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1. Introduction 

 

According to extended application of materials and 

structures in very small scales (micro or nano) in recent 

years, some researchers investigated on the various aspects 

of nanomaterials (Yildirm 1999, Chen et al. 2008, Gholami 

et al. 2016, Baghani et al. 2016, Zhu et al. 2017). The 

response of structures in very small scales basically differs 

from that in macro scales. For modeling the structures in 

small scales, the continuum theory does not lead to 

acceptable results. It was concluded that the modeling of the 

structures in small scales needs to be corrected by 

accounting some small scale parameters. Some theories 

considering the size effects such as Eringen nonlocal 

elasticity theory (Eringen 1983), modified couple stress 

theory (MCST) by Gurtin and Murdoch (1975), strain 

gradient theory (SGT) Gurtin and Murdoch (1978) and the 

surface stress theory (SST) (Yang et al. 2002, Gurtin et al. 

1998, Lam et al. 2003) have been developed by various 

researchers. Some important works on the dynamic 

behaviors of nano sized structures have been presented 

(Moradi-Dastjerdi et al. 2014, Tadi Beni 2016, Shojaeefard 

et al. 2018). 

The application of nonlocal theory on vibration analysis 

of nanobeams, nanoshells and carbon nanotubes (CNTs) has 

been presented by some researchers (Wang 2005, Ansari et 

al. 2012). Ansari et al. (2011) used a nonlocal shell model  
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for the vibration analysis of double-walled CNTs with 

different boundary conditions. They indicated that, with 

considering appropriate values of nonlocal parameter to 

predict the free vibration behavior, good results are obtained 

that are comparable with the results of molecular dynamics 

simulations. She et al. (2017) used the nonlocal theory for 

analysis of the thermal buckling and postbuckling behavior 

of porous tubes. They showed that the critical temperature 

and post-buckling strength of the tube increases with the 

increase of porosity volume fraction. 

The Eringen’s nonlocal theory is included one small 

scale parameter. Some researchers such as Koutsoumaris et 

al. (2017), Shaat and Abdelkefi (2017) showed that one 

scaling parameter is insufficient to predict mechanical 

behavior of nanostructures. Thus, other theories were 

presented that including two scale parameters. Safaei et al. 

(2018) investigated dynamic behavior of nanocomposite 

sandwich plates under periodic thermo-mechanical 

loadings. Vibration and buckling analysis of piezoelectric 

nanoplate with considering the surface effects based on the 

modified Kirchhoff plate model was studied by Yan et al. 

2012 to investigate critical electric voltage of buckling. 

Wang et al. (2013) studied large amplitude free vibration of 

circular micro-plates based on the modified couple stress 

theory (MCST). They indicated that increase of small scale 

parameter leads to significant increase of the frequency of 

the plate, however does not significant effect on the 

fundamental mode shape. Salehipour (2015) used MCST 

and three-dimensional elasticity theory for exact free 

vibration analysis of functionally graded nano/micro-plates. 

It was concluded that increase of length scale parameter 

leads to increase of the rigidity and the natural frequencies 
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especially for out-of-plane modes compared with the 

frequencies of the in-plane modes.   

Dynamic behavior of single-walled carbon nanotubes 

using the nonlocal theory and the three dimensional 

elasticity theory has been studied by Alibeigloo et al. 2013. 

Zeighampour et al. (2014) studied the dynamic behavior of 

double walled conveying fluid carbon nanotube using 

modified couple stress theory. They studied on the effect of 

small scale parameter and fluid velocity parameters on the 

results obtained from the classical theory and MCST. 

Murmu et al. (2011) analyzed torsional vibration of single-

walled carbon nanotubes using nonlocal beam theory. 

Ansari et al. (2011) used Donnell shell model for free 

vibration and buckling behavior of carbon nanotube based 

on nonlocal theory. Ghavanloo and Fazelzadeh (2013) 

studied shell-like vibration of carbon nanotubes with 

arbitrary chirality as an anisotropic elastic shell model. 

Pourasghar et al. (2016) studied the three-dimensional 

thermo-elastic analysis of functionally graded carbon 

nanotube subjected to thermal environment using 

generalized differential quadrature method. There are more 

papers which presented general studies on modeling of 

nanotubes based on nonlocal elasticity theory (Reddy 2007, 

Zhang et al. 2009, Arash and Wang 2012, Wang et al. 2015, 

Daneshmand et al. 2013). Li et al. (2017) studied the 

thermo-electro-mechanical transverse vibration and stability 

of viscoelastic piezoelectric nanoplate. 

Arefi and Zenkour (2016) investigated effect of electric 

potential on free vibration, wave propagation and tension 

analyses of sandwich micro/nanorod based on strain 

gradient theory (SGT). Xiang and Yang (2016) studied the 

free and forced vibration of laminated functionally graded 

beams under thermal load using the first-order shear 

deformation beam theory. Pradhan and Phadikar (2009) 

analyzed the vibration of multi-layered graphene sheets 

with considering the small scale parameter based on the 

nonlocal classical plate theory. Hosseini et al. (2018) 

analyzed vibration of deep curved FG nanobeam based on 

modified couple stress theory. Tadi Beni et al. (2015) 

presented the free vibration of functionally graded 

cylindrical nanoshell based on the modified couple stress 

theory and first-order shear deformation theory. Soleimani 

et al. (2018) used a finite element model for vibration 

analysis of nanoshell. Analysis of the thin cylindrical shell 

based on modified couple stress theory and the first-order 

shear deformation theory was performed by Zeighampour 

and Tadi Beni (2015). Belkorissat et al. (2015) applied a 

new nonlocal hyperbolic refined plate model for free 

vibration of FG plates. Rabczuk et al. (2007, 2010) 

developed some numerical methods for modeling the fluid–

structure interaction and non-linear dynamic fracture. 

Nguyen-Thanh (2017) studied a coupled problem for large 

deformation analysis of thin shells. Amiri et al (2016) and 

Areias et al. (2014) studied application of Phase-field 

modeling on the fracture of thin shells and plates including 

finite strains. Guo et al. (2019) studied bending analysis of 

Kirchhoff plate using deep collocation method. Javvaji et 

al. (2018) used highly electrically conductive graphene in 

solar cells for future generation of photovoltaics. The 

fracture properties were calculated using the molecular 

dynamics simulations in uniaxial tension. Budarapu et al. 

(2017a) proposed a solid shell-based adaptive atomistic–

continuum numerical method for simulation of crack 

growth in thin-walled structures based on a hybrid solid 

shell formulation. Budarapu et al. (2017b) studied the effect 

of small scales on the mechanical behavior of systems. 

They presented some advantages of the multiscale methods 

to reduce the computational costs. Budarapu et al. (2014) 

proposed a coarse-graining method for continuum modeling 

of complex cracks. They used some useful methods to 

separate the atoms on the crack surface from other atoms. 
A comprehensive literature review was completed above 

based on focus on the works related to size dependent 

analysis, higher-order shear deformation theory and free 

vibration analysis of cylindrical shells. This review 

indicates that there is no published work on the application 

of sinusoidal higher-order shear and normal deformation 

theory to nonlocal free vibration analysis of cylindrical 

nano shells accounting thickness stretching. In this paper, 

three dimensional free vibration analysis of functionally 

graded nanoshell based nonlocal theory is investigated 

based on the higher order shear and normal deformation 

theory with considering thickness stretching effects. It is 

assumed that material properties vary through the thickness 

direction according to volume fraction of metal and 

ceramic. The analytical solution is proposed to investigate 

the effect of various significant parameters such as small 

scale parameter, some dimensionless geometric ratios such 

as thickness to radius and length to radius ratios and mode 

number on the natural frequencies of nano shell. Before 

presentation of complete numerical results, a 

comprehensive verification using comparison with previous 

works is presented. In addition, for justifying the 

importance of the present formulation and corresponding 

numerical results, the numerical results are presented and 

compared with and without thickness stretching effect. 

 

 

2. Constitutive relations based on the HOSNDT 
 

The FG cylindrical nanoshell with length L, radius R 

and thickness h. FGM is usually made of a combination of 

two materials such as ceramic and metal. The material 

properties of the FG cylindrical shell varies continuously 

and uniformly from ceramic properties at the inner surface 

of the cylindrical nanoshell to the properties of the metal at 

the outer surface as a function of volume fraction of 

ceramic and metal according to power law distribution 

along the thickness direction as 
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 (1) 

In which, N is inhomogeneous index. The variable 

material properties of the cylindrical nanoshell including 

modulus of elasticity and density are expressed as (Arefi 

and Zenkour 2017) 
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Fig. 1 The schematic figure of a FG cylindrical nanoshell 
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Where cE and c are obtained at 
2

h
z   , mE and m

are obtained at
2

h
z  , which respectively represent Young’s 

modulus and density of ceramic and metal. It should be 

noted that, the Poisson’s ratio is assumed constant along the 

thickness of FG nanoshell. Based on the information of Fig. 

1, the displacement field of cylindrical nanoshell based 

higher-order shear and normal deformation shell theory 

with thickness stretching effect is expressed as 
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(3) 

In which, 0 ( , )u x  and 0 ( , )v x   are displacements of 

middle surface, ( , )w x  and ( , )x  are the bending and 

shear components of the lateral displacement W , and 

( , )x   is an additional function of x and   . It is 

concluded that the third term in radial displacement of Eq. 

(3) is employed for thickness stretching effect. 

The presented two-unknown functions of shear and 

normal deformation theory is given with more details from 

Zenkour (2013) 
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Eq. (4) indicates that the present theory is sinusoidal 

shear and normal deformation theory. Based on the 

displacement field, the strain components are expressed as 
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(5) 

The constitutive relation is expressed as 

ij ijkl klC   (6) 

In which
ijklC represents the stiffness coefficients. Based 

on the three-dimensional analysis, the stiffness coefficients 

are expressed in terms of Young’s modulus and Poisson’s 

ratio. The developed constitutive relations (Eq. (6)) in three-

dimensional coordinate system are expressed as 
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To show the behavior of structures in nanoscale, the 

nonlocal elasticity theory is used, that was developed by 

Eringen (1983). The nonlocal stress–strain relations are 

expressed based on the Ref (Duan et al. 2007, Arefi and 

Zenkout 2017a, b, c, d, e, 2019) as 
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2 2
1(1 ) ij ijkl klL C     (8) 

In which 
1L  is the nonlocal parameter, 

2 is the 

Laplacian operator that can be developed in cylindrical 

coordinate system as 
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By substitution of strain components, we obtain the 

stress components (Eq. (7)) as 
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The governing equations of motion are derived from 

Hamilton’s principle as follows 
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Substitution of strain components into Eq. (12) and 

integration leads to following relations 
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Substitution of stress components into Eq. (13), yields 

variation of strain energy in terms of resultant components 

as follows 
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The variation of kinetic energy is expressed as 
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Or, in the final form yields 
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(16) 

The integration constants in Eq. (16) are presented in 

appendix A. In addition, the work due to reaction of 

Pasternak’s foundation is assumed as 
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(17) 

In which
wK  and G are spring and shear parameters of 

foundation. Now, by separating of variables in Hamilton’s 

principle from Eq. (12), the five governing equations of 

motion are derived as 
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(22) 

Now, it can be noted that Eqs. (18)-(22) are equations of 

motion of FG cylindrical nano shell based on the sinusoidal 

shear and normal deformation theory and nonlocal theory 

with thickness stretching effect. 
 

 
3. Solution procedure and numerical results 

 

Solution procedure is developed in this section for a 

simply-supported boundary condition. The displacement 

field and electric potential distribution are assumed based 

on trigonometric functions for simply-supported boundary 

conditions as follows 
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In which    0 0

T

mn mn mn mn mnd u v w  is unknown 

vector, m and n represent the axial and circumferential 

wave numbers, respectively. By substituting Eq. (23) into 

equations of motion (18) - (22), the governing equations are 

written in the matrix form as follows 

   
..

0K d M d
      

    
      

 (24) 

Where 

   0
i td d e   (25) 

Now, by substituting Eq. (25) into (24), we will have 

     2
0( ) 0K M d   (26) 

Where ω stands for natural frequency,

   0 0 0

T

mn mn mn mn mnd u v w  is displacement 

amplitude vector. The natural frequencies of the FG 

cylindrical nanoshell is derived using determinant of 

characteristic equation (Eq. (26)).  
The natural frequencies are calculated in terms of 

significant parameters of the problem such as dimensionless 

length scale parameters, distribution of properties of 

nanoshell components, dimensionless geometric parameters 

such as length to radius ratio L/R, and thickness to radius 

ratio h/R, circumferential n and axial wave numbers m. As 

mentioned before, by setting the material length parameter 

to zero, equations will be obtained on the basis of the 

classical theory. The FG cylindrical nanoshell is made of 

aluminum (Al) and ceramic (Sic) with following material 

properties (Tadi Beni et al. 2015) 

3

3: 70 , 2702 ( / )

: 427 , 3100 ( / )

AL E Gpa kg m

Sic E Gpa kg m





 

 
  

Before presentation of complete numerical results, a 

comprehensive comparative study is performed for 

validation of our formulation and corresponding numerical 

results. Therefore, the accuracy of results for an isotropic 

homogeneous cylindrical nanoshell is examined by setting 

N = 0. The material properties used in this section are 

considered as follows (Alibeigloo and Shaban 2013) 

3

1.06 , 0.3, 2 , / 1,

2300 / , 1

E Tpa R nm L R

kg m m




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 
  

The dimensionless natural frequency based on (Tadi 

Beni et al. 2015) is defined as R
E

   Shown in Fig. 

2 is comparison of dimensionless natural frequencies of FG 

cylindrical nanoshell in terms of nonlocal parameter for 

various inhomogeneous indexes. The numerical results 

indicate that with increase of nonlocal parameter, the 

stiffness of cylindrical nanoshell is decreased that leads to 

decrease of the natural frequencies. It can be concluded that 

decrease of natural frequencies with increase of nonlocal 

parameter is in accordance with references Alibeigloo and 

Shaban (2013) and Tadi Beni et al. (2015). In addition, it 

can be concluded that with increase of ratio h/R, the natural 

frequencies are increased. One can conclude that with 
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increase of thickness to radius ratio, the bending stiffness of 

nanoshell is increased and consequently the natural 

frequencies are increased significantly. 
Table 1 lists comparison of the non-dimensional 

fundamental natural frequencies of isotropic nanoshell in 

terms of circumferential wave numbers based on first order 

shear deformation theory and 3D solution proposed by 

Alibeigloo and Shaban (2013) and Tadi Beni et al. (2015), 

respectively. This comparison indicates that the numerical 

results in this paper are in good agreement. One can 

conclude that employing thickness stretching effect leads to 

significant improvement of previous lower order theories. 

In this stage, the full numerical results of functionally 

graded nanoshell are presented. Fig. 3 shows the variation 

of dimensionless of natural frequency ( )m

m
R

E


  in 

terms of nonlocal parameter to thickness dimensionless 

ratio 1 /L h  in terms of various inhomogeneous indexes N. 

It can be concluded that with increase of inhomogeneous 

index N, the natural frequencies are significantly increased. 

It is noticeable that N = 0 is corresponding to a shell made 

of pure aluminum shell and N    to a pure ceramic shell. 

One can conclude that with increase of inhomogeneous 

index N, the stiffness of shell is increased that leads to 

increase of natural frequencies. 

Table 2 lists fundamental natural frequencies of 

nanoshell in terms of nonlocal parameter for various length 

to radius ratio L/R. It is concluded that with increase of 

nonlocal parameter, the stiffness of structure is decreased 

and consequently the natural frequencies are decreased 

significantly. In addition, it can be observed that with 

increasing the ratio L/R the natural frequencies are 

decreased significantly. It is concluded that with increase of 

length to radius ratio L/R, the stiffness is decreased. 
 
 
 

 

Fig. 2 Comparison of fundamental natural frequencies of 

FG nanoshell in terms of various nonlocal parameters 

and ratio h/R with 3D results of Alibeigloo and Shaban 

(2013) 
 

 
Table 1 Comparison of fundamental natural frequencies of 

FG nanoshell in terms of various circumferential wave 

numbers and thickness to radius ratio h/R with Alibeigloo 

and Shaban (2013) and Tadi Beni et al. (2015) 

(L/R=1,R=2nm) 

h/R 
n 

Alibeigloo 

and Shaban 

(2013) 

Tadi 

Beni et 

al. 

(2015) 

Present 

study 

 

0.1 

1 0.913 0.933 0.9784 

2 0.762 0.776 0.8197 

3 0.699 0.713 0.7464 

 

0.2 

1 0.993 1.048 1.0846 

2 0.936 0.971 1.0092 

3 0.999 1.052 1.0903 

 

0.3 

1 1.112 1.181 1.2109 

2 1.116 1.162 1.2057 

3 1.245 1.330 1.3880 

 
 

Table 2 Fundamental natural frequencies of nanoshell in 

terms of nonlocal parameter for various length to radius 

ratio L/R 

(h/R=0.1,R=2nm,N=2) 

L/R 
L1 Ω11 

4 

0.1 0.82445 

0.2 0.8195 

0.5 0.78722 

1 0.69693 

8 

0.1 0.5022 

0.2 0.50005 

0.5 0.48567 

1 0.44292 

12 

0.1 0.42385 

0.2 0.42216 

0.5 0.41088 

1 0.37692 

20 

0.1 0.38281 

0.2 0.38135 

0.5 0.37156 

1 0.34189 

 
 
Fig. 4 shows the variation of dimensionless natural 

frequency in terms of nonlocal parameter to thickness 

dimensionless ratio 1 /L h  for various axial wave numbers 

m. It can be concluded that the natural frequencies are 

decreased with increase of nonlocal parameter. In addition, 

the for small nonlocal parameter to thickness dimensionless 

ratio 1 /L h , the natural frequencies are decreased with 

increase of axial wave number. 
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Fig. 3 Variation of dimensionless natural frequency in terms of 

nonlocal parameter to thickness ratio 1 /L h for various 

inhomogeneous indexes 
 
 
 

 

Fig. 4 Variation of dimensionless natural frequency in 

terms of nonlocal parameter to thickness ratio 1 /L h  for 

various axial wave numbers 
 
 
 
Fig. 5 shows the variation of dimensionless natural 

frequency in terms of length to radius ratio L/R for various 

axial wave numbers m. It can be concluded that with 

increase of ratio L/R, the natural frequency decreases. 

Fig. 6 shows the variation of dimensionless natural 

frequency in terms of length to radius ratio L/R for various 

nonlocal parameters. It can be concluded that with increase 

of length to radius ratio L/R and nonlocal parameter, 

stiffness of shell decreases that leads to significant decrease 

of natural frequencies. 
 

 

 

Fig. 5 Variation of dimensionless natural frequency in 

terms of length to radius ratio L/R for various axial wave 

numbers 
 

 

Fig. 6 Variation of dimensionless natural frequency in 

terms of length to radius ratio L/R for various nonlocal 

parameters 
 

 

Fig. 7 Variation of dimensionless natural frequency in 

terms of length to radius ratio /L R for various 

inhomogeneous indexes 
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Fig. 7 shows the variation of dimensionless natural 

frequency in terms of length to radius ratio /L R  for 

various inhomogeneous indexes N. The numerical results 

indicate that the natural frequencies are decreased with 

increase of length to radius ratio /L R  and decrease of 

inhomogeneous index. One can conclude that the stiffness 

of functionally graded nanoshell is increased with increase 

of inhomogeneous index. 

Figs. 8 and 9 illustrate the effect of axial and 

circumferential wave numbers as well as thickness to radius 

ratio h/R on the dimensionless natural frequency, 

respectively. The other data are assumed as: 1 0.25L  , N = 

2. Figure 8 shows that the natural frequencies are increased 

significantly with increase of axial wave number, m and 

thickness to radius ratio h/R. 

 
 

 

Fig. 8 Variation of dimensionless natural frequencies of 

nanoshell in terms of axial wave number for various 

thickness to radius ratio 
 
 

 

Fig. 9 Variation of dimensionless natural frequencies of 

nanoshell in terms of circumferential wave number for 

various thickness to radius ratio 

 

 

Fig. 10 Variation of dimensionless natural frequencies of 

nanoshell in terms of axial wave number for various 

nonlocal parameter 
 
 

 

Fig. 11 Variation of dimensionless natural frequencies of 

nanoshell in terms of circumferential wave number for 

various nonlocal parameter 
 
 
It is concluded that for higher modes of vibration (higher 

values of axial mode number m), higher natural frequencies 

are required. In addition, with increase of thickness to 

radius ratio h/R, the stiffness is increased that needs to 

higher values of natural frequencies. 

Fig. 9 shows that the natural frequencies are decreased for 

increase of circumferential wave number to minimum one 

and then are increased with increase of circumferential 

wave number. The minimum natural frequencies are 

depending on the thickness to radius ratio h/R. The 

corresponding circumferential wave number for minimum 

natural frequencies is decreased with increase of thickness 

to radius ratio h/R.   
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Figs. 10 and 11 show the effect of axial and circumferential 

wave numbers as well as length scale parameter on the 

dimensionless natural frequency of cylindrical nano shell. 

The present numerical results are obtained for / 0.1h R  ,

2N  . Both figures show that increase of nonlocal 

parameter leads to decrease of stiffness of nanoshell and 

consequently decrease of natural frequencies. In addition, 

increase of axial wave number leads to increase of natural 

frequencies while increase of circumferential wave number 

firstly leads to decrease of natural frequency and then 

increase of it. The minimum natural frequencies are 

occurred approximately for n=2.25. 

 

 

 

 

Fig. 12 Variation of dimensionless natural frequencies in 

terms of thickness to radius ratio h/R with and without 

thickness stretching effect 

 
 

 

Fig. 13 Variation of dimensionless natural frequencies of 

nanoshell in terms of two parameters of Pasternak’s 

foundation 

 
 
 

Shown in Fig. 12 is variation of dimensionless natural 

frequencies in terms of thickness to radius ratio h/R with 

and without thickness stretching effect. The numerical 

results indicate that considering thickness stretching effect 

based on sinusoidal higher order shear and normal 

deformation theory leads to significant improvement of 

results rather than the case that ignores this effect.   

The effect of two parameters of Pasternak’s foundation is 

observed in Fig. 13. The numerical results indicate that the 

natural frequencies are increased significantly with increase 

of two parameters of Pasternak’s foundation. 

 
 
4. Conclusions 
 

Free vibration analysis of a FG cylindrical nanoshell 

was studied in this work based on the sinusoidal higher-

order shear and normal deformation theory and Eringen 

nonlocal elasticity theory. The thickness stretching effect 

and size dependency were accounted using the higher-order 

shear and normal deformation theory and Eringen nonlocal 

elasticity theory, respectively. Hamilton’s principle was 

used for derivation of governing equations of motion. The 

governing equations of motion were solved for a simply 

supported boundary conditions based on the Navier 

technique. The comparative study was performed to study 

trueness and importance of the present theory. The natural 

frequencies were presented in terms of important input 

parameters such as nonlocal parameter, axial and 

circumferential wave numbers, some dimensionless 

geometric parameters such as length to radius and thickness 

to radius ratios. The main conclusions of the present paper 

are expressed as: 

Comparison between the cases with and without 

thickness stretching effect indicates that accounting 

thickness stretching effect leads to more accurate results. 

Increase of the nonlocal parameter based on Eringen 

nonlocal elasticity theory leads to decrease of stiffness of 

nanoshell and then decrease of natural frequencies of 

nanoshell. 

Increase of length to radius L/R ratio and decrease of 

thickness to radius ratio h/R leads to decrease of stiffness of 

cylindrical nanoshell and then decrease of natural 

frequencies of nanoshell. 

Change of axial and circumferential wave numbers leads 

to different behaviors of natural frequencies of cylindrical 

nanoshell. The numerical results indicates that increase of 

axial wave number leads to increase of natural frequencies 

while increase of circumferential wave number leads to 

decrease of natural frequencies for small values of this 

wave number and increase of natural frequencies for large 

values of wave number. 
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Appendix A: Unknown constants in the equations 
of motion 
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