thickness and less thickness are 

observed less tool wear. As reported by Das et al. (2019), 

with increase in feed the undeformed chip thickness 

increases. Consequently, tangential force increases as the 

shear plane area increases with increase in undeformed chip 

thickness. The formation of saw-tooth chip directly depends 

upon the thickness of undeformed chip i.e., increase in 

undeformed chip thickness leads to bigger saw-tooth. Chips 

with lower curl radius (see, Fig. 12) and short ribbon type 

chips are produced due to longer tool life which indicates 

chip breakability. 

 

3.3 Optimization using response surface 
methodology 
 

The present study includes multi-response optimization 

based on desirability function approach of RSM, to keep 

surface roughness of machined part, flank wear of cutting 

tool, and cutting force to minimum. Parameter design is an 

effective way to improve product quality as well as process 

efficiency. Desirability function approach is a statistical 

based multiple response robust parameter design 

methodology, employed for solving the multi-response 

optimization problems. The approach looks for correct 

combination of parameter levels that simultaneously takes 

the responsibility to fulfill the requirements placed on each 

response. The criterion for achievement of optimization 

result is evaluated based on overall desirability which is a 

weighted geometric mean of respective desirability for the 

different performance characteristics, expressed within the 

range of 0-1. Response will be completely unaccepted or 

undesirable if the desirability value approaches to 0. 

Response will be most desirable or accepted only if the 

ideal desirability value is near or equal to 1.  

For solving the parameter design problems by 

desirability function approach, the objective function, F(x) 

is specified as (Costa et al. 2011); 

F(x) = -DF 

Overall (i.e., composite) desirability function can be 

stated as 

DF = (∏ di
wi

n

i=1

)

1

∑ wi
n
j−1

 (4) 

Here, DF is the composite desirability function which 

finds the optimal setting by minimizing the F(x) (i.e., 

maximizes DF as it is highly desirable for optimization), di 

is the desirability designated for the ith targeted output, and 

wi is the weighting of di (considered equally important) in 

this study. 

For a goal to minimization of output, individual 

desirability can be defined as 

di = 1 if Yi ≤ Li. 

di = [
Hi− Yi

Hi− Li
]  if Li ≤ Yi ≤ Hi                     

di = 0 if Yi ≥ Hi 

(5) 

where Li and the Hi are respectively the lowest and largest 

acceptable value of Y for the ith output response. 

Fig. 13 shows optimization plot based on desirability 

function approach for machinability parameters showing the 

optimal manufacturing conditions for hard turning of AISI 

D3 steel with tool approach angle of 750, nose radius of 1.2 

mm, cutting speed of 110 m/min, feed rate of 0.06 mm/rev, 

doc of 0.1586 mm. The estimated optimum value of 

machinability characteristics are 62.665 N for Fc, 0.2557 

μm in case of Ra, and 0.1236 mm for VB. 

 

 

 

 

Fig. 13 Optimization plot for machinability parameters 

(Fc, Ra, VB) using desirability function approach 
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3.4 Optimization using genetic algorithm 
 

In basic optimization procedure, the design space is 

actually so huge that it is not possible to work out a global 

optimum solution in a definite time period. Population 

based derivative free optimization like genetic algorithm 

(GA) is frequently employed to solve optimization 

problems stochastically that involve complexities like many 

conflicting aims, discrete, non-linear and non-convex 

domains. In GA, every possible solution is coded into 

genetic space wherein the search space is treated as a 

discrete function even though the same may be actually 

continuous. GA, a bio-inspired stochastic algorithm is 

effective in handling huge search area, evaluating the 

optimal solutions from a set of variables and constraints 

which might not have been negotiated in the entire lifetime 

otherwise. Concept wise, GA mimics the process of organic 

evolution and works on the ‘survival of the fittest’ logic. 

GA obtains the solutions by iteration, wherein the steps in 

the solutions are similar to chromosomes, a string of genes. 

Normally, GA is applied to problems where the fitness 

function can be well defined and the solutions can be 

degenerated into steps termed as chromosomes.  

In GA, a set of genetic operators bring about diversity 

required for evolution process. The algorithm progresses 

through three genetic operators such as selection, crossover 

(mating) and mutation. The selection operator involves 

survival of the fittest and struggle for the existence, by 

choosing the chromosomes as parents for mating 

(crossover) and produce offspring. Selection implies 

creating a subset of genes from an existing population set. 

Every gene has a quality measure and fitness function 

attached to it. Fitness function is an indicator of an 

optimization solution and illustrates the proximity of a 

given solution to the intended outcome. Crossover operator 

is the principal factor that involves mating of two 

chromosomes to yield a new offspring. It is likely that the 

new chromosome can be better than both its parents if it 

inherits the best attributes from each of the parents. 

Mutation is a biological random process followed after 

crossover operation where forcefully some chromosomes 

are modified to get a better solution. Mutation operator 

gives mobility to the population and is an important part of 

the generic search. The abovementioned process operators 

continue in a repetitive way while waiting for the 

chromosomes have the optimum or the best fitness solution 

for a certain optimization problem is attained. Once the new 

generation is completed, it is evaluated again and checked 

experimentally by confirmation test for approval and 

agreement. Fig. 14 shows the flow chart of GA technique 

that works to address the optimization problem. 

The present study includes multi-response optimization 

based on computational approach by genetic algorithm, to 

keep surface roughness of machined part, flank wear of 

cutting tool, and cutting force in hard turning to minimum. 

In finish dry hard turning, multi-response optimization 

problem of GA is defined as follows 

Find: input parameters (Kr, r, V, f, a)                                                                        (6) 

 

 

Minimize: Y(Fc, Ra, and VB)                                                                                                      (7) 

Allowable range of process parameters are: 750 ≤ 

approach angle (Kr) ≤ 950, 0.4 mm ≤ nose radius (r) ≤ 

1.2 mm, 110 m/min ≤ cutting speed (V) ≤ 250 m/min, 

0.06 mm/rev ≤ feed rate (f) ≤ 0.16 mm/rev, and 0.1 mm 

≤ depth of cut (d) ≤ 0.3 mm 

(8) 

Earlier in this study, the models Eqs. (1)-(3) developed 

by multiple regression analysis respectively for cutting 

force, surface roughness, and flank wear are considered as 

objective functions Y(Fc), Y(Ra), and Y(VB) for 

mathematical description in GA optimization. Fig. 15 

represents the optimization history via. Pareto plot, which 

proposes to minimize the three machinability parameters 

(Fc, Ra, VB) of hard turning with reference to algorithm-

critical parameters of GA.  

 

 

Fig. 14 Flow chart of GA-based algorithm 
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Fig. 15 GA based Pareto plot during optimization 

 

 

By solving the multi-response optimization problem with 

GA technique, the optimized manufacturing conditions for 

hard turning of AISI D3 steel are obtained with tool 

approach angle of 750, nose radius of 1.2 mm, cutting speed 

of 117 m/min, feed rate of 0.06 mm/rev, doc of 0.3 mm. 

Finally, the estimated optimal values of pre-cited three 

machinability parameters are 51.356 N for Fc, 0.1833 μm in 

case of Ra, and 0.144 mm for VB. 

 

3.5 Optimization using PSO 
 

Particle swarm optimization (PSO) is a stochastic based 

computational method inspired by socio-biological 

behaviour of fish schooling and bird flocking, which 

considers intelligent search strategy in population to 

achieve the new global best solution. In PSO technique, the 

population called as swarm moves around the search space 

to find a possible solution with less computational effort. 

Iterations in PSO enable each particle to have personal best 

solution followed by global best position of any particle in 

the swarm. When such promising solution is unearthed by a 

particle, other particles in the search region are in close 

proximity to it. Therefore, such a method ensures a 

potential solution for each particle termed as ‘bird’. In order 

to measure the goodness of fitness value of all the particles 

in the swarm mainly depends on simple mathematical 

formulae over particle’s position and velocities, that 

quantifies the quality of a potential solution. The ability of 

birds to fly collectively within search space are therefore 

influenced by neighboring particles discovering optimal 

regions. After initializing a group of random particles, 

search for optima is calculated by updating generations by 

two best values such as personal best (pbest) and global best 

(gbest). Each particle consists of data representing a possible 

solution. The pbest value indicates the closeness of particle’s 

data towards the target. It is common to see PSO algorithms 

use neighborhoods that helps the algorithm to avoid getting 

stuck in local minima. For PSO calculations, two major 

parameters are considered like particle velocity and 

position, which are updated after each iteration and solution 

moves ahead towards best possible results. The PSO 

algorithm comprises of following steps: (i) initiate 

invariable distribution of particles, (ii) every particles 

position is assessed by a objective function, (iii) particle’s 

position is updated with better solution, (iv) previous best 

positions finalizes the best particle, (v) particle’s velocity is 

updated, (vi) new positions of the particle are encountered 

after updating, and (vii) move to step 2 until stopping 

criteria is satisfied (i.e., until the optimum solution is 

obtained).  

During each iteration, present particle position and 

velocity are updated using the following two equations 

vi
k+1 = wvi

k + C1R1(pbesti
− xi

k) + C2R2(gbest − xi
k)                          (9) 

 

xi
k+1=xi

k + vi
k+1 (10) 

where, 𝑣𝑖
𝑘 and 𝑥𝑖

𝑘 respectively represents the velocity and 

location of ith particle at iteration kth in reference to search 

space of N-dimension; C1 & C2
 respectively are the 

cognitive and social learning factors; R1 and R2 are random 

coefficients usually between 0 and 1; pbesti & gbest 

represents the best position of ith particle and swarm, 

respectively; w is the inertia weight coefficient can be 

defined as follows 

w = wmax − [
wmax−wmin

itertotal
× itercurrent] (11) 

where, wmin & wmax are the minimum and maximum inertia 

weights; and itercurrent & itertotal are the current iteration and 

total number of iterations used in PSO to assign an optimal 

solution.  

In this study, PSO technique is best suited for multi-

response optimization with the purpose to minimize the 

surface roughness of hard turned component, flank wear of 

cutting tool, and cutting force in hard turning. For this 

reason, the models Eqs. (1)-(3) developed by multiple 

regression analysis, respectively for Fc, Ra, and VB are 

employed for mathematical description of combined 

objective function called global minimum 
(ZGLOBALMIN) as given by Eq. (12). 

ZGLOBALMIN = W1 ∗
Fc

Fcmin

+ W2 ∗
Ra

Ramin

+ W3 ∗
VB

VBmin
 (12) 

 

 

Fig. 16 Convergence plot during optimization via. PSO 
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Here, W1 (0.33), W2 (0.34), and W3 (0.33) are the 

individual weight assigned corresponding to the responses 

Fc, Ra, VB, respectively, whose sum of their weights is 1. 

Figure 16 represents the optimization history via. 

convergence plot, which proposes to minimize the three 

machinability parameters (Fc, Ra, VB) of hard turning with 

PSO-specific parameters. By solving the multi-response 

optimization problem with PSO technique, the optimal 

manufacturing conditions for hard turning of AISI D3 steel 

are obtained with tool approach angle of 750, nose radius of 

1.2 mm, cutting speed of 110 m/min, feed rate of 0.06 

mm/rev, doc of 0.3 mm. Finally, the estimated optimal 

values of pre-cited three machinability characteristics are 

51.356 N for Fc, 0.1833 μm in case of Ra, and 0.144 mm 

for VB. 

 

3.6 Confirmation test 
 

With a view to avoid misleading conclusion, the 

optimum machining conditions suggested by RSM, GA and 

PSO techniques are validated with the results of 

confirmation test, which could be possible by conducting 

three additional experiments using the same experimental 

setup. Further, the results obtained from above mentioned 

three optimization techniques are compared against each 

other to check, illustrate and verify the effectiveness as well 

as improvement in predicting the machinability 

characteristics (FC, Ra, VB) in during FDHT process. A 

comparison between the optimal and experimental values of 

responses (FC, Ra, VB) under the cutting conditions 

proposed by RSM, GA and PSO is presented in Table 5. 

The results of PSO approach present the best combination 

of process parameters for optimization of cutting force, 

surface roughness and tool wear because, the error 

percentage in the case of PSO (8.29%) is lower than that 

obtained via. GA (10.89%) and RSM (15.62%). Hence, 

PSO method is chosen for economic analysis. 

 

3.7 Estimation of energy and carbon footprint 
savings 
 

In response to cost consciousness for economical hard 

turning, reduction in energy consumption is of great 

importance as it leads to paradoxical improvement of 

savings in production cost. Energy crisis and environmental 

issue have become increasingly popular concerns for every 

industry in the world in terms of sustainable development. 

Yet, the customers increasing pressure for desired product 

quality has led to improved surface finish and hence the  

 

 

 

energy consumption has also increased. The higher use of 

energy has thereby led to higher emission of CO2. It is a 

strong concern, especially in emerging as well as 

developing economies to improve manufacturing efficiency 

so as to reduce material & energy consumption, and 

industrial pollution for sustainable performance of 

machining processes. At the same time, proper selection of 

process parameters in machining is of prime importance 

with a view to achieve better product quality, high 

productivity and low cost. 

For the determination of energy consumption during 

hard turning, the cutting power (P) is calculated with 

measured results of cutting force from the confirmation test 

by using the formula; P=Fc×V. Thereafter, the reduction in 

energy consumption followed by the estimation of carbon 

foot print saved are calculated by determining the difference 

under optimized and non-optimized cutting conditions. The 

result presented in Table 6 expresses the amount of energy 

as well as carbon footprints saved in kWh and kg, 

respectively. 

According to the Ministry of Energy in India, one unit 

(i.e., 1 kWh) of electricity = 0.523 kg of CO2 emission. It is 

observed that, hard turning with appropriate machining 

conditions undertake the considerable reduction in the 

energy consumption and enhancement in savings of carbon 

footprints, which finds the benefits from ecological as well 

as economical point of views 

 

3.8 Economical analysis 
 

Cost consciousness with respect to machining process is 

fundamental venture of efficient manufacturing system. In 

order to determine manufacturing costs for a machining 

operation, important criteria are selected based on 

convolution of shape, product accuracy and tooling process. 

Nowadays, profitability and cost management emphasized 

manufacturers to control the entire expenditure for 

machining operation in order to establish consistency and 

confirm recommended cost benchmarks for the future. Due 

to the large expenditures involved, it is necessary to analyze 

machining operations in order to operate with optimum 

economic conditions. For components produced by 

machining, cost estimation is kept minimum by considering 

optimum tool life and total machining cost per part. Longer 

tool life results in high cost of labor, the cost of machining 

operation, the overhead costs and makes the operation 

costly because the time of completion of the operation 

increases. On the other hand, shorter tool life instigates high 

tool cost, the tool resetting cost, and machine downtime  

Table 5 Overview of confirmatory experiments and comparison of results 

Methods Optimum machining parameters Cutting force, Fc (N) Surface roughness, Ra 

(µm) 

Flank wear, VB (mm) Average error 

(%) 

Kr r V f a Pred. Expt. Pred. Expt. Pred. Expt. 

RSM 75 1.2 110 0.06 0.1586 62.665 52.37 0.2557 0.225 0.1236 0.143 15.62% 

GA 75 1.2 117 0.06 0.3 51.356 58.55 0.1833 0.21 0.144 0.156 10.89% 

PSO 75 1.2 110 0.06 0.3 42.823 47.68 0.181 0.207 0.138 0.141 8.29% 
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because of frequent change of cutting tools caused by the 

rapid wear of cutting tool. Thus, a trade-off standard for 

selection of suitable combination of machining parameters 

must be determined based on the cost and quality 

considerations. At the same time, machining parameters 

will definitely affect the production rate as well as 

production cost. Again, tool life becomes significant in this 

context since the cost of the tools influences the machining 

cost considerably. All these things make the costing process 

more complicated to arrive at an optimum process. In 

machining process, this can only be possible by estimating 

tool life at optimized cutting conditions. 

For this reason, an additional experiment is performed 

with same setup at best optimal cutting conditions as 

suggested by PSO technique for assessing the tool life of 

the PVD-TiN coated Al2O3+TiCN mixed ceramic cutting 

insert by considering the control limit criterion of flank 

wear (VB) upto 0.3 mm. Figure 17 shows a typical graph of 

progress of flank wear, VB with cutting time upto tool life 

of 41 min for PVD-TiN coated Al2O3+TiCN mixed ceramic 

tool. Considering estimated tool life, Gilbert’s approach 

[45] is used to perform detailed direct and indirect cost 

estimation in terms of total machining cost per part, shown 

in Table 7. 

 

 

 

Fig. 17 Growth of flank wear with machining time under 

the best optimum cutting condition obtained by PSO 

 

 

 

 

 
 
Table 7 Cost estimation in FDHT of AISI D3 steel with 

PVD-TiN coated Al2O3+TiCN mixed ceramic tool 

Sl. 

no. 
Costs 

In Indian 

rupees (Rs.) 

1 Machine and labour cost (x), Rs.600/h Rs.10/min 

2 Cutting cost per component (xTm) Rs.25 

3 Tool changing cost per component [xTd(𝑇𝑚 𝑇⁄ )] Rs.3.05 

4 Cost of each tool Rs.1100 

5 Mean cost of the cutting tool edge (y) Rs.275 

6 Tooling cost per component [y(𝑇𝑚 𝑇⁄ )] Rs.16.77 

7 Total cutting cost per component, (2+3+6) Rs.44.82 

Axial length of workpiece to be cut (L)= 150 mm, finish diameter 

of workpiece (D)= 35 mm, time for machining the part (Tm)= 

(𝜋𝐷𝐿/1000Vf) = 2.5 min, measured tool life (T) for single cutting 

edge at optimum machining condition (Kr = 750, r = 1.2mm, a = 

0.3mm, f = 0.06mm/rev, and V = 110m/min) = 41 min, machine 

downtime (Td)= 5 min 

 
 
It is noticed that the total machining cost per part using 

coated PVD-TiN coated Al2O3+TiCN mixed ceramic inserts 

is considerably lower around Rs.44.82. It is interesting to 

note that the cost estimation of operational activities in 

FDHT process ensures a dramatic gain in productivity and 

efficiency in finish hard turning. The cheapest solution to 

have lower tool cost and total cost of the part as longer tool 

life with minimized downtime calculations is obtained 

using PVD-TiN coated Al2O3+TiCN mixed ceramic inserts 

that justifies an economic solution to finish machining of 

hardened parts. 
 

3.9 Sustainability assessment  
 
Sustainable assessment of every production technology 

is very prominent perspective, prior to its adoption in 

industry for safer and cleaner manufacturing. The term 

“sustainable manufacturing” encourages adopting new 

environmental-friendly technologies as well as 

economically-sound processes with a broader social 

implication which promotes eliminating production and 

processing wastes, minimizes negative environmental 

impacts while conserving energy, and enhances employee 

health and safety through eco-efficient practices. 

Sustainable manufacturing is effective to justify the 

existence of production methodology by various parameters 

such as production cost and rate, cutting quality, process 

management, water and energy intensity, material waste 

Table 6 Estimation of energy and carbon footprints saved 

Total amount of 

operational time for 

the lathe machine 

per annum 

Energy 

consumption during 

each similar 

operation with 

standard inputs 

Total energy 

consumed per 

annum 

Energy consumption 

during machining 

operation with 

optimized parameters 

Total energy 

consumed per 

annum at optimized 

condition 

Amount of energy 

saved per annum 

Carbon 

footprints 

saved (kg of 

CO2) 

655hrs. 115 Watts 115 × 3,600 × 

655 = 271170000 

Joule 

42.823 × 110 = 

78.51Watts 

78.51 × 3,600 × 655 

= 185126580 Joule 

86043420 Joule or 

86043.42 kWh ≈ 

31.73% 

45000.71 
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management, environmental regulation, worker health and 

safety, labour relations, training and education. In the 

present work, sustainability assessment of hard turning 

process under dry environment condition is performed 

concerning technological, economical, and ecological 

aspects. For this, a decision-making effective technique 

called Pugh matrix is employed for sustainability 

assessment by assigning specific weight in terms of 

mathematical number for the abovementioned sustainable 

manufacturing parameters. The weight criteria are allocated 

to each quality parameter in the range from -2 to 2 based on 

its importance (i.e., superior or inferior results). 
In the present study sustainability of finish dry hard 

turning process is assessed by considering environmental 

effect, operator health, coolant cost, waste management, 

surface roughness, actual machining cost, energy 

consumption related to CO2 emission. In this context, 

environmental effect and coolant cost is given weightage 

“2” whereas others are assigned with an equal weightage 

“1”. During dry hard turning, cutting without coolant 

provides obvious cost benefits. Therefore, the score of “2” 

is provided to the coolant cost. Without using the cutting 

fluid, the operator health and environment is free from any 

harmful effects eligible to obtain score of “2” as well. 

Apart, hazards faced by the operator in the machine area 

involves carrying away of chips and parts fly off during 

production, makes the score “-1”. As there is no pollution, 

no disposal cost and no danger of health due to absence of 

cutting fluid, minimization of waste and spill over during 

production obtains a score “1”. Such machining process 

utilizes less coolant thereby causing no wetting of the 

workpiece. A little amount of labour is sufficient for 

machine cleaning. Dry cutting implies smoother finish as 

well as less production cost which adds a score “1” towards 

machining cost, and surface roughness. Moreover, at 

appropriate settings of cutting parameters dry hard turning 

is economically viable to justify the savings of energy via. 

less greenhouse gas (i.e., carbon footprint) emission. After 

calculation, a total score of “5” is obtained which is 

reflected in Kiviat diagram, as shown in Fig. 18. In brief, 

dry hard turning is practically viable in terms of 

sustainability providing better surface roughness, improved 

economic and socio-technological benefits. However, to 

make such a decision, further investigation is required. 
 

 

Fig. 18 Pugh matrix associated with Kiviat diagram for 

sustainability assessment 

5. Conclusions 
 

On the basis of experimental results obtained during 

FDHT of AIS D3 steel with PVD-TiN coated Al2O3+TiCN 

mixed ceramic tool, various conclusions are drawn as 

follows: 

 The contribution of nose radius followed by the 

interaction effects of approach angle-nose radius, and 

last by cutting speed-nose radius found to be the most 

significant for the improvement of surface finish, and 

achieved the roughness (Ra) in the range of 0.23–

1.988μm. 

 Contrary to presumed knowledge the cutting speed, not 

depth of cut, principally as well as significantly affected 

the cutting force (Fc), followed by the interaction effect 

of parameters approach angle-cutting speed, and feed. 

 The statistical analysis based on the technique of 

ANOVA followed by the surface effect plot reported 

that, the cutting speed is the most influential parameter 

for control on tool wear (VB). Although, the influence 

of depth of cut has not been observed statistically 

significant, but the flank wear is an increasing function 

of depth of cut. 

 In serrated type chips, a widely spaced saw tooth with 

adiabatic shear band due to insufficient cooling are 

observed at high cutting speed. 

 The predictive models proposed for various 

machinability parameters using multiple regression 

analysis are effective in terms of adequate, statistically 

significant and probabilistically validate due to their 

higher R2-value (0.999 for Fc, 0.9993 for Ra, 0.9998 in 

case of VB), P-value less than 0.05 (0.008 for Fc, 0.005 

for Ra, 0.002 in case of VB) and larger AD-test P-value 

(0.183, 0.27, 0.941, respectively for Fc, Ra, VB). 

 By solving the multi-response optimization problem 

with RSM’s desirability function analysis, the optimal 

manufacturing conditions for hard turning are obtained 

at tool approach angle (Kr) of 750, nose radius (r) of 1.2 

mm, cutting speed (V) of 110 m/min, feed rate (f) of 0.06 

mm/rev, doc (a) of 0.1586 mm. The estimated optimum 

value of machinability parameters are 62.665 N for Fc, 

0.2557 μm in case of Ra, and 0.1236 mm for VB. 

 The application of genetic algorithm (GA) for multi-

response optimization presented the optimal 

manufacturing conditions of the input variables were 

Kr= 750, r= 1.2 mm, V= 117 m/min, f= 0.06 mm/rev, 

and a= 0.3 mm. The optimum response values are 

51.336 kN, 0.1833 µm, and 0.144 mm for Fc, Ra, and 

VB, respectively. 

 The results derived from the multi-response 

optimization technique via. PSO show the best optimal 

manufacturing conditions for hard turning of AISI D3 

steel at Kr= 750, r= 1.2 mm, V= 110 m/min, f= 0.06 

mm/rev, and a= 0.3 mm. The optimum response values 

are 42.82 kN, 0.181 µm, and 0.138 mm for Fc, Ra, and 

VB, respectively. 

 At best optimal conditions (suggested by PSO 

technique), the tool life of PVD-TiN coated mixed 

(Al2O3 + TiCN) ceramic insert is found to be 41 min 

under the consideration of flank wear (VB) criterion 
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limit upto 0.3mm and estimated the total machining cost 

per component of only Rs.44.82 in Indian rupees, which 

ensures benefit from economical point of view because 

of longer tool life and reduced machine downtime. 

 Under optimized machining conditions, the consumption 

of energy is reduced by 31.73% which lowers the cost of 

machining by improving the energy savings and reduced 

the CO2 gas emission, promising towards green 

manufacturing and clean production for the 

manufacturing industry. 

 During FDHT of hardened AISI D3 steel by coated 

PVD-TiN coated Al2O3+TiCN mixed ceramic tool, use 

of cutting fluid becomes optional when strict 

environmental laws are imposed and provides techno-

economical, and ecological advantages.  

 Machining with dry environment condition, 

sustainability assessment results in overall improvement 

in turn reduces the ecology and health related problems, 

the cost of machining by eliminating the cutting fluid 

consumption and cost related to the carrying and 

disposal of cutting fluid, increase the production rate by 

reducing the time taken for in house-keeping of the 

machine, shop floor and handling of wet chips. 

 To substitute of costlier CBN and PCBN tools, PVD-

TiN coated Al2O3+TiCN mixed ceramic tools can be 

preferred to bring high levels of productivity for the 

shaft and die making industry in finish hard turning 

operations hardness ranging from 45-65HRC, especially, 

PVD-TiN coating with excellent wear resistance. 

 Optimized cutting parameters are evaluated that 

contributes to machining-end outcomes in terms of 

surface finish improvement close to that obtained in 

grinding, tool wear reduction along with cutting force 

minimization. 

 The proposed multiple techniques (Taguchi’s OA-MRA-

RSM-GA-PSO) demonstrate an effective approach 

towards improvement in hard turning operation and it 

can be implemented in real-time process monitoring, 

predictive model control and optimization during 

machining of different workpiece materials as well as in 

other machining processes via. advances in computer 

technology. 

The research findings from the machinability investigation 

and sustainability assessment would be a good technical 

database for the aerospace, automobile and military 

applications in machining aspects applicable to hard-to-cut 

materials.  
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