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1. Introduction 

 

Composite materials are being used widely in 

engineering fields such as civil, aerospace, and marine 

industries due to their low weight and high strength as well 

as high flexibility at ascertaining physical and mechanical 

properties in required and favorable orientations (Altunisik 

et al. 2017). Studying the fracture of composite materials 

plays a significant role in the recent studies of fracture 

mechanics (Li et al. 2015). Some research has been 

conducted for improving fracture properties of composites, 

especially those that are employed as construction materials 

(Golewski 2017a, b, c). Also, based on the fracture behavior 

of composite materials, both macroscopic and microscopic 

approaches are employed to assess the fracture toughness 

(Golewski et al. 2016a, b, Golewski 2019) and performance 

(Golewski 2018) of composite structures. Other research 

has been conducted for ascertaining the fracture properties 

of bi-material bonded joints (Wang et al. 2018, Arouche et 

al. 2019), or for designating the failure mode of composite 

bolted joints via numerical and experimental investigation 

for various geometries (Shan et al. 2018, Zhou et al. 2019). 

Also, the empirical study and analysis of fracture behavior 

of asymmetric composite joints were conducted to establish 

a failure criterion for the particular examined joints 

(Shahverdi et al. 2016). Also, scholars strived to determine 

the effect of composite layup on the failure of the bonded 

joints owing to their noticeable application in the industry 

(Kupski et al. 2019, Baek et al. 2019). The growing use of 

composite materials in sensitive industries requires a  
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momentous evaluation of the behavior of these materials 

under various loadings (Akbas 2019). As a result, for 

reliable and precise designing, it is necessary to benefit 

accurate criterion in order to anticipate the onset of fracture 

or failure of these materials as there are appropriate criteria 

to determine the fracture of isotropic ones (Toribio and 

Ayaso 2003). Following available criteria for anisotropic 

materials, fracture study of these materials can be classified 

in two empirical and theoretical methods (Fakoor et al. 

2019). Due to the fracture complexity of anisotropic 

materials under mixed-mode I/II loadings, preliminary 

criteria were based on curve fitting of experimental data 

consisting of two or three experimental constants. Wu 

(1967) is known as the pioneer of this matter since he 

introduced the criterion via conducting tests on Balsa wood 

and Scotch ply. Although researchers like Leicester (1974), 

Williams and Birch (1976) declared that mode II is 

ineffective at mixed mode loadings, experimental surveys 

of Mall and Murphy (1983) proved the definitive interaction 

between KI and KII at the fracture onset and proposed two 

criteria. In addition, Chow and Woo (1979) declared the 

dependency of mode I and II stress intensity factors at 

mixed mode loadings. However, due to the lack of 

information about pure mode II toughness they failed to 

present a criterion. Since there are plenty of complexities in 

fracture of orthotropic materials, specifically in mixed mode 

I/II (Quade et al. 2019), the empirical criteria have high 

accuracy. The only downside of these criteria is that they 

cannot be applied to the general state of composite 

materials, because these criteria are practical for those with 

distinct degrees of anisotropy used in relevant tests. 

Therefore, the results just were applicable for materials with 

that specific degree of anisotropy. Moreover, to investigate 

the fracture behavior, the experimental tests are costly 

especially in mode II, which is an obstacle to utilize the 
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empirical study of materials with different anisotropic 

degrees (Al-Fasih et al. 2018). Hence, the theoretical 

criteria were also studied simultaneously with the 

experimental survey of the fracture behavior of composite 

materials. 

Primarily, to study orthotropic materials, Linear Elastic 

Fracture Mechanics (LEFM) theory was used so that the 

isotropic criteria such as Maximum Tangential Stress 

(MTS), Maximum Strain Energy Release Rate (SER) and 

Minimum Strain Energy Density (SED) were applied to 

orthotropic materials (Saouma et al. 1987, Carloni and 

Nobile 2005, Nobile and Carloni 2005). Employing stress 

state of orthotropic materials obtained by Sih et al. (1965), 

Jernkvist (2001a, b) applied energy-based isotropic criteria 

(SER and SED) to orthotropic materials. The size of his 

specimens allowed him to benefit LEFM. In addition, 

inspired by MTS, he presented Maximum Principle Stress 

(MPS) criterion for collinear distribution of a crack along 

the fibers. Fakoor and Rafiee (2013) utilized Jenkvist’s 

assumptions and applied Maximum Shear Stress (MSS) to 

orthotropic materials. They replaced maximum normal 

stress by shear stress in the criterion of Buczek and 

Herakovich (1985) in wood. 

The criteria as mentioned earlier are based on the LEFM 

theory in which the Fracture Process Zone (FPZ) at the 

crack tip is adequately small in comparison to the size of 

the body. Since orthotropic   materials are quasi-brittle, 

creation of FPZ at the crack tip is inevitable (Vasic and 

Smith 2002, Muralidhara et al. 2010, Vasic et al. 2007). In 

consideration with dissipation energy as a consequence of 

micro-cracks formation in the vicinity of the main crack as 

well as creation and distribution of the fracture process 

zone, Anaraki and Fakoor (2010a) presented a criterion 

based on maximum strain energy release rate via regarding 

the effective elastic properties of the body containing 

micro-cracks around the main crack. One year later, they 

proposed the Strength-Based Criterion (SBC) in which 

micro-cracks in FPZ have the primary role as well (Anaraki 

and Fakoor 2011b). They determined resistance of plane 

that is the fracture toughness of aligned micro-cracks based 

on tension strength of micro-cracks and derived damage 

factor based on the strength of material along and across the 

fibers. Fakoor and Khansari (2016) measured properties of 

damage zone at the crack tip regarding the interference of 

micro-cracks in FPZ and propounded the Representative 

Circle Elements (RCL) criterion by micro-mechanical 

approach. Romanowicz and Seweryn (2008) employed a 

non-local stress approach for mixed-mode I/II fracture 

investigation of wood components. They utilized strain 

energy density for micro-cracks based on the derived 

formulation by Gambarotta and Lagomarsino (1993).  

Delamination is another type of failure, which is 

considered in several studies. Kharazan et al. (2014) 

employed a finite element (FE) approach for the 

delamination modeling of laminated composite structures. 

Rizov (2017) studied mode II delamination of an end-

loaded split functionally graded beam by theoretical 

approach and considering material non-linearity. The 

mechanical response of ELS was modeled analytically by 

using a power-law stress-strain relation. Fracture process 

zone (FPZ) was considered in their model by cohesive zone 

elements.  

Van der Put (2007) proposed a new concept in fracture 

of highly orthotropic materials like wood. He derived his 

theory based on the failure of an elliptical crack in a 2D 

plane. He described that dissipated energy caused by the 

crack growth in orthotropic material has to rely on the 

strength of the isotropic matrix because orthotropic airy 

stress function cannot explain the fracture behavior of these 

kinds of materials. In addition, he derived Wu’s fracture 

criterion to predict the wood failure based on the strength of 

matrix along and across the fibers without considering FPZ 

(Van der Put 2015). Considering Van der Put’s theory, 

Anaraki and Fakoor (2010b) presented a mixed-mode 

fracture criterion based on Reinforcement Micro-Crack 

Systems (RMS) in which the resistance of the material in 

FPZ to micro-cracks’ formation was the dominant 

parameter. Several experimental observations prove that 

crack propagation in orthotropic materials will be in the 

isotropic matrix, and the fiber effects can be modeled as 

reinforcement of isotropic matrix (Fakoor and Shokrollahi 

2018, Farid and Fakoor 2019, Fakoor 2017). Based on this 

experimental observation and Van der Put’s theory, they 

proposed energy-based mixed-mode fracture criteria for 

fracture investigation of composite materials (Fakoor and 

Farid 2019).  

In this paper, the propounding concept of restricted 

isotropic solid, failure of highly orthotropic material is 

considered in the isotropic matrix. Accordingly, a new 

method is derived to demonstrate the effect of fibers on the 

matrix in orthotropic materials via reinforcement 

coefficients called ReSt. The principal and innovative 

characteristic of ReSt coefficients is encompassing fiber 

fractions in the relevant formula. Then the practical SED 

criterion is employed to anticipate the onset of in-plane 

crack growth. The crack is embedded along the fibers in the 

reinforced matrix under mixed-mode I/II loadings, and the 

plane strain conditions are applied. Also, crack growth 

direction is predicted by the SED criterion in the matrix that 

is the other novelty of this criterion in comparison to the 

aforementioned ones in which crack growth path is assumed 

along the fibers. The resulting criterion is validated by 

experimental data of wooden specimens gained by Jernkvist 

(2001a, b). 

 

 

2. Isotropic solid model 
 

The reinforced isotropic solid is based on empirical 

observation of the fracture of orthotropic materials. Fig. 1 

shows that a crack with any arbitrary direction to fibers in 

orthotropic materials kinks along fibers and propagates in 

the isotropic matrix of composite materials. 

In this model, the orthotropic materials are considered as 

reinforced materials in which the crack propagates through 

the isotropic solid reinforced by fibers (Farid and Fakoor 

2019). The embedded fibers in the matrix of composite 

materials tolerate most of the subjected load, reinforcing the 

matrix. Furthermore, fibers are far stronger than the matrix 

itself; thus, a crack in a matrix is incapable of tearing them  
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apart in case it faces the fibers. It is presumed that the 

fracture mechanism of these kinds of materials can be 

appropriately described through making relations between 

stress states of orthotropic materials and the isotropic 

matrix. 

In this research, the relation between stress states of 

isotropic matrix and orthotropic lamina is defined by factors 

called “reinforcement factors”. The effect of reinforcement 

fibers is driven by a micromechanics approach (Fakoor and 

Farid 2019). The factors are obtained from comparing the 

load subjected to matrix and fibers at composite lamina, 

separately, which is called Reduced Stress (ReSt) method. 

The significant advantage of this method is the inclusion of 

the fiber fraction in the stress state, determining subjected 

load by fibers far more precisely. 

 

2.1 Reduced Stress (ReSt) Micromechanical Model 
 

This model has been introduced in our previous works 

(Farid and Fakoor 2019). For studying the effects of fibres 

on the matrix, the following Representative Volume 

Element (RVE) of the case study is chosen (Fig. 2). 

The applied load is tolerated by fibers and also the 

matrix in composite materials; the following method 

facilitates the calculation of the exact amount of stress at the 

crack tip by three types of loadings, normal and shear stress, 

in-plane problems. Fig. 3 depicts the three possible 

independent in-plane loads subjected to the discrete RVE. 

 

 

 

Fig. 2 Selected RVE in the present study 

 

 

 

 
(a) Tension along fibers 

  

(b) Tension across fibers (c) Shear 

Fig. 3 RVE under in-plane loadings 

 

 

The first state elucidates that RVE is subjected to 

tension load along the fibers (see Fig. 3(a)). Satisfying the 

continuity conditions, the displacement of RVE along x-

direction should be consistent. Therefore, the matrix and 

fiber strains equal to the total RVE strain (𝜀 = 𝜀𝑚 = 𝜀𝑓). 

According to the constitutive equation and equality of 

strains, the stress at the matrix is related to the stress of 

RVE via 
𝜎

𝜎𝑚
=

𝐸𝑥𝑥

𝐸𝑚
. Then, the reinforcement factor along 

fibers,𝜉1, is defined as 

𝜉1 =
𝐸𝑥𝑥

𝐸𝑚
 (1) 

The Eq. (1) illustrates the concept of reduced stress. In 

other words, the contributed stress of the matrix is reduced 

by 𝜉1 factor provided that the composite body is subjected 

to a load along fibers.  

The second case states (see Fig. 3(b)) the relation 

between the stress of the matrix and the composite body 

across fibers, along the y-axis. Since the load on the matrix, 

fibers, and RVE are equal (𝐹 = 𝐹𝑓 = 𝐹𝑚), the stress in the 

  

(a) Crack orientation to fibers is 20 (b) Crack orientation to fibers is 40 

  
(c) Crack orientation to fibers is 60 (d) Crack orientation to fibers is 80 

Fig. 1 Empirical observation of crack propagation along fibers for different location of the crack to fibers 
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matrix, fibers, and RVE is the same across the fibers, along 

the y direction. Therefore 

𝜉2 = 1 (2) 

𝜉2 = 1 expresses that fibers play no role in bearing the 

loads in this state since the stress of isotropic matrix equals 

the stress of the composite body. 

The third state (Fig. 3c) presents the shear stress relation 

between the matrix and the composite. Based on the 

relations derived (Farid and Fakoor 2019), the dependency 

of the matrix shear stress to the shear stress of the 

composite body is defined via the following formula. 

𝜏 = 𝐺12(1 − 𝑉𝑓) (
1

𝐺𝑚
+

1

𝐺𝑓
) 𝜏𝑚 (3) 

Eq. (3) displays the fiber fraction (𝑉𝑓) plays a role in the 

amount of applied shear stress. As a result, the reinforced 

coefficient at shear loading, 𝜉3, will be 

𝜉3 = 𝐺12(1 − 𝑉𝑓) (
1

𝐺𝑚
+

1

𝐺𝑓
) (4) 

Eq. (4) demonstrates the effect of fibers on shear stress 

subjected to the matrix.  Assuming the 𝐺𝑓 = 𝐺12  and 

𝐺𝑚 = 𝐺21 at orthotropic materials, 𝜉3 factor is 

𝜉3 = (1 − 𝑉𝑓) (1 +
𝐸11(1 + 𝜈21)

𝐸22(1 + 𝜈12)
) (5) 

As a result of these three states, in-plane stresses in 

orthotropic lamina is related to in-plane stresses of the 

isotropic matrix by 𝜉𝑖 reinforcement factors in which 

𝜎11
𝑖𝑠𝑜 =

𝜎11
𝑜𝑟𝑡ℎ𝑜

𝜉1
, 𝜎22

𝑖𝑠𝑜 =
𝜎22

𝑜𝑟𝑡ℎ𝑜

𝜉2
, 𝜎12

𝑖𝑠𝑜 =
𝜎12

𝑜𝑟𝑡ℎ𝑜

𝜉3
 (6) 

Eq. (6) represents the relation between stress states of 

the composite materials as a whole body and the pertinent 

matrix as a part of it. 

 

 

3. Theoretical background of problem 
 

3.1 Hypotheses 
 

In this paper, the behavior of a crack embedded along 

fibers in the orthotropic plane is studied (Fig. 4). The crack 

follows the plane strain conditions. It is also assumed that 

the crack is subjected to mixed-mode loadings. As Fig. 4 

illustrates, unidirectional and straight fibers strengthen the 

lamina. It means the studied material is orthotropic, which 

has high strength and stiffness along fibers and low tensile 

strength across them or at the transverse direction. 

Accordingly, reinforced composites by unidirectional fibers 

are vulnerable to the crack embedded in the matrix between 

fibres. Therefore, these kinds of cracks tend to grow along 

the fibers. In this paper, it is assumed that the crack 

embedded in the matrix is along the fibers leading the stress 

state around the crack tip is intensely affected by singular 

stresses. Fig. 5 demonstrates the position of the crack along 

fibers in the matrix schematically. 

 

Fig. 4 The schematic figure of the studied crack in an 

orthotropic material 

 

 

 

Fig. 5 The arbitrary stress state at the crack tip 

 

 

3.2 Stress state in the vicinity of the crack tip 
 
Experimental tests on wooden materials demonstrate 

that a crack along fibers in the matrix of orthotropic lamina 

starts to deflect and grow in a different direction. Fig. 6 

displays this fact, and it is proof of the theory of Van der 

Put, who believed that the matrix failure causes the failure 

of the orthotropic solid. Therefore, referring to the concept 

of the constrained isotropic solid, the matrix constrained 

between fibers bears the less stress. It means the stress state 

at the crack tip will be the stress state at the isotropic matrix 

with reinforcement coefficients. Stress state at the crack tip 

in isotropic solid is the following formulas, which are 

obtained using Williams (1957) extends and considering the 

reinforcement factors. In these formulas, the functions, 

𝑓𝑖𝑗(𝜃) and 𝑔𝑖𝑗(𝜃) are angular functions. 

𝜎11 =
(𝑓11(𝜃)𝐾𝐼 + 𝑔11(𝜃)𝐾𝐼𝐼)

𝜉1√2𝜋𝑟
 

(7) 𝜎22 =
(𝑓22(𝜃)𝐾𝐼 + 𝑔22(𝜃)𝐾𝐼𝐼)

𝜉2√2𝜋𝑟
 

𝜎12 =
(𝑓12(𝜃)𝐾𝐼 + 𝑔12(𝜃)𝐾𝐼𝐼)

𝜉3√2𝜋𝑟
 

 

 

Fig. 6 The crack growth path in the matrix constrained 

between fibers 
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Fig. 7 The crack growth between fibers 

 

 

3.3 Deriving the new fracture criterion 
 
Considering the crack grows in the isotropic elastic 

homogenous continuum, the well-known and practical SED 

criterion is used to study the fracture behavior of this type 

of material under mixed-mode I/II loadings. Conforming to 

this criterion, if the strain energy density factor gets the 

critical minimum value at a specific distance from crack tip, 

the crack will initiate to extend at the critical path (Sih 

1974). The path of crack growth, 𝜃𝑐, is showed in Fig. 7 

schematically and the SED criterion for this state of the 

crack under mixed mode loadings will be extended. 

The strain energy density factor, S, is the 
fundamental quantity in the SED criterion and is 
calculated using the following equation (Sih 1974). In 
this equation, the effect of moisture and temperature 
changes is eliminated 

𝑆 = 𝑟
𝑑𝑊

𝑑𝑉
= 𝑟 ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗

𝜀𝑖𝑗

0

 (8) 

Considering the problem hypothesis and conditions of 

Linear Elastic Fracture Mechanics, Eq. (8) is reduced to 

𝑆 = 𝑟
𝑑𝑊

𝑑𝑉
=

𝑟

2
∑ ∑ 𝜎𝑖𝑗𝜀𝑖𝑗

2

𝑗=1

2

𝑖=1

 (9) 

𝜎𝑖𝑗 and 𝜀𝑖𝑗 in Eq. (9) are stress and strain state of the 

problem, respectively. Regarding Eqs. (7)-(9), S restates as 

S = 𝐴11𝐾𝐼
2 + 2𝐴12𝐾𝐼𝐾𝐼𝐼 (10) 

In which 

𝐴11 =
1

4𝜋
(

𝐶11

𝜉1
2 𝑓11

2 +
𝐶22

𝜉2
2 𝑓22

2 +
𝐶66

𝜉3
2 𝑓12

2 + 2
𝐶12

𝜉1𝜉2
𝑓11𝑓22) (11) 

𝐴12 =
1

4𝜋
(

𝐶11

𝜉1
2 𝑓11𝑔11 +

𝐶22

𝜉2
2 𝑓22𝑔22 +

𝐶66

𝜉3
2 𝑓12𝑔12

+
𝐶12

𝜉1𝜉2

(𝑓11𝑔22 + 𝑓22𝑔11)) 
(12) 

𝐴22 =
1

4𝜋
(

𝐶11

𝜉1
2 𝑔11

2 +
𝐶22

𝜉2
2 𝑔22

2 +
𝐶66

𝜉3
2 𝑔12

2 + 2
𝐶12

𝜉1𝜉2
𝑔11𝑔22) (13) 

To mathematically derive the SED criterion, three 

conditions are applied. The first one is  𝑆 = S𝑐 , that 

expresses the critical value of the strain energy density 

factor. The other ones that locate the crack growth are 

𝜕𝑆 𝜕𝜃⁄ = 0 and 𝜕2𝑆 𝜕𝜃2⁄ > 0. S𝑐 is a material constant 

so that it is obtained by pure mode I conditions in which 

𝐾𝐼 = 𝐾𝐼𝑐
 and 𝐾𝐼𝐼 = 0. For a crack along the fibers and 

under pure mode I loading, collinear crack growth occurs. It 

means 𝜃𝑐 = 0 and 

S𝑐 =
𝐾𝐼𝑐

2

4𝜋
(

𝐶11

𝜉1
2 𝑓11

2(0) +
𝐶22

𝜉2
2 𝑓22

2(0) +
𝐶66

𝜉3
2 𝑓12

2(0)

+ 2
𝐶12

𝜉1𝜉2
𝑓11(0)𝑓22(0)) 

(14) 

𝑓11(0) = 𝑓22(0) = 1  and  𝑓12(0) = 0  are concluded by 

using William (1957) expansion. Therefore, S𝑐 equals 

𝑆𝑐 =
1

4𝜋
(

𝐶11

𝜉1
2 +

𝐶22

𝜉2
2 + 2

𝐶12

𝜉1𝜉2
) (15) 

For locating the crack growth, the second and third 

conditions are applied as follows 

𝐴̇11𝐾𝐼
2 + 2𝐴̇12𝐾𝐼𝐾𝐼𝐼 + 𝐴̇22𝐾𝐼𝐼

2 = 0 (16) 

𝐴̈11𝐾𝐼
2 + 2𝐴̈12𝐾𝐼𝐾𝐼𝐼 + 𝐴̈22𝐾𝐼𝐼

2 > 0 (17) 

In which 𝐴̇𝑖𝑗  and 𝐴̈𝑖𝑗  are the first and second 

derivative of𝐴𝑖𝑗 , respectively. As a result, the ReiSED 

criterion is derived as the following equation: 

𝐴11(𝜃)𝐾𝐼
2 + 2𝐴12(𝜃)𝐾𝐼𝐾𝐼𝐼 + 𝐴22(𝜃)𝐾𝐼𝐼

2

=
1

4𝜋
(

𝐶11

𝜉1
2 +

𝐶22

𝜉2
2 + 2

𝐶12

𝜉1𝜉2
) 𝐾𝐼𝑐

2 (18) 

Or 

𝐴11(𝜃)𝐾𝐼
2 + 2𝐴12(𝜃)𝐾𝐼𝐾𝐼𝐼 + 𝐴22(𝜃)𝐾𝐼𝐼

2

=
1

4𝜋
(

𝐶11

𝜉1
2 +

𝐶22

𝜉2
2 + 2

𝐶12

𝜉1𝜉2
) 𝐾𝐼𝑐

2 (19) 

In this criterion, the coefficient of 𝐾𝐼𝐼
2  is named as 

damage factor, 𝜌 = 𝐴22(𝜃) 𝐴11(0)⁄ , which depends on the 

elastic properties of the material as well as the fiber 

fraction. Moreover, it represents that the fracture toughness 

of the material is varied at any orientation to the crack tip. 

Fig. 8 depicts the variation of 𝜌  to the different 

orientations in Norway spruce wood. It is evident that for 

the other types of orthotropic materials, the amplitude of 

curve changes and the total behavior of 𝜌 is the same. For 

pure mode I, 𝜃𝑐 = 0, the damage factor is 

𝜌 =
𝐶66

𝜉3
2 (

𝐶11

𝜉1
2 + 𝐶22 + 2

𝐶12

𝜉1
)
 

(20) 

Damage factor of the SED criterion for orthotropic 

materials at 𝜃𝑐 = 0 is 

𝜌 =
𝐶66

𝐶11 + 𝐶22 + 2𝐶12
 (21) 

Regarding the principle role of damage factor on 

fracture behavior of materials and comparing Eq. (20) and 

Eq. (21), it reveals 𝜉𝑖 has a dominant effect on 𝜌. 
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4. Result and discussion 
 
4.1 Results 
 
Fig. 9 depicts the fracture limit curves pertinent to 

ReiSED and the energy-based criteria of Jernkvist (2001a) 

(minimum strain energy density and maximum strain 

energy release rate hereafter referred to as SED-J and SER-

J, respectively) in order to compare and evaluate the 

criterion by experimental data of three types of wood 

(Jernkvist 2001a). The properties of wooden materials are 

found in (Jernkvist 2001a).  
 

 

 

 

 

4.2 Discussion 
 
The SED criterion is of remarkable importance in 

industrial problems due to its significantly precise 

prediction of brittle isotropic materials. However, Fig. 9 

illustrates that SED-J is the most conservative fracture limit 

curve. This can be for several reasons. First, in isotropic 

materials, a crack under mixed-mode loadings kinks, which 

needs more energy. In contrast, the collinear crack growth 

assumption states that the total energy are employed to tear 

the plane and to distribute the crack. Therefore, material 

failure happens at low toughness. Second, SED-J strongly 

depends on the shear stiffness through compliance 

elements, 𝐶12  and particularly 𝐶66 , which play the 

 
Fig. 8 Dependency of the damage factor to crack growth path in Norway Spruce sample 

  
(a) Norway Spruce (b) Red Spruce 

 
(c) Scot Pine 

Fig. 9 Fracture limit curve of ReiSED and the classic criteria including with experimental data 
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dominant role in 𝜌. Damage factor for SED-J is obtained as 

the following equation 

𝜌 =
𝐶66

𝑓11(0)2𝐶11 + 𝐶22 + 2𝑓11(0)𝐶12
 (22) 

While in this criterion the collinear crack growth 

assumption neglects the shear resistance effects in material 

fracture. Thus, the total energy consumes to distribute the 

crack and overcome the tension resistance; nevertheless, 

under mixed-mode loadings, crack is inevitably affected by 

shear stress that cannot be omitted. Third, 𝐶12 element in 

𝜌 indicates the interaction of tension and shear stiffness, 

which contradicts the initial assumption of the collinear 

crack growth as well. Forth, according to the basic 

hypothesis of the SED criterion, 𝜃𝑐 = 0  is not the 

theoretical, critical crack growth for a crack under mixed-

mode loadings. 

Although SER-J is an energy-based criterion, it fails to 

anticipate the fracture initiation correctly. It seems the 

assumptions are the main reason for its inefficiency. First 

off, it is assumed that crack growth occurs in the perfectly 

brittle material, and the available energy is applied to 

distribute the crack entirely. Accordingly, plenty of 

parameters that dissipate the energy are neglected, such as 

FPZ creation at the crack tip. Also, the collinear crack 

growth is the other reason of conservatism of this criterion 

(despite the principle concept of SER criterion) because 

conforming to the Griffith theory, crack distributes in a 

plane with the normal of equivalent critical stress. The 

equivalent critical stress is the tension stress that has the 

same effect of mixed-mode loadings in the solid. Indeed, at 

mixed-mode loading, the plane perpendicular to the 

equivalent critical loadings is not the plane along the main 

crack. Therefore, it is expected that SER-J is not a proper 

criterion. However, the ReiSED criterion, including ReSt 

coefficients, is appropriately compatible with the 

experimental data.  

The distinct difference of this criterion is the fiber 

fraction in its damage factor. According to the damage 

factors of derived criterion, it is concluded that 𝜉3 has a 

significant impact on the fracture behavior of materials 

under mixed-mode loadings. This criterion predicts that the 

more value of 𝜉3 causes fibers have more effect on matrix 

failure by bearing shear loadings. It is definite that shear 

fracture that leads fiber breakages at different orientations 

to the main crack with a rough surface (Jernkvist 2001b) 

dissipates more energy than crack growth in the matrix via 

tension stress. The more value of 𝜉3 means the most parts 

of energy of the body is applied to tear the planes apart by 

shear leads requiring more energy for material failure 

because the shear breakage of fibers needs more energy 

than the shear failure of isotropic matrix. ReSt coefficients 

balance the required energy for shear fracture and the other 

factors in fracture via fiber fraction. Therefore, these 

coefficients cause the ReiSED criterion encompasses the 

effects of shear and tension stress and their interactions in 

fracture under mixed-mode loadings and predicts the 

fracture behavior of the orthotropic materials precisely. 
 
 

5. Conclusions 
 

According to the reinforced isotropic matrix composite 

materials, the new model is applied to investigate the 

fracture of anisotropic materials. In this model, fibers act as 

a reinforcement matrix, which reduced the stress exerted on 

the matrix. The tension and shear reinforcement effects of 

fibers are calculated by reinforcement coefficients called 

ReSt. These coefficients depend on elastic properties and 

the fiber fraction of the material. Based on the observation, 

that ReiSED criterion finely fits the experimental data of 

the well-known conducted tests by the scholars, the 

following conclusions are:  

1. The postulate, that the crack kinks in the matrix and 

distributes along the path predicted by the ReiSED criterion 

is proved. It is concluded that the crack growth onset occurs 

at the particular orientation predicted by fracture criteria. It 

grows along the fiber, that is observed in the tests conducted 

by the Fakoor et al. (2018). 

2. Fiber reinforcement coefficients at tension along the 

fiber and shear loadings, ReSt coefficients, which depend 

on elastic properties and fiber fraction of the composite 

body, play a critical role in anticipating the fracture 

behavior of these materials. 

3. According to the damage factor presented at the text, 

𝜉3 coefficient, which is indicative of shear effects of the 

reinforced isotropic matrix, has a noticeable impact on the 

mixed-mode fracture. It is shown where the shear loading 

has a dominant influence on the fracture behavior of these 

materials; the ReiSED criterion precisely predicts the 

behavior. 

4. Also, based on the damage factor presented at the 

text, it is concluded that the fracture toughness of the crack 

tip, is various at the different orientation to the main crack 

in the matrix and depends on the ReSt coefficients (elastic 

properties and fiber fraction) as well. 
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